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IoT devices have been extensively utilized on numerous smart applications 

such as smart city, healthcare, and Industry. Since IoT devices possess tiny 

computing power and not capable to compute large volumes of data, in spite 

of the advantages of IoT, it also possesses inherent drawbacks like latency, 

bandwidth limitation, reliability concerns, and security risks. Edge computing 

counteracts these drawbacks by processing the data locally and implemented 

for processing this much huge sensors data on cloud. The Edge will process 

the data closer to where it is created so that processing may be accelerated 

and latency can be reduced, again in Edge Computing a variety of 

irregularities in data generation are generated by the increasing heterogeneity 

and complexity of edge devices due to their limitations. Anomaly detection is 

a crucial task in edge computing systems, where identifying unusual or 

deviant patterns of data is essential to ensuring system security and 

reliability. An original Deep Fuzzy Hypersphere neural network learning 

model (DFHNNLM) is proposed in this paper for effective anomaly detection 

in edge computing tasks. The proposed method outperforms current state-of-

the-art for anomaly detection with existing deep learning techniques. 

Proposed model is suitable for any anomaly dataset like ECG5000, NSL-KDD. 

According to the experimental results, the DFHNNLM outperforms both deep 

learning and conventional machine learning methods in anomaly detection, 

achieving improvements in F1-score, accuracy, precision, and recall. 

 

Keywords: Anomaly detection, Deep Neural Network, Edge Computing, 

Fuzzy Logic, Internet of Things. 

INTRODUCTION 

Edge computing that involves processing and analysis at the network edge close to data sources was 

enabled by the accelerated expansion of the Internet of Things. Statistical features or shallow machine 

learning methods have been leveraged as the basis for classical anomaly detection approaches. 

Yet, as the variety and complexity of data in edge computing networks grow, increasingly 

sophisticated and intelligent solutions are needed [8]. Recent research has shown the viability of deep 

learning-based anomaly detection, which can identify complex patterns and relationships in the data 

[4–7]. This paradigm shift has introduced both new promise and challenges to anomaly detection, 

especially in deep learning. [8]. Each irregular pattern of activity or behavior that differs considerably 

mailto:sonali.jadhav@thadomal.org


208  

 

J INFORM SYSTEMS ENG, 10(32s) 

from the baseline set of normal network traffic and behavior is known as an anomaly in a computer 

network.  Cyberattacks (e.g., intrusions, DDoS attacks, malware), system crashes (e.g., hardware 

errors, software bugs), configuration mistakes, sudden traffic spikes, or odd data transfer behavior are 

only a few of the issues that anomalies can indicate. Since it identifies malicious patterns or network 

traffic behavior patterns that may indicate the presence of potential security threats, performance 

anomalies, or operation faults, network anomaly detection is thus an indispensable part of network 

security and administration [7]. 

Point anomalies, contextual anomalies, and collective anomalies are the three broad categories 

under which anomalies in edge computing networks can be classified [6]. Individual data points that 

are a long way from the usual behavior of the system are referred to as point anomalies. Data points 

that are unusual in one context or environment but regular in another are referred to as contextual 

anomalies. The phenomenon of contextual anomalies, where a chunk of information seems unusual in 

one context but not necessarily in another, has been caused by the huge growth of the Internet of 

Things.  A group of related data points that show abnormal behavior as a group but not as individual 

data points are called collective anomalies [10]. The next subsection simply defines the ideas of edge 

computing and deep learning. 

1.1 Edge Computing 

Edge computing is a new paradigm in the field of computing. It makes cloud computing service and 

utilities more accessible to the end user and is marked by swift processing and rapid application 

response time. Fast processing and rapid response time are necessary for applications currently 

developed with internet connectivity like surveillance, virtual reality, and real-time traffic monitoring 

[11-12]. End users typically execute these apps on their low-end mobile devices while the processing 

and main services are done on cloud servers. Using cloud services by mobile devices lead to mobility 

issues and high latency [13][14]. Edge computing addresses the aforementioned application needs by 

relocating the processing to the edge of the network. 

  Edge computing is not the same as conventional cloud computing. It is a new paradigm of computing 

that conducts computing on the edge of the network. Its fundamental principle is to bring computing 

nearer to the data source. Scholars have various definitions of edge computing. In distributed edge 

computing, a model for anomaly detection is initially developed using a training set because of the 

limitations of traditional anomaly detection methods, including their inability to scale and adapt. 

Subsequently, a dimension correlation-based anomaly identification method is proposed that is able 

to detect anomalies in both single-source and multi-source time series. Most specifically, the 

reliability of the results of detection is provided by monthly refreshes to the anomaly rules base [15]. 

1.1.1 Edge Computing Network Anomalies:  

Edge computing is susceptible to network anomalies due to the special nature and issues of 

distributed     computing at the network edge.  The primary contribution is the proposal of an edge 

computing architecture that can detect anomalies in numerous sources across multiple endpoints [31]. 

● Edge Network Congestion: There are a number of reasons why edge networks at the edge can get 

congested.  Greater data traffic, bandwidth limitations, network infrastructure bottlenecks, poor 

routing, and bursty traffic congestion are a few of the primary causes of edge network congestion, 

which can cause packet loss, increased latency, and degraded performance.  Issues with edge network 

congestion can be handled in various ways []. 

● Latency Spikes: In edge computing, sudden and substantial spikes in how long it takes for data to 

travel between processing or storage assets and edge devices are called latency spikes.  The 

responsiveness and performance of applications at the network edge can be negatively impacted by 

these spikes, which could arise from a host of different origins.  The processing of information at the 

edge of the network, near where the data was created, is called edge computing. However, due to lack 

of computer resources or network congestion at the edge network, latency bursts may lead to delays in 

reaction times as well as processing of data []. 
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● Edge Infrastructure Failures: Inadequate security frameworks, software and firmware vulnerabilities, 

insider threats, and connectivity threats Distributed architecture, limited resources, some common 

factors are physical vulnerability, connectivity danger, and insider threats.  Edge devices and networks 

are vulnerable to security threats.  Cloud computing can have high security and privacy protection 

measures in place, but edge computer nodes generally process at slower speeds [32].   

● Resource Constraints: Several features of the edge environment, including power constraints, limited 

processing power, storage space, memory limitations, network bandwidth, diverse hardware, and 

scalability issues, can result in resource constraint issues in edge computing.  Edge devices tend to 

have restricted computation, memory, and energy capabilities.  The overall performance of the edge 

network can be affected by anomalies caused by the depletion or lack of proper maintenance of these 

resources. 

● Communication Failures: Edge devices and nodes can also sometimes have connectivity problems or 

communication failure due to volatile network connections or interference.  Such errors might delay 

data transmission and lead to service outages.  Network instability is another cause of communication 

failure. In order to reduce such communication failures, constructing the edge network with 

redundancy, giving higher priority to critical data, maximizing network capacity, implementing strong 

error handling and recovery mechanisms, and regularly monitoring and revising the network 

architecture is very important. A failure of one node could lead to a series of cascade failures that 

compromise service delivery and hinder the achievement of certain goals. 

              The common types of anomalies in Edge computing are shown in Fig. 1. 

 

Fig. 1. Common anomalies in edge computing network 

1.2 Deep Learning 

Deep learning is an AI branch of machine learning that has risen as a revolution technology. Modeling 

human thought processes, it lies on artificial neural networks (ANNs), allowing machines to make 

inferences out of enormous quantities of data. Several fields, including image recognition, natural 

language processing, medicine, finance, and autonomous systems, have seen phenomenal success 

with deep learning models, especially deep neural networks (DNNs) [27]. Generalization over a wide 

range of problem domains with minimal feature engineering is one of the defining features of deep 

learning. Despite this, issues like interpretability, computational cost, and efficiency of data are 

research agendas [28]. 

A powerful tool for identifying anomalies across many areas of application, including edge computing, 

is deep learning. Deep learning methods fall into one of four categories: supervised, unsupervised, 

hybrid, and one-class neural networks.  
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Some well-known algorithms for deep learning-based anomaly detection are listed below:  

1.2.1 Auto encoders: Artificial neural networks known as autoencoders are often used in 

unsupervised learning tasks, particularly anomaly detection.  Their task is to learn a compressed 

representation (encoding) of the input data and then reconstruct it accurately.  The basic concept 

behind their application in anomaly detection is that they find it difficult to reconstruct unusual or 

novel data after learning the patterns of normal data during training, resulting in higher 

reconstruction errors [29]. The two main components of an autoencoder are a decoder that decodes 

the input from this representation and an encoder compressing input data into a low-dimensional 

latent space. A signal of anomalies is the reconstruction error, which is often measured by metrics 

such as Mean Squared Error (MSE) or Mean Absolute Error (MAE). Since they deviate from the 

normal patterns learned during training, inputs with high reconstruction errors are labeled as 

potential anomalies [30]. 

1.2.2 Convolutional Neural network (CNNs): In various computer vision applications, including 

object recognition, image segmentation, and image classification, Convolutional Neural Networks 

(CNNs) have shown to excel.  They are particularly ideal for these purposes due to their ability to learn 

spatial hierarchies of features automatically and adaptively from the incoming data. using network 

traffic patterns, CNNs were successfully deployed to detect anomalies for network security purposes.  

Through the time-series nature of the network traffic, CNNs could learn to discern trends and 

recognize anomalies or potential threats.  As an instance, it has been proposed that a CNN-enabled 

real-time anomaly detection approach extracts statistical details of network traffic to detect and study 

anomalous traffic efficiently [31]. 

1.2.3 Recurrent Neural network (RNNs): An artificial neural network class known as Recurrent 

Neural Networks (RNNs) was developed specifically to deal with sequential input.  In contrast to 

standard feedforward neural networks, RNNs have a mechanism that enables them to keep track of 

previous inputs, which makes them suitable for applications that require time-series analysis, speech 

recognition, natural language processing (NLP), and anomaly detection.RNNs can analyze network 

traffic patterns over time and detect anomalies that can indicate malicious activity. RNNs learn 

sequential financial transactions to detect suspicious activity. RNNs analyze sensor data in predictive 

maintenance to detect problems before system failures occur [32]. 

1.2.4 Generative Adversarial Networks (GANs): GANs are significant in numerous fields and 

have grown to be a powerful tool in deep learning for generating realistic data.  To make them more 

effective, continued research seeks to reduce mode collapse, improve stability, and develop evaluation 

metrics.  Normal network edge behavior can be found through the distribution of GANs. The 

generator network is trained to produce fabricated normal data, but the discriminator network 

distinguishes between forged and genuine data. Anomalies may be detected by measuring the 

discriminator's power to categorize new data samples.  In the field of anomaly detection, researchers 

are dedicated to correctly and successfully detecting abnormal images in real-world applications. [33].  

1.2.5 Variational Autoencoders (VAEs): Data generation is modeled probabilistically with VAEs, 

a type of generative autoencoder.  VAEs learn the parameters of a probability distribution (e.g., 

Gaussian) in the latent space instead of a direct encoding. Samples in the latent space that are far from 

the learned distribution are identified as anomalies.In edge computing, the VAEs are utilized to track 

the distribution of network activity and resource usage.  Variational autoencoders (VAEs), which are a 

type of generative deep learning model, are able to learn from multiple forms of data, including text 

and images.  In detection of unknown threats, VAEs that replace the neural network posteriors tend to 

perform better compared to autoencoders and one-class support vector machines. 

1.2.6 Long Short-Term Memory Networks 

One type of recurrent neural network used to process sequence input is the Long Short-Term 

Memory network (LSTM).  LSTMs are useful in time series because they contain memory cells that 

allow them to store information for hundreds or thousands of time steps.  Language modeling, 

machine translation, and a whole host of related tasks are some of the numerous long sequence 
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learning tasks that LSTMs can be applied to. As the output travels through feedback loops for one 

input, the LSTM network architecture may prevent it from deteriorating (long-term dependence) or 

exploding.  Beyond earlier deep convolutional neural networks, the network can identify sequential 

patterns due to the feedback loops [2].  DFHNNLM is introduced on the basis of inter-class and intra-

class fuzzy membership measures with maximum data point’s coverage to construct the FSHs in the 

hidden layer of FHNN. The hidden to output layer weights of FHNN are learned in parallel while 

constructing FSHs in the hidden layer [1] [3]. 

This study employs a DFHNNLM in proposing a new framework for edge computing network 

anomaly identification.  a deep learning architecture that unites the strength of neural networks and 

fuzzy logic.  The proposed approach attempts to address the challenges of edge computing anomaly 

detection from real-time sensor data.  

1 BACKGROUND AND RELATED WORK 

The most contemporary machine learning and deep learning techniques for anomaly detection in 

computer networks and the Internet of Things are addressed in this chapter.  In recent years, there 

has been a tremendous amount of work concentrated on anomaly detection on edge computing 

networks.  Various techniques, such as machine learning, deep learning, and statistical approaches, 

have been explored in prior studies. It has also been proven that anomaly detection using time-series 

data and transport networks is most effective when generative adversarial networks and autoencoders 

are implemented [7] [17]. Further, the research proposes a deep learning-based end-to-end anomaly 

detection system for transportation networks that combines traditional anomaly detection techniques 

with deep neural networks. Following are the various literature that points out the concepts in this 

research work. 

Zakariah, M., AlQahtani, S.A., Alawwad  etal. has proposed an Intrusion Detection System (IDS) 

using Artificial Neural Networks (ANNs) for enhancing network intrusion detection [18].  Key points 

include robust data preprocessing, PCA-based feature selection, and optimal hyper parameter tuning. 

The research points to the capability of ANNs in identifying complex patterns of network traffic and 

anomalies.  It acknowledges the limitations of the dataset, but stresses further research in dynamic 

network settings for improved security. Xu, W., Jang-Jaccard et al., has proposed an advanced model 

of network anomaly detection based on autoencoders [19]. The proposed model is to be used for 

overcoming vulnerabilities in network security. The proposed 5-layer autoencoder performs extremely 

well on the NSL-KDD dataset, where accuracy and F1 values stand at 90.61% and 92.26%, 

respectively. The authors emphasize the importance of using an effective reconstruction error function 

and a new data preprocessing mechanism for enhanced feature learning and dimensionality 

reduction.  The study highlights the promise of the model in augmenting network intrusion detection 

accuracy, also including the challenges posed by the limited publicly available intrusion data. 

Kasongo, S. M. has proposed NSL-KDD results showed, the XGBoost-LSTM model outperformed 

other traditional machine learning algorithms with a test accuracy (TAC) of 88.13%.  The LSTM 

results showed a remarkable TAC of 85.93%, while the GRU yielded 85.65% [20].  The Simple RNN 

was always quicker to train than the other models and would thus be an excellent choice for resource-

constrained environments. Performance measures are detailed in different tables, underlining how 

these models perform in binary and multiclass classification problems. C. Ieracitano, A. Adeel, F. C. 

Morabito et al. has analyzed & implemented the NSL-KDD dataset utilizing a simple autoencoder 

architecture with three layers. The classification accuracy produced in binary was 84.21%, which 

indicates the potential of autoencoders for anomaly identification [21]. Su, T., Sun, H., Zhu, J., Wang, 

S. et al. has proposed BAT-MC is a deep neural network model which combines BLSTM and an 

attention mechanism for the task of intrusion detection. It achieves 84.25% accuracy on the NSL-KDD 

dataset, improving feature extraction and reducing reliance on manual feature engineering for 

detecting network anomalies [22].  
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2 METHODOLOGY 

The Proposed Anomaly detection Model for Edge computing is explained in section 3.1 followed by 

description of experimental NSL-KDD dataset in section 3.2. The Architecture of DFHNNLM is 

explained in section 3.3. Section 3.4 covers the detailed working of proposed DFHNNLM algorithm 

followed by an evaluation metrics in section 3.5. 

2.1 Proposed Anomaly detection Model for Edge Computing 

The proposed model for anomaly detection composed of multilayered architecture which is shown 

in Fig. 2. The diagram illustrates a multi-layered system for anomaly detection on IoT data processed 

by edge computing using DFHNNLM algorithm. It starts with an IoT Sensor Layer where devices 

collect data, which is then aggregated and stored in the cloud via an Edge Computing Platform. The 

Deep Learning Layer processes this data, beginning with importing the dataset, preprocessing it, 

extracting relevant features, building a model using a DFHNNLM, and finally performing anomaly 

detection. The Anomaly Detection stage categorizes anomalies into point, contextual, or collective 

types. Normal outcomes lead to test result acceptance, while anomalous outcomes trigger the 

implementation of measures to address the anomalies. 

 

Fig. 2. Proposed model for Anomaly detection 

The block diagram has four main layers. The layer by layer description of diagram is as follows 

a) IoT Sensor Layer: 

This layer represents the origin of the data. It consists of various Internet of Things (IoT) devices, each 

equipped with sensors. These sensors collect data related to their specific environment or function. 

The different sensors include Wireless Communication Antennas that collect the data related to 

network connectivity or signal strength, Smart Meters used to measure energy consumption, water 

usage, etc., Temperature Sensors to monitor temperature in a specific area, Heart Rate Monitors used 

for collecting health-related data and so on. 

b)  Edge Computing Platform  

This layer showcases the use of edge computing over the Edge Servers. Edge servers are located closer 

to the IoT devices, enabling faster data processing and reduced latency. The diagram illustrates 

multiple edge servers working in parallel. The Data Collector gathers the data streamed from the IoT 

devices. The cloud Storage uses the collected data which is then transmitted to the cloud for persistent 

storage and further analysis. The Dataset Formation stage indicates the organization and structuring 

of the raw data into a usable dataset for the deep learning model. 
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c)  Deep Learning Layer  

This layer involves importing the dataset by loading the prepared dataset from the cloud storage. The 

Data Preprocessing involves cleaning and transforming the raw data to make it suitable for the 

DFHNNLM algorithm. The relevant features are extracted from the preprocessed data. These features 

are the most informative aspects of the data that the model will use to learn patterns. Finally, the 

model Building stage involves applying the DFHNNLM algorithm to check anomaly detection. 

d) Anomaly Detection 

This is the core layer of the system in which the model analyzes the data and classifies it as either 

"Normal Outcome" or "Anomalous Outcome". The normal outcome involves the data is deemed 

normal and the "Test Result Acceptance" is triggered, indicating that the system is functioning as 

expected. In case of Anomalous Outcome, it's further categorized into Point Anomaly, Contextual 

Anomaly or Collective Anomaly. Therefore, if the anomaly is detected then there’s need to implement 

the measures to overcome the Anomalies. 

2.2 NSL-KDD Dataset 

The NSL-KDD dataset has 125,973 records in the KDDTrain+ subset (67,343 normal and 58,630 

abnormal examples) and 22,544 records in the KDDTest+ subset (9,711 normal and 12,833 abnormal 

examples).  The data set consists of records, with each record having 41 features that are categorized 

as numeric and categorical types.  38 numeric features observe different attributes of network traffic 

such as duration, source and destination bytes, connection count, and so on. In addition, there are 

three categorical features: Protocol Type (TCP, UDP, ICMP), Service (which includes 70 unique 

attributes), and Flag (which includes 11 unique attributes).  For ease of analysis and model training, 

these categorical features are usually transformed into numerical values in pre-processing. Once all 

the features are merged, a total of 122 features are generated. 

2.3 Architecture of DFHNNLM 

A DFHNNLM is a type of neural network model that incorporates fuzzy logic to control classification 

uncertainty and employs hyperspheres to depict clusters in high-dimensional space. When data points 

are not clearly separable, it is particularly advantageous [11] [12]. The architecture of DFHNNLM is 

shown in Fig. 2. 

 

Fig. 3. Architecture of DFHNNLM 

 

The architecture consists of six layers which are broadly described as follows. 

a) Input Layer (First Layer)- The input layer consists of input neurons label as 1 to n. This neuron 

receives anomalous or non-anomalous input data from sensors and passes it to the next layer.  
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b) Hidden Layer 1 (Second Layer) - The second layer is first hidden layer which is created to form 

the two clusters normal (Non-anomalous) & abnormal (anomalous). We perform the recall test and 

accordingly move to the next hidden layer because first hidden layer doesn’t give the efficiency of 

100%.  

c) Hidden layer 2 (Third Layer)- In this layer, we create the fuzzy hyperspheres (FHS) with the 

proposed algorithm in which the radius is equal to the actual intraclass distance. This layer provides 

the initial number of FHS that are created for DFHNN.  

d) Hidden Layer 3 (Fourth Layer)- In this layer, we create the fuzzy hyperspheres (FHS) with the 

proposed algorithm in which the radius is equal to the actual distance of the centroid with clustered 

class patterns. This layer provides the initial number of FHS with precision radius that are created for 

DFHNN 

e) Hidden Layer 4 (Fourth Layer)- This layer is the extension of hidden layer 3, where the FHS 

having no patterns are discarded. This layer will help in improving the generalization efficiency by 

reducing the pattern space.  

f) Output layer (Final Layer)- The output layer is nothing but class layer which consists of two 

neurons, one for anomalous and other for Normal output [12]. 

 

All the hidden layers consist of neurons characterizes by fuzzy membership function  

        𝑚𝑒𝑚𝑗(𝑙𝑒𝑛𝑔𝑡ℎ, 𝑟𝑎𝑑𝑖𝑢𝑠𝑗) = {
 1                              𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑟𝑎𝑑𝑖𝑢𝑠𝑗                       

𝑟𝑎𝑑𝑖𝑢𝑠𝑗/𝑙𝑒𝑛𝑔𝑡ℎ               𝑂𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒                                               
 

 

The second, third and fourth and fifth layers, which are the hidden layers of DFHNNLM architecture, 

are created by the algorithm stated in section 3.3. 

2.4 Proposed DFHNNLM Algorithm 

The algorithm consists of two stages. The first stage creates two FHS based on the intraclass and 

fuzzy membership function to cluster its own class patterns which represent the second layer of 

DFHNNLM. 

Algorithm for Stage 1: 

Step 1. Find the pattern of the precise class which will cluster all the patterns of own class with 

appropriate radius by calculating the intraclass distance and fuzzy membership function with 

considering the overlap to other classes. 

Step 2. Repeat the same for all classes 

Step 3. Determine the accuracy for the patterns in the dataset 

Step 4. If the accuracy is not desirable, then go to stage 2 

Since the efficiency of stage 1 is not desirable, then the additional layers need to be introduced. The 

algorithm for stage 2 i.e. creating second, third and fourth hidden layer is explained below. While 

creating the first hidden layer in stage 1, the links with output layer are also updated. The same is 

adopted in stage 2 which is given below. 

Algorithm for Stage 2: 

Step 1: Compute the Intraclass-Class Distance Matrix  

Step 2: Create a second hidden layer by making radius is equal to the actual intraclass distance & 

group the patterns of same class using Fuzzy membership function. Repeat the process for the class 

till all the patterns are clustered. Continue the process for all the classes. 

Step 3: Create a third hidden layer by making the radius is equal to the actual distance of the centroid 

with clustered class patterns. This layer provides the initial number of FHS with precision radius that 

are created for DFHNN 
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Step 4: Create a fourth hidden layer which is an extension of Hidden Layer 3, the Fuzzy 

Hyperspheres (FHS) with no associated patterns are pruned to reduce the pattern space, thereby 

enhancing generalization efficiency. 

Step 5: Always class output node in output layer is created at the start of training 

Step 6: Update the weights between fourth hidden Layer and output layer 

All the FHS are governed by the membership function as stated below 

 

𝑚𝑒𝑚𝑗(𝑙𝑒𝑛𝑔𝑡ℎ, 𝑟𝑎𝑑𝑖𝑢𝑠𝑗) = {
 1                              𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑟𝑎𝑑𝑖𝑢𝑠𝑗                       

𝑟𝑎𝑑𝑖𝑢𝑠𝑗/𝑙𝑒𝑛𝑔𝑡ℎ               𝑂𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒                                               
 

 

And the weight connections between fourth layer and output layer are binary given by the formula 

  𝑂𝑗𝑘 = {
1    𝑖𝑓 𝐻𝑗  𝑖𝑠 𝑎 𝐻𝑦𝑝𝑒𝑟𝑠𝑝ℎ𝑒𝑟𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑐𝑘

0    𝑂𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒                                             
 

 

While testing, the output is determined by using 

                              𝐶𝑘 =
𝐽

max
𝑗 = 1

.

𝑚𝑒𝑚𝑗  𝑂𝑗𝑘          𝑘 = 1,2, … . , 𝐾       

Where K is the number of classes. 

2.5 Evaluation Metrics 

The performance of deep learning models is measured using four parameters namely Accuracy, 

Precision, Recall and F1 Score. A confusion matrix visualizes and summarizes the performance of a 

classification algorithm. It illustrates the overall picture of classification performance that consists of 

True Positive (TP), False Positive (FP), True Negative (TN), and False negative (FN) [40][45]. The 

representation of Confusion matrix is shown in Fig 4. 

 

Fig. 4. Representation of Confusion matrix 

The performance metrics are defined as follows: 

                                𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                          (1) 

                                           

                                 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                      (2) 

 

                                 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                             (3) 
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                                 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 x  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  + 𝑅𝑒𝑐𝑎𝑙𝑙
                                          (4) 

3 RESULTS AND DISCUSSION 

The existing results proposed by researchers are compared with proposed DFHNN learning model. 

The comparison of results between proposed model and existing models are given in Table 1 and the 

graphically represented in Fig. 5.1.1 for Accuracy, Fig. 5.1.2 for Precision, Fig. 5.1.3 for Recall and Fig. 

5.1.4 for F1-score.  

Table 1. Comparison of results between proposed model and existing models 

Model Accuracy Precision Recall  F1-

Score 

Proposed DFHNNLM 0.977 0.970 0.976 0.973 

Sparse Autoencoder+SVM [18] 0.84 0.96 0.76 0.85 

Autoencoder [21] 0.84 0.87 0.80 0.81 

DNN [35] 0.94 0.91 0.92 0.77 

CNN [36] 0.95 0.94 0.99 0.97 

CNN+LSTM [36] 0.96 0.94 0.99 0.97 

LSTM [37] 0.89 0.97 0.97 0.95 

 

From Table 1 and Fig. 5.1.1 to Fig.5.1.4, the comparative analysis of anomaly detection models 

reveals that the proposed DFHNNLM achieves the highest overall performance, with 97.7% accuracy, 

97.0% precision, 97.6% recall, and a 97.3% F1-score. While CNN and CNN+LSTM [36] also show 

strong results, both attaining an F1-score of 97% and their accuracy remains slightly lower at 95% and 

96%, respectively. 

 

Fig. 5.1.1. Accuracy 

 

Fig. 5.1.2 Precision 

The LSTM model [37] matches the highest precision and recall (97%) but trails in accuracy (89%) and 

F1-score (95%). In contrast, traditional models like Sparse Autoencoder + SVM [18] and Autoencoder 

[21] display moderate performance with 84% accuracy and lower recall and F1-scores. The DNN [35] 

shows better accuracy at 94% but underperforms in F1-score (77%). These findings clearly 

demonstrate the DFHNNLM’s superior ability to deliver balanced and accurate anomaly detection in 

edge computing scenarios. 
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Fig. 5.1.3. Recall 

 

Fig. 5.1.4. F1-Score 

The proposed DFHNNLM for anomaly detection in edge computing networks shows promising results 

in the experimental evaluation. The key findings are: 

⒈ The experimentations reveal that DFHNNLM classifier is a fast converging network having 100% 

efficiency for the training set and appreciable test efficiency in comparison with other classifiers [1]. 

⒉ The DFHNNLM achieves higher accuracy in anomaly detection compared to traditional methods, with 

a true positive rate of over 97% and a low false positive rate.   

⒊ The DFHNNLM demonstrates robustness to noise and uncertainty in the edge computing data, due to 

the integration of fuzzy logic pre-processing. 

⒋ The adaptive nature of the Deep Fuzzy Hyper Neural Network learning model, facilitated by the fuzzy 

logic components, enables the framework to adapt to changing network conditions and maintain high 

performance over time. 

The results validate the effectiveness of the proposed approach and its potential for real-world 

deployment in edge computing networks. 

The experimental results demonstrate the superiority of the Deep Fuzzy Hyper Neural Network over 

traditional anomaly detection methods, highlighting its potential for real-world deployment in edge 

computing applications. Future research directions may include exploring the integration of the Deep 

Fuzzy Hyper Neural Network with other edge computing technologies, such as distributed computing 

and edge analytics, to further enhance the performance and applicability of the framework. 

4 CONCLUSION 

       In this research work, a novel Deep Fuzzy Hypersphere Neural Network Learning Model 

(DFHNNLM) is proposed for effective anomaly detection within edge computing networks. The model 

leverages the concept of fuzzy hyperspheres, constructed based on both inter-class and intra-class 

fuzzy membership metrics, to ensure maximal coverage of the input feature space. This approach 

enhances the model's ability to distinguish between normal and anomalous data distributions. The 

learning process is divided into two distinct stages 

 In the second stage, cluster formation is guided by the spatial positioning of patterns from 

different classes, rather than by the geometric width of the clusters. Since the positional attributes of 

patterns remain constant, the model becomes insensitive to the sequence in which training data is 

presented, thus eliminating order-dependency in learning. A key contribution of the proposed 

DFHNNLM is the synergistic integration of fuzzy logic principles with the representational depth of 

deep neural networks. This hybridization allows the model to robustly handle data that is inherently 

noisy, uncertain, and dynamically evolving challenges that are particularly prevalent in edge 

computing environments. Unlike traditional classifiers that rely on shortest-distance measures for 

pattern inclusion, the DFHNNLM utilizes fuzzy membership functions to evaluate the significance of 

each pattern. As a result, classification decisions are influenced more by the fuzzy hypersphere's width 
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than by proximity metrics. This paradigm shift leads to a model that demonstrates high classification 

precision, rapid convergence, and excellent training performance, while also achieving substantial 

generalization capability during testing. 
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