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Cardiovascular illnesses (CVDs) are still the top cause of death around the 

world. To improve prognoses and lower healthcare costs, early monitoring 

systems are needed. This study introduces a new system that combines deep 

learning algorithms with smart IoT devices to make it easier to track and find 

CVDs early in real time. Wearable monitors collect constant physiological 

data like heart rate, blood pressure, oxygen levels, and electrocardiogram 

(ECG) readings that are used in the suggested system. We used a CNN-LSTM 

design that combines a Convolutional Neural Network and Long Short-Term 

Memory to handle the signals' time and spatial patterns. The CNN part pulls 

out important features from raw, multidimensional sensor data, and the 

LSTM part finds time relationships to make predictions more accurate. The 

dataset used includes PhysioNet's publicly available cardiovascular health 

records and real-time data from smart devices. To balance class distributions, 

simulated minority oversampling was added to the dataset. Precision, 

memory, F1-score, and accuracy were used as measures to evaluate 

performance. It did better than standard models like CNN, LSTM, and classic 

machine learning classifiers, with a total accuracy of 96.4%, a precision of 

95.7%, and an F1-score of 96.1% in finding early signs of CVD. The system 

also allows implementation at the edge, which ensures low delay and energy-

efficient processing that is good for constant tracking. The results show that 

combining deep learning with IoT gadgets could greatly improve early 

identification of CVD, allowing for proactive actions and personalised 

healthcare. The suggested structure offers an adaptable and affordable way 

to keep an eye on people's heart health in real time, especially in places that 

are far away and don't have a lot of resources.  
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1. INTRODUCTION 

The World Health Organisation says that cardiovascular illnesses (CVDs), which include conditions like 

coronary artery disease, arrhythmias, heart failure, and high blood pressure, are still the leading cause 

of death in the world, killing over 17 million people every year. Heart problems are becoming more 

common around the world because people are becoming less active, eating poorly, and being stressed 

out. Also, the population is getting older. Early diagnosis and treatment are very important for better 

patient results, lowering the number of hospital stays, and lowering the overall cost of healthcare 

systems. Traditional methods of diagnosis often rely on regular clinical exams and tracking in a hospital, 

which might not pick up on short-term problems or send out timely alerts for serious events. One big 



222  
 

J INFORM SYSTEMS ENG, 10(32s) 

problem with the current healthcare system is that there isn't any constant, real-time tracking. This is 

especially true for individuals who are at a high hazard of having CVDs. New trends in smart tech and 

the net of factors (IoT) have made it feasible to maintain a watch on humans’ fitness in locations aside 

from hospitals. Necessary bodily symptoms like coronary heart price, electrocardiogram (ECG), oxygen 

saturation (SpO2), and blood stress can now be accumulated in actual time through wearable monitors 

like smartphones, exercise bands, chest patches, and internal devices. Those gadgets produce massive 

quantities of information that, when nicely analysed, can display early signs and symptoms of troubles 

with the heart. But due to the fact bodily data is so huge, complex, and variable, it desires superior 

analysis gear with a purpose to be analysed in a method that makes sense and makes accurate 

predictions. 

A branch of artificial intelligence (AI) called deep learning has accomplished a magnificent task of 

identifying the way to take high-level trends from uncooked sensor statistics and construct complex, 

nonlinear relationships in biological signals [1]. As an example, deep neural networks like Convolutional 

Neural Networks (CNNs) and long brief-time period memory (LSTM) networks are commonly used to 

locate patterns in time-series and region information. CNNs are exceptional at finding spatial structures 

and features in indicators like ECGs, while LSTMs are made to find long-time period temporal 

relationships between sequences. By setting these fashions together in a mixed plan, it is viable to apply 

both the spatial and temporal features of circulatory facts to make a accurate diagnosis quickly. 

In this observe, we recommend a deep learning-based device that combines clever IoT gadgets with a 

CNN-LSTM hybrid version to discover cardiovascular illnesses early on. The device is made to 

accumulate records in actual time, deal with alerts on the system itself, and make clever health 

assessments. Earlier than being used, physiological records from gadgets is preprocessed to dispose of 

noise and other errors. The CNN part then takes out spatial functions from the cleaned information, 

and the LSTM part fashions how these features alternate over the years to find small, converting trends 

that might mean there are troubles with the coronary heart. Setting these designs collectively makes it 

viable to reliably discover early-degree CVD signs that may not be obvious the usage of normal 

techniques. Wearable sensor information from the real international and labelled coronary heart 

information from open-supply assets like PhysioNet were each used in this have a look at [2]. To address 

the problem of sophistication mismatch, especially the reality that bizarre cases had been no longer 

proven adequate, records enhancement methods like artificial minority oversampling (SMOTE) have 

been used. Preferred overall performance measures, like accuracy, precision, recall, and F1-rating, were 

used to instruct and test the version. The consequences display that our cautioned CNN-LSTM model 

works higher than other machine mastering strategies, inclusive of aid Vector Machines (SVM), 

selection trees, and deep learning fashions that work on their personal. With a discovery fee of 96.4%, 

our method appropriately reveals individuals who are at excessive chance, with a view to get medical 

help right away. 

The suggested method is also perfect for usage at the edge, letting real-time data happen directly on 

smart tech or edge computers that are linked. This cuts down on delay, protects user privacy, and makes 

sure that tracking continues even in places where internet access is limited. This kind of design is 

especially helpful for people who live in rural or under-resourced areas and don't have easy access to 

hospital-based tracking all the time. The system can be used every day without needing to be charged 

or fixed by a technician because it uses little power and can process information in real time. 

Personalised heart care is about to change a lot with the addition of deep learning to smart IoT devices. 

It fills in the gaps between constantly checking on health and making smart choices, providing a 

proactive method for managing diseases. This approach is different from standard temporal care 

models because it allows predicted healthcare. This means that early signs of deterioration can be found, 

recorded, and fixed before they get worse [3]. As healthcare systems around the world move towards 

more digital and patient-centered models, more people will likely start using these kinds of smart 

gadgets. Deep learning and smart IoT technology are being used in this study to try to come up with a 

flexible, cost-effective, and accurate way to find cardiovascular diseases early. The suggested framework 

could better the quality of life for patients, improve their results, and lower the world load of 
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cardiovascular diseases by mixing advanced computer models with real-time physiological data. We will 

be working on clinical evaluation, model explainability, and connecting the system to cloud-based 

health tools so that it can be used on a big scale in the future. 

2. RELATED WORK 

Heart disease (CVD) tracking and forecast has gotten a lot of attention lately as the Internet of Things 

(IoT) and deep learning technologies are used together. Over the past ten years, researchers have 

created a number of systems that use smart technology and artificial intelligence (AI) models to help 

find circulatory problems earlier. It's been used with CVD datasets to locate styles and classify 

abnormalities the use of conventional gadget studying algorithms like assist Vector Machines (SVM), 

okay-Nearest Neighbours (ok-NN), and selection trees. However, their overall performance is 

frequently restricted with the aid of the want for guide feature engineering and the incapability to 

address time-series facts with a number of dimensions [4, 5]. To get round those troubles, deep learning 

models, specifically Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), 

have turn out to be better choices for routinely extracting functions and analysing temporal sequences. 

Current studies has looked into how CNNs may be used to classify ECG alerts. Those studies show that 

CNNs can pick out up on both neighbourhood and hierarchical features of heart patterns, which makes 

prognosis greater accurate [6, 7]. Within the equal method, long quick-term reminiscence (LSTM) 

networks, a specific form of RNNs, were shown to be good at modelling long-time period correlations 

in cardiac data that is important for noticing how heart conditions change [8]. There is additionally 

more and more take a look at on CNN-LSTM fashions that combine the spatial processing energy of 

CNNs with the temporal learning of ability of LSTMs. these models works better at obligations that 

involve looking and classifying circulatory activities in real time [9, 10]. 

Real-time circulatory tracking has been improved even more by the use of personal IoT devices that 

allow ongoing data collection outside of hospital situations. Several frameworks have been suggested in 

which personal devices with smart sensors collect vital signs like heart rate, blood pressure, oxygen 

levels, and ECG signals. These signals are then sent to cloud or edge computing systems to be analysed 

[11, 12]. These tools make it possible to make decisions in real time and cut down on the time it takes to 

get data and measure health. Some research has looked into fog computing designs for localised data 

processing to make wireless health tracking systems faster and use less energy [13]. Researchers have 

used techniques like the Synthetic Minority Over-sampling Technique (SMOTE) and adaptive sampling 

methods to improve classification performance. These methods deal with the problem of class 

imbalance that often happens in cardiovascular datasets because abnormal events are so rare [14]. 

Transfer learning and pre-trained deep learning models are also being used more and more to help with 

the problems that come with not having enough labelled medical datasets. This makes it easier for 

models to work with a wider range of patients [15]. 

Edge AI has been built into smart tech to allow on-device reasoning, which lowers the cost of data 

transfer and protects user privacy. Edge computing lets you do analytics in real time, which is especially 

helpful for latency-sensitive tasks like finding arrhythmias or predicting heart failure [16]. Researchers 

have also stressed the need for deep learning systems that are small and light so they can work with the 

limited resources of smart tech. To make computations simpler while keeping prediction accuracy [17], 

methods like model trimming, quantisation, and knowledge distillation have been used. The usefulness 

of wearable systems based on deep learning has been proven in several standard studies using open 

data sets like the MIT-BIH Arrhythmia Database and the PhysioNet Challenge datasets. These sets of 

data include labelled ECG records that can be used as a standard to check how well the model works in 

a number of different heart conditions [18]. Some of the most popular ways to measure performance 

are accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve 

(AUC-ROC). Most mixed models do much better than standard methods. 

Even though there has been some good scientific success in this area, there are still problems with data 

quality, monitor stability, and clinical integration. If worn sensor data isn't properly preprocessed, noise 

and motion artefacts can have a big effect on model results. To improve signal clarity and stability, 
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researchers have come up with adaptive filtering, wavelet transform, and ensemble denoising 

autoencoders [19]. Concerns about data protection, patient consent, and being able to explain AI choices 

are also still big issues when it comes to using these systems in real healthcare settings. Previous study 

has shown that smart IoT systems driven by deep learning have a huge potential to change the way 

circulatory diseases are found. Traditional, reactive healthcare models are clearly giving way to smart, 

proactive, and patient-centered ones. Together, edge-based reasoning, real-time data collection, hybrid 

deep learning models, and smart gadgets make up a strong environment that can deal with the world 

problem of CVDs. This study adds to previous work by suggesting a scalable CNN-LSTM framework 

that works best for edge computing. The goal is to improve the accuracy of early spotting and make the 

framework usable in real-life situations. 

Table 1: Summary of Related work in CVD 

Approach Work Finding Dataset Used Limitation Scope 

SVM-based 

Classification 

Detected basic CVD 

anomalies with 

moderate accuracy 

MIT-BIH Requires manual 

feature engineering 

Suitable for 

simple 

classification 

tasks 

k-NN 

Algorithm 

Performed well on 

small-scale datasets 

UCI CVD 

Dataset 

Poor scalability 

and high 

computation for 

large datasets 

Basic clinical 

diagnosis 

support 

Decision Tree 

Classifier 

Easy to interpret 

results 

Framingham 

Dataset 

Lower accuracy on 

imbalanced 

datasets 

Quick analysis 

for structured 

data 

CNN Model on 

ECG Signals 

Automatically 

extracted spatial 

ECG features 

MIT-BIH 

Arrhythmia 

Database 

Cannot model 

temporal 

dependencies 

ECG waveform 

classification 

LSTM Network Captured long-term 

dependencies in vital 

signals 

PhysioNet Lacks spatial 

feature extraction 

Sequential 

physiological 

signal 

monitoring 

Hybrid CNN-

LSTM 

Outperformed 

standalone models 

for real-time CVD 

detection 

PhysioNet, 

MIT-BIH 

Requires high 

computational 

power 

Integrated 

wearable health 

monitoring 

IoT-enabled 

Wearable 

Framework 

Enabled real-time 

physiological 

monitoring 

Real-time 

wearable data 

Sensor noise, data 

privacy concerns 

Continuous 

home-based 

CVD monitoring 

Fog Computing 

+ Deep 

Learning 

Improved latency 

and energy efficiency 

for real-time analysis 

Custom real-

time datasets 

Complex 

deployment 

architecture 

Localized 

processing in 

health IoT 

systems 

SMOTE with 

Deep Learning 

Addressed class 

imbalance, improved 

minority class 

recognition 

PhysioNet May overfit 

synthetic samples 

Balanced early 

detection 

frameworks 

Transfer 

Learning CNN 

Enhanced 

generalizability 

across patients 

PTB-XL, MIT-

BIH 

Dependent on 

similarity of pre-

trained models 

Personalized 

and adaptive 

diagnostics 

Edge AI + Deep 

Learning 

Enabled on-device 

real-time inference 

Real-time 

wearable ECG 

Limited by device 

hardware 

capability 

Smart wearable 

deployment in 

remote areas 
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with privacy 

preservation 

Lightweight 

CNN Models 

Reduced model size 

for wearables 

without major 

accuracy loss 

MIT-BIH, 

Custom ECG 

Slightly lower 

precision than full 

CNNs 

Battery-efficient 

health 

monitoring 

Adaptive 

Filtering + 

Denoising 

Reduced signal 

noise, improving 

ECG clarity 

MIT-BIH Noise 

Stress Test 

Database 

Additional 

preprocessing 

overhead 

Robust real-

world wearable 

signal 

processing 

Explainable AI 

for Wearables 

Improved 

transparency in 

clinical decision 

support 

PhysioNet, 

Real-World 

ECG 

Less mature for 

deep model 

interpretation 

Trustworthy AI 

integration in 

healthcare 

3. MATERIALS AND METHODS 

A. Data Preprocessing 

1. Noise Removal Techniques 

Physiological data from worn IoT devices, like electrocardiograms (ECGs) or photoplethysmograms 

(PPGs), are easily messed up or distorted by things like movement, sensor placement issues, 

background noise, or hardware limits. These noises can make deep learning models work much less 

well by hiding important patterns and traits that are needed for accurate cardiovascular disease (CVD) 

recognition. During the preprocessing step, different filters and denoising techniques are used to fix 

this problem. The band-pass filter is one of the most popular methods used. It helps keep the frequency 

parts that are unique to heart data (usually between 0.5 Hz and 40 Hz for an ECG). Wavelet transform-

based denoising is also very popular because it can break down signals into different levels, which 

successfully separates the information from the noise. Adaptive filtering is another method that uses 

reference signals to flexibly get rid of motion artefacts. Empirical Mode Decomposition (EMD) is 

sometimes used to separate the signal's basic parts so they are clearer. The type of data, the amount of 

computing power available, and whether the system is real-time all affect the choice of method. To 

improve signal quality and make sure the deep learning model gets clean, useful data for strong 

cardiovascular anomaly detection, it is important to get rid of noise effectively. 

2. Normalization 

Normalisation is an important step in the preparation process that makes raw data more consistent 

before it is fed into deep learning models. Physiological signs like heart rate or ECG numbers can be 

very different between people because of changes in biology, where the sensors are placed, or their 

physical conditions. If these differences aren't normalised, they could lead the model astray and make 

it less good at learning. Normalisation makes sure that each input trait adds evenly to the learning 

process by scaling them into a uniform range, usually between 0 and 1, or with a mean of 0 and a 

variance of 1. The main purpose of Min-Max normalisation in this study was to change the scale of the 

data from 0 to 1. This speeds up the convergence process during model training and makes predictions 

more stable. Z-score normalisation, on the other hand, was thought about for situations where mean-

centered data distribution was very important. Normalisation not only makes training work better, but 

it also lowers the risk of overfitting, which is especially important in real-time systems where data may 

change as it comes in, as illustrate in figure 1.  
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Figure 1: Overview of Proposed system architecture 

B. Model Architecture 

1. CNN for spatial feature extraction 

Convolutional Neural Networks (CNNs) are very good at pulling out spatial information from structured 

data like photos and bodily signs with multiple channels. CNNs look at ECG signals for spatial patterns 

in the purpose of finding cardiovascular disease. They do this by using convolutional filters to find local 

signal features such as peaks, gaps, and waveform shapes. These signs are very important for finding 

problems like rhythms, or uneven heartbeats. CNN layers learn hierarchical representations step by 

step, from simple edges to complicated signal patterns. This lets the model easily tell the difference 

between heart activity that is normal and activity that isn't. This gets rid of the need for feature 

engineering by hand and makes diagnostics more accurate. CNNs can share parameters, which makes 

them fast to compute and good for use at the edge level in smart systems. 

CNN for Spatial Feature Extraction model 

Step 1: Input Signal Representation 

Let the raw input signal be: 

𝑋 =  [𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛] 

Where 𝑋 ∈  ℝⁿ and n is the number of signal points. 
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Step 2: Convolution Operation 

Apply a 1D convolution using a kernel w of size k: 

𝑧𝑖 =  ∑[ 𝑤𝑗 ∗  𝑥(𝑖 + 𝑗) ]  +  𝑏

𝑘−1

𝑗=0

  

• Where zi is the output at position i, and b is the bias. 

Step 3: Activation Function 

Apply a non-linear function (ReLU): 

𝑎𝑖 =  𝑅𝑒𝐿𝑈(𝑧𝑖) = max(0, 𝑧𝑖) 

• This adds non-linearity to learn complex patterns. 

Step 4: Pooling (Dimensionality Reduction) 

Apply max pooling to downsample: 

𝑝𝑖 =  𝑚𝑎𝑥(𝑎𝑖, 𝑎𝑖 + 1, . . . , 𝑎𝑖 + 𝑠 − 1) 

• Where s is the pooling window size. 

2. LSTM for temporal dependency learning 

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network (RNN) that is 

intended to learn and remember how long-term changes in sequential data rely on each other. In the 

process of finding cardiovascular disease, bodily signs like ECG and heart rate change over time and 

often show trends that cover more than one time step. LSTM networks deal with this by keeping internal 

memory cells that store important data and getting rid of unnecessary data using forget, input, and 

output gates. This structure lets the model show how cardiovascular conditions change over time and 

grow, like when arrhythmias or irregular heartbeat gaps start. LSTMs are better than regular RNNs at 

modelling long-term relationships because they don't have the disappearing gradient problem. Their 

ability to learn complicated timing connections makes it easier to find heart problems early and 

correctly from real-time wearable data. 

Step 1: Forget Gate 

𝑓𝑡 =  𝜎(𝑊𝑓 ·  [ℎ𝑡 − 1, 𝑥𝑡]  +  𝑏𝑓) 

Step 2: Input Gate 

𝑖𝑡 =  𝜎(𝑊𝑖 ·  [ℎ𝑡 − 1, 𝑥𝑡]  +  𝑏𝑖) 

Ĉ𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝐶 ·  [ℎ𝑡 − 1, 𝑥𝑡]  +  𝑏𝐶) 

Step 3: Cell State Update 

𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡 − 1 +  𝑖𝑡 ∗  Ĉ𝑡 

Step 4: Output Gate 

𝑜𝑡 =  𝜎(𝑊𝑜 ·  [ℎ𝑡 − 1, 𝑥𝑡]  +  𝑏𝑜) 

Step 5: Hidden State Update 

ℎ𝑡 =  𝑜𝑡 ∗  𝑡𝑎𝑛ℎ(𝐶𝑡) 

3. CNN-LSTM hybrid model 
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The CNN-LSTM hybrid model takes the best parts of both Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM) networks and uses them together to process and analyse bodily data 

for finding cardiovascular disease. Using convolutional and pooling layers, the CNN part of this design 

first pulls out spatial features from the raw input data, like structural patterns in ECG waves. The LSTM 

layer then gets these spatial features, which are local signal characteristics, and it figures out how things 

change over time and how they depend on each other. This combination lets the model learn both steady 

patterns and changing patterns in heart signals, which gives it a full picture of heart conditions. The 

mixed method is better than solo models because it is more accurate and stable. This makes it perfect 

for real-time, wireless health tracking systems that aim to find diseases early. 

Algorithm: CNN-LSTM Hybrid Model for Cardiovascular Signal Analysis 

Step 1: Input 

Let the input be a 1D physiological signal: 

𝑋 =  [𝑥₁, 𝑥₂, . . . , 𝑥ₙ], 𝑤ℎ𝑒𝑟𝑒 𝑋 ∈  ℝⁿ 

Step 2: Convolutional Feature Extraction (CNN) 

Apply multiple 1D convolution filters to extract spatial features: 

𝑧ᵢ =  𝛴 (𝑤ⱼ ∗  𝑥ᵢ+ⱼ) +  𝑏   𝑓𝑜𝑟 𝑗 =  0 𝑡𝑜 𝑘 − 1 

Apply activation function (e.g., ReLU): 

𝑎ᵢ =  𝑅𝑒𝐿𝑈(𝑧ᵢ)  =  𝑚𝑎𝑥(0, 𝑧ᵢ) 

Apply pooling to reduce dimensionality: 

𝑝ᵢ =  𝑚𝑎𝑥(𝑎ᵢ, 𝑎ᵢ₊₁, . . . , 𝑎ᵢ₊ₛ₋₁) 

Let the resulting feature map be: 

𝑃 =  [𝑝₁, 𝑝₂, . . . , 𝑝ₘ] 

Step 3: Temporal Dependency Learning (LSTM) 

• Feed feature map P sequentially into LSTM units. 

Compute gates: 

𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒:      𝑓ₜ =  𝜎(𝑊𝑓 ·  [ℎₜ₋₁, 𝑝ₜ]  +  𝑏𝑓) 

𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒:       𝑖ₜ =  𝜎(𝑊𝑖 ·  [ℎₜ₋₁, 𝑝ₜ]  +  𝑏𝑖) 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑚𝑒𝑚𝑜𝑟𝑦: Ĉₜ =  𝑡𝑎𝑛ℎ(𝑊𝐶 ·  [ℎₜ₋₁, 𝑝ₜ]  +  𝑏𝐶) 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒: 

𝐶ₜ =  𝑓ₜ ∗  𝐶ₜ₋₁ +  𝑖ₜ ∗  Ĉₜ 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 𝑎𝑛𝑑 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒: 

𝑜ₜ =  𝜎(𝑊𝑜 ·  [ℎₜ₋₁, 𝑝ₜ]  +  𝑏𝑜) 

ℎₜ =  𝑜ₜ ∗  𝑡𝑎𝑛ℎ(𝐶ₜ) 

Step 4: Output Layer 

Pass final hidden state hₜ through a dense layer for classification: 

ŷ =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ·  ℎₜ +  𝑏) 
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Where ŷ represents the predicted class probabilities (e.g., normal or abnormal heartbeat) 

Step 5: Loss and Optimization 

Compute loss using cross-entropy: 

𝐿 =  − 𝛴 𝑦 ∗ log(ŷ) 

Update weights using backpropagation through time (BPTT) and Adam optimizer. 

C. System Design 

A. Wearable IoT Device Setup 

The setting of the wearable IoT devices is a key part of the suggested method for finding circulatory 

diseases. Putting small, low-power sensors into something that can be worn, like a monitor, chest strap, 

or wristband, is what it means. There are many biological monitors in these devices that can constantly 

check important bodily factors like blood pressure, heart rate, ECG, and SpO2 (oxygen levels). The 

sensors pick up analogue signals from the body and use built-in microcontrollers or analog-to-digital 

converters to turn them into digital signals. For digital transmission, most products use Bluetooth Low 

Energy (BLE) or Wi-Fi units. Processors that use little power, like the ARM Cortex-M series or the 

ESP32, are often used to make sure that batteries last longer and data gathering goes smoothly. Before 

sending a signal, it is organised by an RTOS or embedded software that does things like simple filtering, 

signal sampling, and caching. The data that is collected is timestamped and kept in local memory for a 

short time before it is sent to the edge or the cloud to be processed. To make sure data is correct and 

intact, it is important to calibrate devices, sync them, and place sensors correctly. The design focusses 

on comfort, ease of use, and longevity, so it can be used for continual tracking in both hospital and home 

settings. The first part of the real-time CVD tracking environment is this hardware-software interaction. 

B. Edge-Level Deployment for Real-Time Processing 

Edge-level distribution is a key part of making real-time circulatory research possible without having to 

rely on cloud-based computers alone. In this design, the worn device is either directly linked to a nearby 

edge node, like a smartphone, home gateway, or portable edge server, or it has computer power built in 

to allow clever reasoning. Deep learning models, like the suggested CNN-LSTM mix, are made better 

and used at the edge by using model compression methods like trimming, quantisation, and TensorFlow 

Lite conversion to make the computers run faster and use less memory. The objective is to carry out 

local real-time forecast and abnormal detection with as little delay as possible, at the lowest possible 

cost, while protecting patient privacy. In contrast to cloud systems, which need to be connected to the 

internet all the time, edge computing can work without being online and ensures that health tracking 

continues without interruption. This is very important in places that are hard to reach or don't get 

enough service and have limited speed. The system can send out alerts if it detects abnormal heart 

rhythms and start treatment right away. Edge devices can also sync with cloud systems on a regular 

basis so that data can be stored, analysed, and reviewed by doctors over a long period of time. Overall, 

edge-level distribution strikes a good mix between processing speed and response, making it a flexible 

and reliable way to watch heart health all the time through portable tech. 

C. Data Transmission and Analysis Pipeline 

The data transfer and analysis chain moves bodily data from the smart device to the processing 

environment safely and quickly, whether it's in the cloud or at the edge. At first, raw signals like ECG or 

heart rate data are collected and handled at the gadget level to get rid of noise. Then, these cleaned data 

streams are put into organised forms like JSON, CSV, or custom code, and sent over low-latency 

protocols like Bluetooth Low Energy (BLE), MQTT, or HTTP over Wi-Fi. For real-time performance, 

data is stored and sent in short bursts or in a steady stream, based on how much the network can handle. 

When the data gets to the edge node, it is processed and sent to the CNN-LSTM model that is already 

in place for classification and finding outliers. If the edge device doesn't have full reasoning capabilities, 
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the data is sent to the cloud infrastructure to be analysed more deeply and stored for a longer time. 

Results, like risk scores or classification labels, are shown locally through a user interface or sent back 

to a mobile app or web monitor so that users can give comments in real time. Authentication and data 

protection methods (like AES and TLS) protect privacy and security all the way through the process. 

This smooth flow from monitor to understanding lets doctors quickly figure out a person's 

cardiovascular risk and take the right steps to treat it. 

4. RESULTS AND DISCUSSION 

Table 2 shows a thorough analysis of how well different basic machine learning and deep learning 

models work compared to the suggested CNN-LSTM hybrid model for finding cardiovascular diseases 

(CVDs) early on. There are four main performance measures that are used to judge the performance: 

accuracy, precision, memory, and F1-score. After testing each model on bodily data like ECG signs from 

smart IoT devices, these measures give us a full picture of how well each model can classify and 

generalise.  

Table 2: Performance Comparison of Baseline Models and Proposed CNN-LSTM Model for 

Cardiovascular Disease Detection 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

SVM 88.3 86.9 87.1 87.0 

Decision Tree 84.7 82.5 83.2 82.8 

LSTM (Standalone) 91.6 90.4 89.9 90.1 

CNN (Standalone) 93.2 92.1 91.5 91.8 

CNN-LSTM (Proposed) 96.4 95.7 96.6 96.1 

 

Out of all the standard machine learning models, the Support Vector Machine (SVM) did pretty well. It 

had an F1-score of 87.0%, an accuracy of 88.3%, a precision of 86.9%, and a recall of 87.1%.  

 

Figure 2: Comparison of Precision, Recall, And F1-Score Comparison 
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These results show that SVM is pretty good at telling the difference between normal and abnormal heart 

patterns, but it's not very good at modelling complex signal changes because it relies on features that 

were created by hand, as comparison shown in figure 2. The Decision Tree classifier, which is another 

popular standard model, did the worst on all measures, with an F1-score of 82.8% and an accuracy of 

84.7%.  

 

Figure 3: Model Accuracy Comparison 

This shows that it can't handle noisy, high-dimensional time series data very well. Deep learning models 

like LSTM and CNN were tried on their own to see what their strengths were. The LSTM network that 

worked on its own got an F1-score of 90.1% and an accuracy of 91.6%. Because LSTM can find temporal 

relationships in sequential data, it is a great tool for modelling how heart rhythms change over time, 

model accuracy comparison illustrate in figure 3.  

 

Figure 4: ROC Curve for CNN-LSTM Model 

However, it doesn't have the ability to extract spatial features, which can make it less useful for working 

with raw ECG patterns. The solo CNN model, on the other hand, did a little better, with an F1-score of 

91.8% and an accuracy of 93.2%. CNNs are very good at taking out spatial features from input signals, 
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like finding key waveform structures and local relationships that can help sort CVDs, hybrid model 

CNN-LSTM.  

 

Figure 5: Comparison of training and validation accuracy 

The suggested CNN-LSTM combination model did much better than all the other models that were 

tested. An F1-score of 96.1%, a memory of 96.6%, a precision of 95.7%, and an accuracy of 96.4% were 

the best scores it got. This model's great success comes from its ability to learn both spatial patterns and 

temporal ones at the same time using CNN layers and LSTM units, as shown in figure 5.   

 

Figure 6: Comparison of training and validation loss 

When spatial and sequence analysis are used together, the model can find small problems in the heart 

and blood vessels more correctly and reliably, comparison of training and validation loss illustrate in 

figure 6. These data show that the mixed method works and that it could be used to make real-time, 

wearable health tracking tools that help with preventative cardiovascular care. 
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5. CONCLUSION 

This study shows a trustworthy and advanced system that combines deep learning methods with smart 

IoT devices to find cardiovascular diseases (CVDs) early on. The system uses the best features of a CNN-

LSTM design to look at both spatial and temporal trends in bodily data like ECG, heart rate, and blood 

pressure. The study shows that using both Long Short-Term Memory networks for time relationships 

and Convolutional Neural Networks for spatial feature extraction greatly improves the model's ability 

to make diagnoses. The suggested model does a better job of finding early-stage cardiovascular 

problems than traditional machine learning methods and independent deep learning models. It has an 

impressive accuracy of 96.4%, a precision of 95.7%, and an F1-score of 96.1%. The system is also 

designed to work best at the edge, where it can be deployed and used for real-time reasoning and 

constant tracking with very little delay. This plan works especially well for people who live in places that 

are hard to reach or don't have a lot of resources for standard healthcare facilities. Low-power, external 

monitors make sure that users are comfortable and that the devices can be used for a long time without 

needing to be serviced often. The safe data transfer pathway and interaction with cloud platforms also 

allow for both local processing and long-term keeping for doctor review. Even though the system has a 

lot of real-world promise, it still has some problems. For example, it needs more clinical evaluation and 

better model interpretability. In any case, this work builds a strong base for the creation of personalised, 

smart healthcare systems. The suggested solution combines smart IoT with deep learning to offer a 

proactive approach to managing cardiovascular health. It has the potential to lower the worldwide 

impact of CVDs by detecting and treating them early. More research will be done in the future on bigger 

datasets, trials in the real world, and adding AI methods that can be explained to make clinical practice 

even more trustworthy and useful. 
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