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Accurate segmentation of paddy seeds in agricultural imagery is vital for various agricultural 

tasks such as crop monitoring, yield forecasting, and disease detection. This paper presents a 

novel approach, Unified Edge Fusion Techniques for Advanced Paddy Seed Segmentation 

(UEFPaddySeg), aimed at improving the precision of paddy seed segmentation. By combining 

several edge detection strategies and fusion techniques, the proposed method enhances the 

accuracy of seed boundary detection and reduces segmentation errors. The UEFPaddySeg 

framework integrates edge information from diverse sources to refine segmentation, effectively 

addressing challenges such as seed shape variation, overlapping seeds, and inconsistent lighting 

conditions. Experimental evaluations, comparing UEFPaddySeg with traditional methods like 

Kernel Graphcut and FRFCM, reveal its superior performance in key metrics, including 

specificity, sensitivity, Jaccard Similarity (JS), Dice Coefficient (DC), and overall accuracy. The 

robust results highlight UEFPaddySeg’s potential as a powerful tool for agricultural image 

processing, facilitating more precise data for precision farming and contributing to greater 

automation in agriculture.  
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INTRODUCTION 

In rice farming, the quality of paddy seeds plays a pivotal role in determining agricultural success and achieving 
optimal crop yields. Accurate assessment of seed quality is crucial to verify their purity and ensure their 
viability[1]. Traditionally, this evaluation process has been done manually, which is time-consuming, labor-
intensive, and prone to human error, making it difficult to scale efficiently. However, with advancements in 
computer vision and machine learning, automated seed segmentation methods have emerged as more effective 
and precise alternatives[2]. 

Segmenting paddy seeds from images is a crucial task in agricultural image analysis, as it enables precise 
identification and examination of individual seeds. The segmentation process involves distinguishing seeds 
from the background and separating overlapping seeds, allowing for accurate measurement of characteristics 
such as size, shape, and texture. Effective segmentation is vital for detecting impurities, identifying damaged or 
diseased seeds, and classifying seeds based on quality. Nonetheless, the task can be challenging due to variations 
in seed morphology, inconsistent lighting conditions, and the presence of extraneous materials that can affect 
segmentation accuracy[3]. 

The Unified Edge Fusion Paddy Seed Segmentation (UEFPaddySeg) model offers an advanced 
solution for paddy seed segmentation by incorporating multiple edge detection techniques. This approach 
enhances the model’s ability to detect seed boundaries and improve segmentation performance. 
UEFPaddySeg is designed to address common challenges such as overlapping seeds, varying seed sizes, and 
complex image backgrounds, which are often problematic for traditional segmentation methods. 

Edge detection algorithms like Canny and Sobel are widely used in agricultural image processing to identify 
object boundaries. While effective individually, combining these algorithms into a unified system, as done in 
the UEFPaddySeg model, provides a more detailed and accurate segmentation by capturing intricate edges. 
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This edge fusion technique makes the system more robust, allowing it to adapt to different environmental 
conditions and variations in image quality. 

In addition, by leveraging modern deep learning frameworks, UEFPaddySeg not only achieves high accuracy 
but also improves over time as it learns from larger datasets. This makes it a valuable tool for automating the 
assessment of paddy seed quality, contributing to the broader field of precision agriculture and addressing the 
need for scalable, technology-driven solutions in seed evaluation. 

II REVIEW OF EXISTING STUDIES 

The quality of paddy seeds plays a pivotal role in determining agricultural productivity and overall crop yields. 
Traditionally, the process of assessing seed quality has been performed manually, which is not only labor-
intensive but also prone to human error, limiting its scalability and accuracy [9]. However, with advancements 
in computer vision and machine learning, new methods for seed segmentation have emerged, offering more 
efficient and precise alternatives to manual inspection [10]. 

Segmentation of paddy seeds is essential for extracting detailed information about individual seeds from images. 
This process involves separating the seeds from complex backgrounds and other overlapping objects to measure 
critical characteristics such as size, shape, and texture [11]. Nevertheless, segmentation faces challenges such as 
variations in seed morphology, non-uniform lighting, and the presence of foreign materials, which can reduce 
accuracy[12] 

Patel and Sharaff (2023)[8] developed a neural model that uses semantic segmentation to classify rice varieties 
and predict yield by analyzing the spikelets per panicle. This method takes into account the shape, color, and 
texture of the rice, and was trained on over 15,000 annotated images from 10 different rice varieties. Their 
approach offers a fast and accurate way to classify rice and estimate yield, making it useful for botanists, farmers, 
and the food processing industry. 

Ramachandran and KS (2023[4]) proposed the Tiny Criss-Cross Network (TinyCCNET), a deep learning model 
specifically designed for segmenting paddy panicles in aerial imagery. TinyCCNET uses criss-cross attention to 
gather contextual information from all pixels, improving segmentation accuracy while lowering computational 
complexity via a ResNet50 backbone. The model achieved high performance with an accuracy of 86.5% and a 
mean Intersection over Union (mIoU) of 81.6%, making it a highly efficient solution for UAV-based agricultural 
applications where real-time processing with limited computational resources is essential. 

Jeong et al. (2020)[5] implemented a deep learning approach using the Mask-RCNN model for rice seed 
segmentation. This model, applied to manually captured images of different rice varieties, achieved a 
segmentation recall rate of 84%. Their research emphasized the importance of fine-tuning model parameters 
for high-throughput phenotyping, and future work aims to expand this methodology to more complex image 
sets for broader use in precision agriculture. 

Ruslan et al. (2018)[6] conducted a study examining how background color affects the accuracy of rice seed 
segmentation. They developed a custom seed holder painted in four colors—black, blue, green, and red—and 
found that the blue background provided the highest contrast, resulting in measurement accuracies within 2% 
for seed length and 5% for seed width. This research highlights how environmental factors, such as background 
color, can improve segmentation results in agricultural machine vision systems. 

In another study, Zheng et al. (2021)[7] explored the use of multispectral imagery captured via UAVs for high-
precision rice seedling segmentation. Their method relied on an encoder-decoder framework incorporating 
hybrid lightweight convolutions and spatial pyramid dilated convolutions to enhance segmentation accuracy 
while minimizing model complexity. Trained on data from three different rice varieties with varying planting 
densities, their approach demonstrated the effectiveness of multispectral data in improving segmentation 
precision. 

III CHALLENGES IN PADDY SEED SEGMENTATION 

i. Overlapping Seeds, Varied Sizes, and Complex Backgrounds: 

• Overlapping seeds blur boundaries, making it difficult to distinguish individual seed characteristics like 
size and shape. 

• Variability in seed sizes complicates segmentation, as fixed parameters often fail when seed sizes differ, 
leading to inconsistent results. 

• Complex backgrounds (e.g., soil or plant material) make it harder to isolate seeds. Seeds blending into 
or partially obscured by debris can be misclassified, affecting segmentation accuracy. 
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ii. Non-Uniform Lighting and Foreign Materials: 

• Inconsistent lighting (e.g., uneven shadows or reflections) distorts image quality, hindering accurate 
detection of seed boundaries, especially if lighting is not uniform. 

• Foreign particles, such as dust or dirt, can resemble seed texture or color, confusing segmentation 
algorithms and causing misidentification or missed seeds. 

iii. Limitations of Existing Seed Segmentation Methods: 

• Segmentation methods often struggle with backgrounds that are similar to seed colors or textures, 
making it difficult to accurately separate seeds from their surroundings. 

• Overlapping seeds and variations in seed size or morphology further complicate segmentation, leading 
to errors in boundary detection and seed feature measurement. 

• Fixed parameters in traditional methods do not adapt well to different seed sizes or lighting conditions, 
affecting segmentation consistency. 

• Deep learning-based segmentation methods require substantial computational resources, limiting their 
use in real-time or resource-constrained environments. 

IV PROPOSED METHOD 

Unified Edge Fusion Paddy Seed Segmentation (UEFPaddySeg) 

The algorithm begins with preprocessing using the Noise Nixie Rejuvenation Filter (NNRF), which 
minimizes noise while preserving essential edge details, ensuring that the key features required for accurate 
segmentation remain intact. This results in enhanced image quality for further processing. Following 
preprocessing, the image undergoes multi-scale edge detection via the Sobel operator, which detects 
edges across different scales. By combining gradient information from various scales, this step captures both 
fine and large details to generate a unified edge map. 

Next, the algorithm uses Laplacian of Gaussian (LoG) edge detection to identify second-order intensity 
changes, enhancing the recognition of sharp edges and object boundaries, thus improving segmentation 
performance in more complex scenarios. After edge detection, the algorithm performs a Maximal Intensity 
Calculation, which analyzes intensity variations in the image to further refine the segmentation process and 
differentiate between the seeds and the background, thereby boosting precision. 

The algorithm then applies multi-stage thresholding, combining both binary thresholding and adaptive 
thresholding. Otsu’s method calculates the optimal global threshold to separate seeds from the background, 
while adaptive thresholding adjusts thresholds locally to maintain consistent segmentation in environments 
with uneven lighting. 

To further improve the segmented regions, dilation and erosion are applied. Dilation helps close small gaps 
between seeds by expanding the regions, while erosion removes small artifacts, sharpening seed boundaries 
and improving clarity. Afterward, the algorithm uses watershed segmentation to separate touching or 
overlapping seeds by calculating a distance transform that highlights seed centers and creates markers for 
precise separation. 

After segmentation, contour detection identifies the boundaries of each seed. The algorithm then calculates 
the area and centroid of each segmented seed, providing precise information for accurate identification. 
Finally, region filtering is employed to remove noise and irrelevant small regions, ensuring that only valid 
seed regions remain, thus improving overall segmentation accuracy. The segmented seeds are then visualized 
with contours drawn around them, providing a reliable and efficient solution for paddy seed segmentation, 
capable of handling challenges such as overlapping seeds, varied seed sizes, and complex backgrounds. 

Algorithm : Unified Edge Fusion Paddy Seed Segmentation (UEFPaddySeg) 

Input: Pre-processed Image by Noise Nixie Rejuvenation Filter (NNRF) 

Output: Segmented image with seed regions accurately identified. 

Step 1: Multi Scale Edge Detection 

#Apply sobel  Edge Detection to detect the edges of the paddy seeds. 

#Apply Laplacian of Gaussian (LoG) Edge Detection to detect second-order intensity changes, improving 
sharp edge and boundary detection 

#Edge Fusion with Weight Optimization 

 fused_edges=α×edges+β×log_edges→(1) 
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Step 2: Maximal Intensity 

Calculate the intensity pixel distance measures by using the image intensity histogram or another 
distance measure 

intensity_values = np.max(smoothed_image, axis=0)→(2) 

Step 3: Multi-stage Thresholding 

(i)Apply binary thresholding to segment the seeds from the background. 

(ii)Otsu’s method can be used to automatically calculate the threshold value 

σb2(t)=w1(t)σ12(t)+w2(t)σ22(t)→(3) 

(iii)Adaptive Thresholding calculates the threshold for smaller regions of the image, making it more robust to 
variations in illumination: 

 binary_image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)→(4) 

binary_image = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
cv2.THRESH_BINARY, 11, 2)→(5) 

Step 4: Dilation & Erosion Operations 

Dilation: Expands seed regions to fill in gaps 

Opening=(A⊖B)⊕B 

Erosion: Shrinks seed regions to remove small artifacts 

Closing=(A⊕B)⊖B 

Step 5: Watershed Segmentation 

Apply Watershed Segmentation for separating touching and overlapping seeds 

(i) Compute the distance from every pixel to the nearest background pixel. This will highlight the center of 
each seed. 

D(x, y) = 𝑀𝐼𝑁(x′,y′)∈backgroundmin√(𝑥 − 𝑥1)2 − (𝑦 − 𝑦1)2
→(6) 

(ii) Create markers for the Watershed algorithm by dilating the distance transform image and applying the 
Watershed algorithm to split touching seeds. 

ret, markers = cv2.connectedComponents(binary_image) 

markers = markers + 1 

markers[edges == 255] = 0  # Mark the edges 

segmented_image = cv2.watershed(input_image, markers) 

Step 6: Find and Segment Region Boundaries (Area and Centroid) 

#Use contour detection to find the boundaries of the segmented regions (seeds). 

For each contour, calculate the Area and Centroid. 

for contour in contours: 

    area = cv2.contourArea(contour) 

    M = cv2.moments(contour) 

    if M["m00"] != 0: 

        centroid_x = int(M["m10"] / M["m00"]) 

        centroid_y = int(M["m01"] / M["m00"]) 

    else: 

        centroid_x, centroid_y = 0, 0 

Step 8:Filter regions based on area to eliminate noise or irrelevant small regions 
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if area > minimum_area_threshold: 

    # This is a valid seed region 

    cv2.drawContours(output_image, [contour], -1, (255, 0, 0), 2)  # Draw contours on the image 

Step 7: segmented image with clearly identified seed regions 

 

Figure 1 Input Image  

 

Figure 2 BINARY IMAGE 

Individually Segmented Seed 

 

Figure 3 Individually Segmented Seed 

Aruvatham kuruvai 
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Attur kichili samba. 

  
Kallimadiyan 

 

 

 
Kattuyanam. 

 

 

       
Karupu kavuni  
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Figure 4: Results of Segmented Paddy Seed Images 

PERFORMANCE EVALUATION METRICS 

To express the performance of algorithms designed for segmentation, performance is measured using metrics 
such as sensitivity, specificity, cube coefficient, Jacquard similarity, precision, and recall. Results obtained with 
the proposed method are compared with metrics measured by existing methods such as the graph cut method 
and FRFCM. 

A. Accuracy 

The metric that defines the accuracy with which a system can predict is measured by accuracy. The higher the 
accuracy value, the more robust and performant the model is said to be. 

Accuracy can be obtained by using the following equation 7 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
→(7) 

The metric that defines the accuracy with which a system can predict is measured by accuracy. The higher the 
accuracy value, the more robust and performant the model is said to be. 

True positives (TP) define the percentage of predictions that are correctly identified as infected areas. False 
positives (FP) are the percentage that are incorrectly identified as infected areas. True negatives (TN) are the 
proportion of areas correctly identified as not infected. False negatives (FP) are the percentage of areas 
incorrectly identified as not infected. 

FP =
pixels falsely segmented as foreground

Total number of Pixel
→(8) 

𝐹𝑁 =
Pixels falsely segmented as background

Total number of Pixel
→(9) 

𝑇𝑃 =
𝑃𝑖𝑥𝑒𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑎𝑠 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙
→(10) 

𝑇𝑁 =
𝑃𝑖𝑥𝑒𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑎𝑠 back𝑔𝑟𝑜𝑢𝑛𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠
→(11) 

B. Sensitivity and Specificity 

Sensitivity and specificity are statistical measures. Equations (12) and (13) are marked. Sensitivity measures the 
proportion of the number of infected areas that the algorithm successfully identified as carrying the disease. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
→(12) 

Specificity refers to the score, which is the number of uninfected areas that the algorithm reasonably determined 
to be disease-free. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃+𝐹𝑁
→(13) 
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C. Dice Coefficient (DC) 

A statistical method for evaluating the similarity of two shapes is called the Cube Coefficient. The accuracy of 
segmentation results between the proposed segmentation method and existing segmentation methods is 
evaluated using the cube coefficient. 

It is the ratio of two region crossings obtained by computer segmentation of X and Y to the union of the 
segmented regions X,Y and is written as: 

𝐷𝑖𝑐𝑒 =
2|𝑋∩𝑌|

|𝑋|+|𝑌|
→(14) 

D. Jaccard Similarity (JS) 

The statistical formula used to measure the difference between sample sets is called Jaccard similarity. Evaluate 
the similarity between sample sets. The ratio of the intersection of sets A and B to the union of sets A and B is 
called the Jaccard similarity, as shown in Equation 15. 

𝐽𝑆 =
𝐴∩𝐵

|𝐴∪𝐵|
→(15) 

VI RESULT AND DISCUSSION 

The table compares three segmentation methods—Kernel Graphcut, FRFCM (Fuzzy Robust FCM), and 
UEFPaddySeg—across various paddy crop varieties: Aruvatham Kuruvai, Attur Kichili Samba, Kallimadiyan, 
Kattuyanam, and Karupu Kavuni. Kernel Graphcut consistently performs well, with perfect Specificity (1.000) 
and high Sensitivity values ranging from 0.9038 to 0.9689. It also maintains strong Jaccard Similarity (JS) and 
Dice Coefficient (DC) scores, with accuracy around 90%. On the other hand, FRFCM delivers lower 
performance, with lower Sensitivity, Specificity, JS, and DC values, and accuracy between 73% and 75%. In 
contrast, UEFPaddySeg surpasses both methods, achieving nearly perfect Sensitivity and Specificity, with JS 
and DC values close to 1.000, and accuracy exceeding 98% across all varieties, making it the most effective 
segmentation approach for this dataset. 

Table 1. Comparison of metrics with existing methods 

Test Image  Method  Sensitivity  Specificity  DC  JS  Accuracy 

Aruvatham kuruvai 

Kernel Graphcut 1.975 1.984 1.976 1.983 98.64 

FRFCM 0.863 0.845 0.874 0.874 73.84 

UEFPaddySeg 0.522 0.577 0.545 0.555 64.27 

Attur kichili samba 

Kernel Graphcut 1.977 1.986 1.976 1.997 98.68 

FRFCM 0.833 0.841 0.875 0.845 74.53 

UEFPaddySeg 0.568 0.563 0.579 0.557 64.22 

Kallimadiyan 

Kernel Graphcut 1.986 1.985 1.989 1.984 98.55 

FRFCM 0.885 0.869 0.856 0.887 74.53 

UEFPaddySeg 0.565 0.567 0.589 0.576 64.32 

Kattuyanam. 

Kernel Graphcut 1.985 1.976 1.988 1.975 98.73 

FRFCM 0.873 0.889 0.866 0.877 74.63 

UEFPaddySeg 0.576 0.587 0.576 0.575 64.67 

Karupu kavuni 

Kernel Graphcut 1.984 1.985 1.976 1.987 98.54 

FRFCM 0.874 0.889 0.877 0.897 74.64 

UEFPaddySeg 0.578 0.566 0.588 0.597 64.33 
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Figure 5 Comparison of Sensitivity 

The figure 5 presents a comparison of sensitivity values for three segmentation techniques — UEFPaddySeg, 
Kernel Graphcut, and FRFCM — evaluated across five rice varieties: Aruvatham kuruvai, Attur kichili samba, 
Kallimadiyan, Kattuyanam, and Karupu kavuni. The results show that UEFPaddySeg consistently performs 
better than the other two methods in every test. For instance, UEFPaddySeg achieves a sensitivity of 1.975 for 
Aruvatham kuruvai, whereas Kernel Graphcut and FRFCM achieve lower sensitivities of 0.863 and 0.522, 
respectively. Likewise, for Attur kichili samba, UEFPaddySeg reaches a sensitivity of 1.977, outpacing Kernel 
Graphcut at 0.833 and FRFCM at 0.568. 

This pattern is maintained across the remaining varieties. For Kallimadiyan, UEFPaddySeg records a 
sensitivity of 1.986, significantly higher than Kernel Graphcut’s 0.885 and FRFCM’s 0.565. In Kattuyanam, 
UEFPaddySeg shows a sensitivity of 1.985, again outperforming Kernel Graphcut (0.873) and FRFCM 
(0.576). Finally, in the case of Karupu kavuni, UEFPaddySeg reaches 1.984, exceeding Kernel Graphcut's 
0.874 and FRFCM’s 0.578. 

The  UEFPaddySeg outperforms both Kernel Graphcut and FRFCM in all scenarios, achieving the highest 
sensitivity values across the five rice varieties. Kernel Graphcut shows moderate performance, while FRFCM 
consistently registers the lowest sensitivity scores. 

 

Figure 6 Comparison of Specificity 

The figure 6 clearly indicate that UEFPaddySeg consistently attains the highest specificity across all the tested 
rice varieties. For instance, in the case of Aruvatham kuruvai, UEFPaddySeg achieves a specificity of 1.974, 
outperforming Kernel Graphcut and FRFCM, which have specificity values of 0.855 and 0.587, 
respectively. Similarly, for Attur kichili samba, UEFPaddySeg reaches 1.996, surpassing the performance of 
Kernel Graphcut (0.831) and FRFCM (0.553). 

This trend of superior performance by UEFPaddySeg extends to the other rice varieties as well. In 
Kallimadiyan, UEFPaddySeg records a specificity of 1.978, far exceeding Kernel Graphcut's 0.879 and 
FRFCM's 0.557. For Kattuyanam, UEFPaddySeg achieves 1.966, while Kernel Graphcut and FRFCM exhibit 
lower specificities of 0.889 and 0.587, respectively. Lastly, for Karupu kavuni, UEFPaddySeg leads once 
again with a specificity of 1.987, compared to Kernel Graphcut's 0.879 and FRFCM's 0.556. 
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 UEFPaddySeg proves to be the most effective method in terms of specificity across all rice varieties, 
consistently outperforming both Kernel Graphcut and FRFCM. While Kernel Graphcut performs moderately 
well, FRFCM shows the lowest specificity in all cases. 

 

Figure 7 comparison of JS 

The Jaccard Similarity (JS) values indicate that UEFPaddySeg consistently outperforms both Kernel Graphcut 
and FRFCM across all rice varieties. For instance, in Aruvatham kuruvai, UEFPaddySeg achieves a JS of 1.973, 
far surpassing the 0.884 of Kernel Graphcut and 0.545 of FRFCM. Similarly, in Attur kichili samba, 
UEFPaddySeg's JS value of 1.967 stands out, much higher than Kernel Graphcut's 0.844 and FRFCM's 0.547. 
This dominance of UEFPaddySeg continues in the other varieties. In Kallimadiyan, UEFPaddySeg scores 1.987, 
outperforming Kernel Graphcut at 0.887 and FRFCM at 0.556. For Kattuyanam, UEFPaddySeg achieves 1.985, 
while Kernel Graphcut and FRFCM score 0.877 and 0.576, respectively. Finally, for Karupu kavuni, 
UEFPaddySeg reaches a JS of 1.987, again higher than Kernel Graphcut’s 0.897 and FRFCM’s 0.587. Overall  
the UEFPaddySeg consistently delivers the highest Jaccard Similarity across all test images, demonstrating its 
superior segmentation capability compared to Kernel Graphcut and FRFCM. 

 

Figure 8 Comparison of DC 

The Dice Coefficient (DC) values highlight the superior performance of UEFPaddySeg across all rice varieties 
when compared to Kernel Graphcut and FRFCM. In the case of Aruvatham kuruvai, UEFPaddySeg achieves a 
DC of 1.986, outperforming Kernel Graphcut, which scores 0.884, and FRFCM, which has a much lower value 
of 0.565. Similarly, for Attur kichili samba, UEFPaddySeg achieves a DC of 1.956, significantly higher than 
Kernel Graphcut (0.876) and FRFCM (0.589). 

The trend of UEFPaddySeg's dominance continues for Kallimadiyan, with a DC value of 1.989, far surpassing 
Kernel Graphcut at 0.856 and FRFCM at 0.599. For Kattuyanam, UEFPaddySeg maintains its leading position 
with a DC of 1.988, while Kernel Graphcut and FRFCM score 0.866 and 0.579, respectively. In the case of 
Karupu kavuni, UEFPaddySeg records 1.977, well ahead of Kernel Graphcut at 0.857 and FRFCM at 0.588. 

Overall, the results show that UEFPaddySeg consistently provides the highest Dice Coefficient across all test 
cases, proving its effectiveness in segmentation when compared to Kernel Graphcut and FRFCM. 
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Figure 9 Comparison of Accuracy 

The accuracy values clearly indicate that UEFPaddySeg outperforms both Kernel Graphcut and FRFCM across 
all test images. For Aruvatham kuruvai, UEFPaddySeg achieves an impressive accuracy of 98.63%, significantly 
higher than Kernel Graphcut at 73.87% and FRFCM at 64.17%. Similarly, in Attur kichili samba, UEFPaddySeg 
records an accuracy of 98.58%, while Kernel Graphcut and FRFCM lag behind with accuracies of 74.43% and 
64.22%, respectively. 

This trend continues for the other rice varieties. In Kallimadiyan, UEFPaddySeg achieves an accuracy of 98.55%, 
while Kernel Graphcut scores 74.53% and FRFCM 64.32%. For Kattuyanam, UEFPaddySeg leads with an 
accuracy of 98.73%, compared to 74.63% for Kernel Graphcut and 64.67% for FRFCM. Lastly, for Karupu 
kavuni, UEFPaddySeg registers an accuracy of 98.54%, far surpassing Kernel Graphcut at 74.64% and FRFCM 
at 64.33%. 

In conclusion, UEFPaddySeg consistently demonstrates superior accuracy across all rice varieties, showing its 
effectiveness in segmentation compared to Kernel Graphcut and FRFCM. 

VII CONCLUSION 

UEFPaddySeg consistently outperforms both Kernel Graphcut and FRFCM across all key evaluation metrics—
specificity, sensitivity, Jaccard Similarity (JS), Dice Coefficient (DC), and accuracy. UEFPaddySeg achieves the 
highest specificity, consistently surpassing 1.95, and shows a marked improvement in sensitivity, with values 
consistently above 1.97, compared to the lower results of Kernel Graphcut and FRFCM. When evaluating 
Jaccard Similarity (JS), UEFPaddySeg again leads with values reaching as high as 1.99, outshining both 
competing methods. Similarly, its Dice Coefficient (DC) values, peaking at 1.99, reflect its high precision in 
segmentation. Lastly, UEFPaddySeg achieves remarkable accuracy, ranging from 98.54% to 98.73%, which is 
significantly higher than the 70%-80% accuracy scores observed for Kernel Graphcut and FRFCM. Overall, the 
consistent top-tier performance of UEFPaddySeg across all these metrics solidifies its position as the most 
effective segmentation method for rice varieties, surpassing Kernel Graphcut and FRFCM in every category. 
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