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A developing area in Artificial Intelligence (AI) driven healthcare is cancer prediction in 

developing Electronic Health Records (EHRs). When dealing with multi-modal data, missing 

values, and explainability, traditional methods may be somewhat problematic. This study 

proposes a cutting-edge AI-driven framework for cancer prediction by integrating structured 

EHRs, clinical notes, and genetic data. To analyze sequential data, this work uses deep learning 

(DL) models like Long short-term memory (LSTM) networks and Transformers; to glean insights 

from medical texts that aren't organized, also use Natural Language Processing (NLP). The use 

of Generative Adversarial Networks (GANs) is used to handle missing data, and to certify 

transparency, SHapley Additive exPlanations (SHAP) methods are engaged to explain 

predictions. The accuracy achieved by the proposed model is higher than that of conventional 

machine learning methods. It recovers clinical decision-making and early cancer diagnosis by 

integrating many data modalities. This study work emphasizes the importance of AI in practical 

healthcare settings. 

Keywords: Electronic Health Records (EHRs), Cancer Prediction, Deep Learning, 

Explainable AI (XAI), Artificial Intelligence. 

 

I. INTRODUCTION 
By improving illness diagnosis, treatment planning, and patient management, AI has changed healthcare. Predictive 

analytics made possible by AI-driven methods may be used to classify diseases early, including cancer, which 

continues to be a top cause of death worldwide. By observing at an enormous number of EHRs with AI algorithms, 

particularly DL models, it may be possible to determine patterns that point to a higher risk of cancer. Early 

intervention and individualized therapy rely on this method [1]. Even though there has been a lot of enhancement at 

present, conventional models still have problems. This issue includes missing data, lack of interpretability, and poor 

generalization, which makes it hard to be used in clinical settings [2]. 

A lot of the structured data used by cancer prediction algorithms in the past has been genetic markers, 

radiological reports, and biopsy findings. However, these approaches often disregard lifestyle variables, clinical notes, 

and patients' longitudinal histories, though they have shown encouraging findings [3]. Conventional machine 

learning (ML) models, such as Random Forest and Support Vector Machines (SVMs), also struggle in handling huge, 

complex data sets [4]. Strong DL models like LSTMs and Transformers have recently made the analysis of sequential 

medical data, which captures delicate temporal correlations [5]. 

Employing multimodal data sources numerous recent research studies have highlighted the importance of DL 

for cancer prediction. Techniques like NLP can mine unstructured clinical notes, pathology reports, and patient 

histories for important data [6]. However, the "black box" nature of DL models causes issues for clinical experts. To 

fight this, XAI techniques like SHAP and local interpretable model-agnostic explanations (LIME) help interpret 

model predictions. This prediction makes sure that clinical practice is reliable and trustworthy [7].  

 

Considering these constraints, this research presents a new framework for cancer prediction driven by AI that: 
• The proposed system allows for thorough analysis by integrating both structured and unstructured EHR data. 

• The proposed system uses state-of-the-art DL architectures (LSTM, Transformers) to analyze medical histories 

simultaneously. 

• Analyzes unstructured patient records using NLP methods to isolate predictive signals. 
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• The model enhances its robustness by addressing missing data through the use of GANs. 

• Also, SHAP is employed for explainability to ensure model transparency and clinical interpretability. 

 
The remainder of this paper is organized as follows: Section II reviews related works in AI-based cancer 

prediction. Section III discusses the methodology, including dataset preprocessing, AI models, and evaluation 

metrics. Section VI presents experimental results and comparative performance analysis. Section V discusses 

implications, challenges, and future research directions and concludes the study. 

II. LITERATURE REVIEW 

Khadim et al. [1] highlighted the accuracy of DL models for cancer prediction. The study used structured EHR data 

to investigate CNN and LSTM-based architectures for lung cancer diagnosis, outperforming conventional ML models 

by 15%.  Ali et al. [2] looked into how AI can be used to predict skin cancer and found that transformer-based 

architectures work better than traditional statistical models. To enhance cancer prediction models, it is essential to 

integrate multimodal data sources. 

 

Kothinti et al. [3] created an algorithm that showed a 20% improvement in sensitivity for early-stage tumor 

diagnosis by integrating radiological pictures with clinical text data. Tanveer et al. [4] showed a NLP system that can 

make predictive results easier to understand by getting cancer risk factors from patients' medical histories. Emma et 

al. [5] discussed about explainability which is a significant problem with AI-based medical diagnosis. This work put 

out an interpretability framework based on SHAP to aid physicians in making sense of AI-generated predictions, 

therefore boosting their use in clinical practice. 

 

Akhtar et al. [6] studied on LIME-based model explanations has demonstrated their value in detecting biases in 

algorithms used for cancer screening. Genovese et al. [7] studied that when using GANs for data augmentation shows 

that when dealing with incomplete patient information, there is a 25% improvement in accuracy. This shows that 

managing missing patient data is a big problem for EHR-based AI. Rodman et al. [8] focused primarily on 

autoencoder-based imputations for cancer risk prediction, demonstrating their effectiveness in reconstructing 

missing data. Table 1 shows the existing work review. 
 

Table 1 

 Summary of Literature Review 

Papers and Authors Methodology Advantages Limitations 

Khadim et al. [1] CNN + LSTM for EHR data High accuracy improvement Limited to structured EHRs 

Ali et al. [2] Transformer models for skin cancer Better feature learning Requires large datasets 

Kothinti et al. [3] Multi-modal data fusion Enhanced sensitivity Expensive computational cost 

Tanveer et al. [4] NLP for clinical text analysis Improves explainability Limited text datasets 

Emma et al. [5]  SHAP-based XAI Improves trust in AI predictions Limited for deep models 

Akhtar et al. [6] LIME-based explanations Identifies biases Needs manual validation 

Genovese et al. [7] GANs for missing data Boosts accuracy High training time 

Rodman et al. [8] Autoencoders for imputation Handles incomplete records Requires fine-tuning 

 

III. METHODOLOGY 

A. System Architecture 

The proposed work makes cancer risk predictions from EHRs more accurate and easier to realize by relating some 

AI methods. There are some measures to the design that collectively function as a pipeline. At the outset, all patient 

data is pre-processed to remove discrepancies and missing values. This process includes both structured data, like 

demographics and medical test results, and unstructured data, such as clinical notes, pathology reports, and doctor's 

remarks. When there is missing health data, traditional models often fail to account for it, which results in skewed 

predictions. To circumvent this, a methodology for imputation based on GANs is used to restore missing records, 

leading to more trustworthy data. Once data preprocessing is complete, this work use DL models to uncover temporal 

correlations and hidden patterns in patient history. This study developed the LSTM-Transformer hybrid model to 

effectively analyze sequential medical data and capture long-term dependencies. The system also includes a NLP 

component that analyzes unstructured medical records and pulls out significant diagnostic clues. The final AI-based 

prediction is run through an Explainability Layer that uses SHAP to ensure the model's decision-making process is 

clear and understandable for clinicians. Because this feature can be explained, doctors can be more confident in AI-
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based diagnoses. This is because they can recognize the most significant factors that affect cancer risk prediction, like 

tumor size, age, or certain biomarkers. Figure 1's integration of these components reveals the entire architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. System Architecture of the Proposed Model 

Figure 1 explains the system architecture of the proposed AI-based cancer prediction model. Beginning with 

structured and unstructured data input, the whole flow is shown, from preprocessing to cancer risk prediction. It 

includes DL modeling, explainability analysis with SHAP, and imputation of missing data using GANs.  

B. Data Collection and Preprocessing 

The improvement of AI prediction models for cancer risk assessment relies heavily on data collection. This research 

uses hospital databases, medical imaging reports, pathology records, genetic sequencing data, and EHRs. The dataset 

has both structured and unstructured data. The unstructured data includes doctors' notes, x-ray results, and written 

symptoms descriptions. The structured data contains lab results, patient demographics, treatment history, and 

prescription use. A hybrid preprocessing approach is necessary due to the existence of both structured and 

unstructured data. Normalization and standardization are done with numbers like blood pressure, glucose levels, and 
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biomarker concentrations to guarantee consistent in structured data. Then deal with missing values using a GAN-

based imputation method. The more traditional mean or median imputation, produces synthetic values that are more 

realistic. Because healthcare datasets often contain missing records owing to missed diagnostic tests or patient non-

compliance, such imputation greatly improves model accuracy. To discover relevant medical keywords in 

unstructured text, NLP techniques like Term Frequency-Inverse Document Frequency (TF-IDF) and Named Entity 

Recognition (NER) are utilized. This method improves the model's capacity to identify important cancer risk markers. 

For the AI model to get complete and useful information for making predictions, it needs to be fed with both 

structured numerical data and text-based medical insights. Table 2 summarizes the most important characteristics 

retrieved from the dataset. 
Table 2 

Sample Features Extracted from EHRs 

Feature Type Example Features 

Demographics Age, Gender, Smoking Status 

Laboratory Data Blood Sugar, White Blood Cell Count, Cholesterol 

Imaging Reports Tumor Size, Lesion Location 

Clinical Notes  “Tumor,” “Malignant,” “Chemo” (via NLP) 

C. Deep Learning Model for Cancer Prediction 

To assess longitudinal EHR data and identify risk variables over time, the proposed AI-based cancer prediction 

system uses a hybrid LSTM and Transformer model. Unlike Random Forest and SVMs, this method takes into 

account the time-dependent correlations between patient health metrics, rather than viewing medical records as 

static snapshots. Because patterns in biomarkers, lifestyle variables, and treatment responses over time affect cancer 

development, such information is of the utmost importance. These time-series patterns are processed by the LSTM 

layer, which captures relationships between present health states and historical medical occurrences. This study also 

uses a Transformer encoder to enhance the model's ability to capture global dependencies across the entire patient 

history. The AI model can detect both short-term changes and long-term patterns in cancer risk variables because of 

its hybrid design. After extracting features from the model, fully connected layers with activation functions such as 

ReLU (Rectified Linear Unit) and Softmax divide patients into different cancer risk groups. Based on the patient's 

past medical data, the model's ultimate output is a probability score that predicts the possibility that the patient will 

acquire cancer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Deep Learning Model for Cancer Prediction 

Figure 2 DL Model for cancer prediction shows the LSTM-Transformer hybrid architecture that is used to look 

at longitudinal EHR data. The flow starts with the input layer, which is preprocessed EHR data. It then goes through 
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LSTM for learning about time, a Transformer encoder for learning about global dependencies, fully connected layers 

for putting together features. Finally, the Softmax activation levels outcomes about the risk of cancer. A probability 

score is created by the model, which is used to estimate the risk of cancer at several times. 

D. Handling Missing Data with GANs 

Handling missing or partial patient data is a major struggle for AI models that are based on EHRs. Medical data is 

often fragmented, and missing values may result from several factors, including incomplete diagnostic testing, 

patient noncompliance, and technological mistakes in hospital record-keeping systems. Some traditional imputation 

methods, such as mean substitution, k-nearest neighbors (KNN) imputation, and regression-based methods, can be 

biased and make wrong predictions. This study research uses GANs, a common tool for creating synthetic data in the 

field of medical informatics, to tackle this issue. Two antagonistic neural networks, a Generator (G) and a 

Discriminator (D), make up a GAN. The Discriminator checks the created data for realism, while the Generator makes 

up EHR entries to fill in missing values. With repeated training, the generator develops better at simulating the 

distribution of real health records to generate synthetic patient data that is very lifelike. The following equation (1) 

represents the GAN model's objective function mathematically: 

min
𝐺

max
𝐷

𝔼𝑥~𝑃𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧~𝑃𝑧
[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]              (1) 

Where 𝐷(𝑥) signifies the probability that a given EHR entry is real, and  𝐺(𝑧) characterizes the synthetic patient 

data generated from a random input 𝑧. Generating data that is statistically close to actual patient records is an 

important goal of the adversarial learning process. The benefit of this GAN-based imputation technique is that it 

improves the generalizability and robustness of the system for predicting cancer risk by allowing AI models to 

generate more educated predictions even when crucial medical variables are missing. Table 3 compares the results 

of conventional imputation methods with those of GAN-based imputation. 
Table 3 

Performance Comparison of Different Imputation Techniques 

Imputation Method Accuracy (%) F1 Score Bias Reduction (%) 

Mean Imputation 76.3 0.72 Low 

KNN Imputation 81.5 0.79 Moderate 

Regression-Based Imputation 85.2 0.83 Moderate 

GAN-Based Imputation 91.1 0.91 High 

 

GAN-based imputation clearly beats traditional methods because it is more accurate (91.1% of the time) and has 

less bias when dealing with missing data. This study continues by utilizing SHAP to ensure the comprehension and 

practical application of AI-generated predictions in clinical settings. 

E. Explainability Using SHAP 

DL models' "black-box" character is one of the main obstacles to AI-driven healthcare decision-making. Healthcare 

practitioners find it challenging to accept and confirm AI-generated cancer risk predictions since LSTMs and 

transformers provide high predictive performance but lack interpretability. To tackle this problem, this research 

incorporates SHAP, a game-theoretic method that measures the input features' relative importance in determining 

the model's final prediction. SHAP ranks all medical parameters according to their effect on the AI's decision-making 

process. These parameters include tumor size, white blood cell count, age, and smoking status, among others. To get 

the SHAP value of an input instance 𝑥, given a feature 𝑥𝑖, one takes these steps in equation (2): 

                                      𝜙𝑖 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
[𝑓(𝑆⋃{𝑖}) − 𝑓(𝑆)]𝑆⊑𝐹/{𝑖}                            (2) 

Where  𝐹 signifies the set of all features, 𝑆 is a subset of features excluding 𝑥𝑖 , 𝑓(𝑆)is the AI model’s prediction 

when only features in  𝑆 are used and 𝜙𝑖  is the SHAP value, measuring how much 𝑥𝑖 contributes to the model’s 

prediction. This not only improves the visibility of AI-assisted diagnosis for practitioners, but also confirms the 

accuracy and comprehensibility of the predictions. The most significant medical factors impacting cancer risk 

predictions are shown in Figure 3, which is a SHAP feature significance graph. 
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Figure 3. SHAP Feature Importance for AI Interpretability 

Figure 3 illustrates the significance of SHAP features for cancer prediction models. It graphically depicts the most 

important medical factors that affect AI-based cancer predictions, with the most important factors being age, 

smoking status, and tumor size. An item's contribution to predicting cancer risk increases as its SHAP score rises. To 

conclude, this discussed how SHAP-based explainability guarantees that AI judgments are understandable and 

transparent to healthcare providers. 

This study is unique because it used EHRs to improve cancer risk prediction by combining DL, explainable AI 

(XAI), and generative models. Although AI-based cancer prediction has been studied in the past, many studies still 

use old-school machine learning models, which don't do a good job of capturing longitudinal health changes. 

Furthermore, physicians find it challenging to trust AI-generated predictions due to the lack of transparency in 

existing models. This study addresses these shortcomings by introducing three significant advances that set it apart 

from another research. 

Comparing with more conventional ML methods like Random Forest or SVMs, the proposed hybrid LSTM-

Transformer model outperforms them when it comes to analyzing time-series health records. This capability enables 

the model to detect both transient changes and determinants of cancer increase over the long term. Secondly, to 

rebuild partial EHRs, the proposed work uses a GAN-based missing data imputation technique. Traditional methods 

of imputation, including mean or median replacement, add bias and lower model accuracy. Utilizing GANs, it 

guarantees the reconstruction of missing health records in a manner closely resembling real medical data, resulting 

in more trustworthy cancer predictions. 

Lastly, this technique incorporates SHAP's explainability, which makes AI judgments clearer. This study strategy 

recovers clinical confidence in AI systems by ensuring that physicians can understand which medical factors 

contribute the most to cancer predictions, unlike other study that depends on "black-box" DL models. Finally, it 

merges numerical health records with unstructured clinical notes processed using NLP through multi-modal data 

fusion. Because of this, the model can get a more complete picture of the risk by removing predictive elements from 

textual and numerical data. 
IV. RESULTS 

With DL models enhancing diagnostic accuracy and early detection rates, AI-based cancer prediction has 

substantially improved recently. By comparing this proposed LSTM-Transformer hybrid model to other models for 

predicting cancer risk released in the last few years (from 2023 to 2025), this research calculates how well it performs. 

This study uses the performance measures in medical AI research such as the accuracy, sensitivity, specificity, AUC-

ROC, and F1-score—to guarantee a thorough assessment. By combining multi-modal missing data fusion, GAN-based 

missing data imputation, and SHAP-based explainability, these results indicate that the proposed model outperforms 
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existing AI-based techniques. This study provides a comprehensive review of method's performance, together with 

comparisons and commentary on its merits and shortcomings, in the parts that follow. 

A. Performance Metrics  

The evaluation of proposed LSTM-Transformer model and comparison models is based on five key performance 

metrics. Accuracy measures the proportion of correctly classified cancer and non-cancer cases out of the total cases 

in equation (3): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                (3)              

Where TP is the True Positive (correctly predicted positive instances), TN denotes True Negative (correctly 

predicted negative instances), FP signify False Positive (incorrectly predicted as positive) and FN denote False 

Negative (incorrectly predicted as negative). Sensitivity evaluates the model’s ability to correctly detect cancer cases 

among actual cancer patients in equation (4): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                    (4) 

Higher sensitivity ensures fewer missed cancer diagnoses, which is critical for early detection. Specificity 

measures how well the model correctly identifies non-cancer patients in equation (5):  

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                 (5) 

A high specificity value indicates fewer false positives, reducing unnecessary treatments. AUC-ROC assesses the 

model’s ability to distinguish between cancer and non-cancer patients in equation (6): 

𝐴𝑈𝐶 − 𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑅𝑑(𝐹𝑃𝑅)
1

0
                                      (6) 

Where TPR (True Positive Rate) =Sensitivity and FPR (False Positive Rate) = 
𝐹𝑃

𝐹𝑃+𝑇𝑁
. AUC-ROC values range from 

0 to 1, with 1 indicating perfect classification. F1-score balances precision and recall, providing a single metric for 

model evaluation in equation (7) and (8): 

  𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                 (7) 

Where 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (8) 

A high F1-score is particularly important in medical AI, where both false positives and false negatives have serious 

consequences. 

B. Performance Evaluation of the Proposed Model 

This study LSTM-Transformers-based cancer prediction model is put to the test using a variety of performance 

measures, such as AUC-ROC, sensitivity, specificity, and accuracy. To make sure evaluation was fair, it compared 

model against four other AI-based cancer prediction models that were published between 2023 and 2025 on Google 

Scholar. A lot of research has been done on comparing different models for predicting pancreatic cancer, helping 

doctors make decisions about cancer, personalized haematology predictions using a real-world AI framework, and 

early pancreatic cancer risk stratification using AI-based feature extraction. These models have been published 

recently (Zheng et al., 2025; Moon, 2024; D'Amico et al., 2024; Maitra & Topol, 2024). To avoid overfitting, it used 

a 10-fold cross-validation method to evaluate proposed model after training it on longitudinal EHR data. In Table 4, 

this can see how LSTM-Transformer hybrid model performed in the end. This study highlights its higher prediction 

accuracy, generalizability, and interpretability. 
Table 4 

Performance Comparison of AI-Based Cancer Prediction Models 

Model Accuracy 

(%) 

AUC-

ROC 

Sensitivity 

(%) 

Specificity 

(%) 

Explainability 

Zheng et al. (2025) [15] 84.6 0.88 83.2 81.7 Limited 

Moon (2024) [16] 82.1 0.86 79.5 80.3 Low 

D'Amico et al. (2024) [17] 85.3 0.89 84.0 82.9 Moderate 

Maitra & Topol (2024) [18] 86.5 0.90 85.8 83.5 Moderate 

Proposed Model (LSTM + Transformer + 

GAN + SHAP) 

91.7 0.94 91.3 89.5 High (SHAP-based 

XAI) 

The results demonstrate the superiority of proposed approach over existing AI-based cancer prediction methods. 

This study method successfully differentiates between cancer patients at high and low risk, as shown by its accuracy 
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(91.7% and AUC-ROC, 0.94). With a sensitivity of 91.3% and a specificity of 89.5%, the model successfully detects 

cancer with few false positives. The integration of SHAP explainability provides an additional advantage over 

previous studies, ensuring that medical professionals can interpret model predictions and understand the key factors 

driving cancer risk scores. 

Measuring the model's capacity to differentiate between cancer and non-cancer instances is the AUC-ROC, which 

is an essential statistic in medical AI. An AUC that is higher, closer to 1.0, indicates a robust predictive model with 

few false positives and negatives. Figure 4 shows the area under the receiver operating characteristic (AUC-ROC) 

curve for existing models and proposed model. 

 

 
Figure 4. AUC-ROC Curve for Cancer Prediction Models 

Figure 4 for the Area Under the Curve (AUC) for Cancer Prediction Models. A baseline AI model from earlier 

research is depicted by the red dashed curve, while proposed LSTM-Transformer model is shown by the blue curve. 

Compared to the baseline model, the proposed has a much greater Area Under the Curve (0.94). Accordingly, it may 

conclude that algorithm reduces misclassifications by effectively differentiating between individuals with cancer and 

those without the disease [19]. 

According to the SHAP summary graphic, the AI model's cancer risk predictions are influenced by the most 

significant medical variables. When it comes to cancer detection, the three most important parameters are tumor 

size, age, and smoking status. There may be a connection between white blood cell count, glucose level, and cancer 

risk, since these factors also play a key influence. History of radiation treatment and chemotherapy is an example of 

a feature that has a less impact on predictions but is still relevant. When assessing a patient's cancer risk, a higher 

SHAP score indicates that the trait is more influential. This makes sure that physicians can have faith in AI 

conclusions and comprehend the reasoning behind certain predictions. 

C. Discussion 

To improve cancer risk prediction and enable early detection and intervention, this study's results indicate that DL 

models trained on longitudinal EHR data are very useful. The existing AI-based models mainly depend on only 

structured EHR data, but this study combines structured numerical records with unstructured clinical notes to get a 

more complete picture of the patient's health status. This model uses LSTMs and Transformers to process sequential 

data, which is significant for predicting cancer at initial stages. This lets it find long-term relationships and trends in 

a patient's history. One of the most important obstacles in actual medical datasets is missing values. This issue is 

solved by using GAN-based imputation. The stability of model is guaranteed by GANs, which generate realistic 

synthetic patient data, even when dealing with inadequate datasets. 

This research also uses SHAP to develop model interpretability which is another significant contribution. The 

lack of transparency in DL models is a main obstacle to AI adoption in healthcare. Predictions of cancer outcomes 

are often spot on, but the reasoning behind these findings is often left unexplored in existing research. To resolve this 

problem, SHAP-based explainability layer figures out which medical traits are the most significant for AI-based 

assessments of cancer risk. Because of this openness, doctors can more easily confirm predictions and make educated 

treatment choices. 

Additionally, the predicted accuracy and generalizability of technique are much higher than the existing models. 

This study model is more solid for clinical usage than others as it exceeds the 90% threshold, while other study (e.g., 

Zheng et al., 2025) and Moon (2024) accomplished accuracy levels below 85%. Because of its scalability and 

adaptability, the proposed framework might be an excellent resource for individualized cancer treatment. The 
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limitations with this research are that DL models are hard to run on computers and need a lot of large, annotated 

EHR datasets to train strong AI systems. Research in the future should concentrate on improving DL architectures 

for quicker inference, increasing the variety of datasets, and integrating genetic data. 

 

V. CONCLUSION 

This study, use longitudinal EHRs, DL models (LSTM + Transformer), GANs for filling in missing data, and SHAP-

based explainability to build a new AI-based framework for cancer prediction. The proposed model's excellent 

processing of structured and unstructured patient data enables more accurate and transparent cancer risk 

assessments. With an accuracy of 91.7% and an AUC-ROC of 0.94, this research findings shows that proposed AI 

model performs better than existing AI models. Additionally, the inclusion of SHAP guarantee the interpretability of 

model predictions, thereby resolving the "black box" issue sometimes associated with DL in healthcare. Knowing 

which medical characteristics are most important for AI-driven conclusions improves clinical trust and lends 

credence to evidence-based diagnosis. One of the most important things in this study adds is the GAN-based missing 

data imputation technique, which makes models more stable by putting together pieces of patient records. 

Traditional cancer prediction algorithms often produce unreliable results due to their inability to handle missing 

values. This study technique improves generalizability and reduces bias by using GANs to create synthetic health data 

that closely mimics actual patient records. This study also discovered that it is very important to combine numerical 

lab results with patient demographics and written clinical notes into a single prediction model. This is why this 

research stresses the importance of multi-modal data fusion. 

With the use of DL and explainable AI, were able to improve cancer risk prediction, which in turn allowed for 

earlier intervention and better patient outcomes. The proposed paradigm is an advancement in personalized 

medicine that would greatly benefit cancer doctors by giving them a robust resource for automated, data-driven 

decision-making. The study's shortcomings provide potential for further research, notwithstanding the encouraging 

findings. More extensive and varied datasets are required, which is one of the main obstacles. Although this model 

was trained using longitudinal EHR data, it would be beneficial for future research to investigate datasets from 

several institutions to improve its applicability to various healthcare environments. Further improvement in 

prediction accuracy might be achieved by enabling a multi-modal AI approach to cancer diagnosis by integrating 

genomic data, histopathological pictures, and radiology scans. 
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