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Introduction: This study explores the relationships between sustainability rating, price 

forecasting rating, financial technology, and the NIST AI risk management framework (AI RMF) 

in the digital age. 

Objectives: The purpose is to crystallize an advanced price unified AI theory considering risk 

classifications to reinforce AI-RMF that facilitates the comprehensive transformation reshaping 

the competitive InsurTech industry from traditional Environmental, Social, and Governance 

(ESG) to Sustainable Development Goals (SDGs) Agenda 2030. However, “Risk Measurement” 

is the biggest challenge of AI-RMF application, including risks related to third-party software, 

hardware, methodology, and data, which are not uniform at the international or insurer levels. 

Methods: the paper introduces GAMLSS machine learning for price forecasting in insurance 

companies, and compares it with traditional models, LMM, GLMM, and GAMM. GAMLSS is a 

flexible general framework for fitting semiparametric univariate regression-type models 

allowing adjustments through parametric/non-parametric additive smoothing functions or 

linear/nonlinear functions. Additionally, the empirical analysis examines a subset of actual 

heavy-tailed data observed from 2019 to 2023 from a major Egyptian “Non-life Insurance 

Company”. Finally, the programming language “gamlss” packages software was used in data 

science.  

Results: As a technological and economic instantiation, this article provides recommendations 

for ministries, regulatory bodies, and insurance companies  to use GAMLSS algorithm as a price -

reliable methodology enhancing risk assessment methodologies, standardizing sustainability 

metrics, including data accuracy, refining disclosure formats, and evaluating the influence of 

(SDGs) reporting on stakeholders, considering value-based AI principles according to the 

Economic Cooperation & Development (OECD).  

Conclusions: In conclusion, this study examined the sustainable relationships of price 

forecasting, digital technology, the NIST AI Risk Management Framework (AI RMF) and 

Sustainable Development Goals (SDGs) in 2030. The traditional Environmental, Social, and 

Governance (ESG) dimensions are extended to include economic and technological 

considerations. However, “Risk Measurement” represents the most critical challenge to unify the 

methodologies at the international level. So, this paper reviewed the development of risk-based 

pricing strategies: LMM, GLMM, GAMM models. And this study suggested GAMLSS machine 

learning algorithm as a price-reliable AI methodology in insurance companies. Subsequently, 

this article reached several results, as follows: Firstly, GAMLSS achieved the lowest value AIC 

and GDEV test (568098.8 and 567569.2, respectively), compared to LMM (694230.8 and 

694198.8, respectively), GLMM (600055.1 and 600091.6, respectively), and GAMM (597063.2 

and 597031.2, respectively) for price forecasting. Secondly, GAMLSS as a semi-parametric model 

represents Box-Cox t (BCT) distribution as the most accurate distribution compared to about 

100 distributions within “gamlss” software packages instead of the classic exponential 

distributions such as GAMMA within GLMMs, and GAMMs for claim forecasting. Thirdly, 

GAMLSS introduces the Cubic-splines as the most accurate compared to the P-splines smoother 
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algorithms and other gamlss algorithms for auto-insurance price. Finally, GAMLSS developed 

RS algorithm reduces the computational burden of the Maximum Likelihood Estimation (MLE) 

of the model, and does not require chronological ordering, and can avoid overfitting problems. 

Additionally, the article recommends the importance of focusing future research on applying the 

NIST AI Risk Management Framework. 

Keywords: GAMLSS theory; Machine learning algorithms; Financial technology; 

Semiparametric models; NIST AI risk management framework (AI RMF); 
Sustainable development goals; Automated price forecasting; Predictive 

ratemaking, Economic development, Cybersecurity. 

 

INTRODUCTION 

Regarding 2030, The United Nations Sustainable Development Goals include 17 goals to address economic, 

environmental, social, and technological impacts for a sustainable future, the most important of which are: no poverty 

(SDG 1), good health and well-being (SDG 3), decent work and economic growth (SDG 8), and climate action (SDG 

13) (United Nations, 2015). These are the effects that a comprehensive understanding of the multifaceted nature of 

sustainability requires (UNEP Finance Initiative, 2020). However, conventional international policy, Environmental, 

Social, and Governance (ESG) introduced according to the Millennium Development Goals (MDGs) policy as the 

first-ever global partnership strategy in 2000, adopted by the United Nations General Assembly by 189 countries 

with the support of 147 heads of state and the world's leading development institutions (such leaders of International 

Monetary Fund (IMF), and Organization for Economic Co-operation and Development (OECD)) (Woodbridge, 

2015). Several challenges and shortcomings of ESG sustainability are represented as follows: Data quality & 

deficiency, scarcity of AI specializations and multidisciplinary expertise, lack of standardized metrics, regulatory 

uncertainty, climate liability risks, not aligning with market expectations, and absence of a more comprehensive 

strategy for economic and technological development leading the occurrence of the global economic crisis (Miao, X. 

2024; Cruz, C. A., & Matos, F. 2023). Because SDGs and AI are two sides of the same coin (Misra et al., 2024), 

countries have competed to develop a framework to address the risks of generative AI under SDGs, including Canada, 

Japan, the United Kingdom, France, Germany, Italy, and the United States (OECD, 2023). The NIST-AI Risk 

Management Framework (AI RMF) framework was introduced by the National Institute of Standards and 

Technology and  presents a structured approach to facilitate the imperative transformation toward a broader SDGs 

agenda framework. The AI RMF-risk-based approach is an Engineered or Machine-Based System composed of four 

functions: GOVERN, MAP, MEASURE, and MANAGE risks (Thomas, 2024; Adams, 2017; Anand et al., 2023).  

CHALLENGES TO IMPLEMENTATION & OBJECTIVES  

Risk Measurement is the most important challenge for AI RMF, some risk measurement challenges include risks 

related to third-party software, hardware, and data. AI risks or failures that are not well determined or adequately 

understood are difficult to measure qualitatively or quantitatively. Third-party data or systems can accelerate 

research and development and facilitate technological transition. However, this complicates the risk measurement. 

Risk can emerge from third-party data, software, or hardware. The risk metrics/methodologies used by the 

organization developing the AI system may not align with the risk methodologies or metrics used by the organization 

deploying or operating the system. Additionally, the organization developing the AI system may not be transparent 

to the risk methodology/metrics it uses. Risk measurement and management can be complicated by how customers 

use or integrate third-party data or systems into AI products or services, particularly without sufficient internal 

governance structures and technical safeguards (Bobby, 2024; Bruce, 2023). The OECD has developed a framework 

for classifying AI lifecycle activities according to five key sociotechnical dimensions, slightly modified by NIST: 

APPLICATION CONTEXT, DATA and INPUT, AI MODEL, TASK, and OUTPUT, each with properties regarding AI 

policy and governance, including risk management (OECD, 2022), highlighting the importance of evaluation, 

verification, and validation (TEVV) test processes throughout an AI lifecycle and generalizing the operational context 

of an AI System. AI RMF functions require diverse perspectives, disciplines, professions, and experience. Regarding 

Insurance Risk-Based Pricing Strategies, the accurate pricing of insurance contracts is a major challenge for 

insurance companies in a competitive international market environment and in the presence of price-sensitive 

customers. Predominant limitations regarding the framework and assumptions on which the model was built failed 

common traditional actuarial methods in loss rate prediction in insurance companies. Subsequently, there is an 
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urgent need for a practical, computationally efficient, and theoretically reliable methodology as a unified AI 

MODEL for price forecasting that supports the quantitative application of the (AI RMF) to keep pace with the 

advancement of insurance science to serve humanity in cutting-edge technology according to (SDGs) in 2030. 

LITERATURE REVIEW 

➢  Linear Regression Models (LRMs).                                                                                                                                                           

Linear Regression Models (LRMs) and their derivatives (Mason et al., 2006), such as Classical Multiple Regression 

(CMR), Classical Normal Linear Regression Model (CNLRM), Boosting Linear Regression Models (BLM), Bayesian 

Linear Regression Models (BLRM), and Linear Mixed Model (LMM), include Specification Error resulting from the 

observations follow a normal distribution, which does not allow for the appropriate modeling of frequencies or binary 

or skewed data. Additionally, the analysis of the common variables effect on the average value of the response variable 

only does not consider the degree of dispersion from the average value. The most important is the assumption that 

the independent variables affecting the model equation are non-random and fixed, in contrast to the practical reality 

that the explanatory variables are random Stochastic Explanatory Variables (Maddala and Lahiri1992; Mason et al., 

2006, Bermúdez et al., 2020, Qazvini 2019, Davoudi et al. 2018).   

➢ Generalized Linear Models (GLMs).                                                                                                                                                           

The predominant limitation is the failure of common traditional actuarial methods in price forecasting in insurance 

companies. Especially; Generalized Linear models (GLMs) (Nelder and Wedderburn 1972), and their derivatives such 

as Generalized Linear Mixed Model (GLMM), Vector Generalized Linear Model (VGLM), Double Generalized Linear 

Model (DGLM), Hierarchical Generalized Linear Model (HGLM), Boosting Generalized Linear Model (BGLM), and 

Bayesian Generalized Linear Mixed Model (BGLMM) (Goldburd et al., 2016; Denuit and Trufin 2019): firstly, GLMs 

parametric models do not include how to handle the non-linear additive effects of non-parametric smoothing 

functions or machine learning algorithms such as Loess Curves, Decision Trees, and Neural Networks. Second, the 

shape of the classical exponential family is fixed on the response variable. Third, GLM models do not fit a relatively 

large set of data, the inadequacy of longitudinal data, data with heavy tails, right-skewed data, or overdispersion, 

which require a more flexible skewness or kurtosis model.  Finally, the difficulty of mathematically estimating and 

inferring spatial data because the sample size is large with the development of remote sensing technology and 

automated sensor networks (Bermúdez et al., 2020; Qazvini 2019; Davoudi et al., 2018; Hürlimann 2007; Guillén et 

al., 2018; Zhang and Miljkovic 2019; Omerašević and Selimović 2020; Jeong and Valdez 2020; Alemany et al., 2020).  

➢ Generalized Additive Models (GAMs). 

Several limitations directed at Generalized Additive models (GAMs) (Hastie and Tibshirani 1990),  and  their 

derivatives such as Generalized Additive Mixed Model (GAMM), Vector Generalized Additive Model (VGAM), 

Generalized Geoadditive Model (GGAM), Dynamic Generalized Additive Model (DGAM), Generalized Geoadditive 

Mixed Model (GGAMM), Bayesian Generalized Additive Model (BGAM), Hierarchical Generalized Additive Model 

(HGAM), Double Generalized Additive Model (DGAM), Quantile Generalized Additive Model (QGAM), Boosting 

Generalized Additive Model (BGAM), and Bayesian Generalized Additive Mixed Model (BGAMM), Generalised 

Additive Index Models (GAIMs), and Generalized linear additive smooth structures (GLASS): First, the GAM 

framework only accommodates the linear exponential family of distributions, without considering heavy-tailed data, 

right-skewed data, and overdispersion suitable for modeling claims in insurance companies. Second, they are more 

likely to be overprocessed. Third, less interpretability and predictive accuracy compared to GLMs, such as performing 

estimation and inference on spatial data, providing measures of the non-linear effect of covariates, and assessing the 

impact of uncertainty, is challenging. Finally, the GAM package may include processing the nonlinear additive effects 

of non-parametric smoothing functions but lacks other more advanced machine learning algorithms, such as Loess 

Curves and Neural Networks, which are used to predict the independent variables in the grading scale (Wuthrich and 

Buser 2021; Boucher and Turcotte 2020; Joao 2019; Tingting 2018; Staudt and Wagner 2019; Lee 2020; Czado et 

al., 2015).  

Therefore, the following hypothesis is proposed: 

H1. There is a direct correlation between the high sustainability rating in risk management and the pricing forecast 

rating using AI, where the AI RMF can be applicable in this area. 
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METHODOLOGY 

GAMLSS machine-learning strategic framework: 

The GAMLSS theory is a flexible general framework  for fitting semi-parametric univariate regression-type models, 

where “parametric” means that the distribution of the response variable does not have to belong to the exponential 

family and includes highly skewed and kurtotic continuous and discrete distribution, and “semi” means that the 

systematic part is expanded to allow modeling not only the mean but also all the location, scale, and shape parameters 

of the response variable distribution as functions of explanatory variables or random effects, and allows adjustments 

through (Stasinopoulos and Rigby 2007; Rigby et al., 2005; Stasinopoulos and Rigby 2017).  

• Parametric or non-parametric additive-smoothing functions. 

• or linear/nonlinear functions.  

• Supervised machine-learning algorithms. 

GAMLSS Assumptions: 

GAMLSS assumes that independent observations for i = 1,...n are conditionally independent given a set of covariates. 

The response variable 𝑖𝑠  a general distribution with conditional density function 𝑓(𝒴𝑖|𝜽𝒊),  where the vector 

𝜃𝑖 = (θi1, θi2, . . , θiP)𝑇 = (μi, ∅i, vi, τi)
𝑇represents a vector of the four distribution parameters that represent the 

location (𝜃𝑖1= 𝜇𝑖), scale (𝜃𝑖2= ∅𝑖), skewness (𝜃𝑖3= 𝑣𝑖), and kurtosis (𝜃𝑖4= 𝜏𝑖). Each distribution parameter 𝜃𝑖 was 

modeled its additive predictor 𝜂𝑘 for k = 1,..,4 and depends additively on the covariates, including possible smooth 

predictor effects. Let ց𝑘(𝜽𝑘) be the known monotonic link function relating the distribution parameters to the set of 

explanatory variables 𝑥𝑘𝑗  that links the regular complex 𝑥𝑘𝛽𝑘 to the distribution parameter  𝜃𝑘𝑖, the parameter vector 

𝛽𝑘 , and the covariate design matrix 𝑥𝑘 (Rigby et al., 2005). The configuration of distribution D (𝜇𝑖 , ∅𝑖 , 𝑣𝑖 , 𝜏𝑖) is general 

and only implies that the distribution must be in a parametric configuration (Stasinopoulos et al., 2024). 

GAMLSS Equations. 

𝑔1(𝜇𝑖)  =  𝜂1 =  𝑥1𝛽1 +  ∑ 𝑍𝑗1𝛾𝑗1

𝐽1

𝑗=1

 

𝑔2(∅𝑖)  =  𝜂2 =  𝑥2𝛽2 +  ∑ 𝑍𝑗2𝛾𝑗2

𝐽2

𝑗=1

 

𝑔3(𝑣𝑖)  =  𝜂3 =  𝑥3𝛽3 + ∑ 𝑍𝑗3𝛾𝑗3

𝐽3

𝑗=1

 

𝑔4(𝜏𝑖)  =  𝜂4 =  𝑥4𝛽4 + ∑ 𝑍𝑗4𝛾𝑗4

𝐽4

𝑗=1

 

RESULTS 

In the beginning, the GAMLSS Methodology can be applied and managed practically for Insurance Pricing Forecast 

Machine Learning Projects. it was applied to a subset of heavy-tailed and over-dispersed actual data from automobile 

insurance policies –the most influence branch on the portfolio and the highest loss rates– observed over 4 years from 

2019 till 2023 from a major Egyptian “Non-life Insurance Company”. There were (n =  112398) observations that met 

our criteria. Ratemaking entails classifying policyholders into homogeneous categories. For this purpose, the basic 

hypothesis that there is a strong relationship for price forecasting between claim severities 𝑌𝑖 as the response variable 

and the priori rating variables with the highest predictive power for response variable at fault registered for each 

insured vehicle in the dataset. Furthermore, an exploratory analysis was carried out to accurately select the subset of 

explanatory variables with the highest predictive power for the response variable 𝑌𝑖.  

(1) 
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The available rating factors for price forecasting are summarized in Table 1.  

𝒙𝒏 Variables Description 

Categorical Variables: 

VB 
(𝒙𝟏) 

Vehicle Brand 
 (Origin country) 

Four categories: “Germany” (C1), “Korea” (C2), “Japan” (C3), and “France” 
(C4).      

VT 
(𝒙𝟐) 

Vehicle Type Three categories: Bus (C1), Private (C2), and Tanker (C3).    

VU 
(𝒙𝟑) 

Vehicle Usage  
(Driver Activity 

Type) 

Two categories: Individual Sector (C1), and Corporate Sector (C2). 

VF 
(𝒙𝟒) 

Vehicle Fuel Three categories: Electric (C1), Petrol (C2), and Diesel (C3).    

GA 
(𝒙𝟓) 

Geographic Area Seven categories: Alex (C1), Channel (C2), Tribal (C3), Delta (C4), External 
Branches (C5), and Cairo (C6).    

Continuous Variables: 

VA 
(𝒙𝟔) 

Vehicle Age Three categories: age “between 0 to 7 years” (C1), “between 7 to 14 years” (C2) 
and “greater than 14 years” (C3). 

HP 
(𝒙𝟕) 

Vehicle  
Horsepower 

Three categories: HP of “0-1400 cc” (C1), “1400–1800 cc” (C2), and “greater 
than 1800 cc” (C3). 

VV 
(𝒙𝟖) 

Vehicle Value Three categories: VV of “0-200000 EG” (C1), “200000–400000 EG” (C2), and 
“greater than 400000 EG” (C3). 

CD 
(𝒙𝟗) 

Contract Duration 
(Exposure) 

Three categories: CD of “0-3 months” (C1), “3–7 months” (C2), and  “7–12 
months” (C3). 

BM 
(𝒙𝟏𝟎) 

Bonus Malus 
(Posteriori 

Experience) 

Three categories: BM of “40%-60%” (C1), “60%-80%”  (C2), and  “greater than 
80%” (C3) applied on the gross premium (Staudt, Y., & Wagner, J., 2019). 

                    Table 1: Description of the explaining variables for price forecasting.  

The subject of this paper is purely economic: if explanatory variables affect the probability of being involved 

in an accident or the severity of a vehicle claim (and thus the company's economic losses), insurance 

companies may require different rates according to the size of different categories of explanatory variables. 

The descriptive statistics of the effects of the covariates for the rating factors are summarized in Table 2. 

BM 

(𝒙𝟏𝟎) 

CD (𝒙𝟗) VV (𝒙𝟖) HP 

(𝒙𝟕) 

VA 

(𝒙𝟔) 
GA 

(𝒙𝟓) 

VF 

(𝒙𝟒) 

VU 

(𝒙𝟑) 

VT 

(𝒙𝟐) 

VB 

(𝒙𝟏) 

𝒚𝟏  

50.00 0.002732 300 1000 2.10 C1: 

10795 

C1: 

20135 

C1: 

56583 

C1: 

7411 

C1: 

12768 

0 Min.: 

50.00 0.280000 120000 1500 5.30 C2: 

8526 

C2: 

60122 

C2: 

55815 

C2: 

78346 

C2: 

21329 

0 1st Qu.: 

50.00 0.670000 197000 1600 7.60 C3: 

13421 

C3:  

32141 

 C3: 

26641 

C3: 

66267 

0 Median: 

59.41 0.624504 250782 2372 10.01 C4: 

9555 

   C4: 

12034 

3854 Mean: 

64.00 1.000000 285000 1800 12.50 C5: 

5057 

    798 3rd Qu : 

230.00 2.010000 7200000 15800 63.90 C6: 

65044 

    987500     Max     :  

Table 2: Descriptive Statistics of Claim Severities y1 - the Number or Size of Categories of the Categorical Explanatory 

Variables for the Database and Continuous Explanatory Variables in Database.  
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GAMLSS GAMM GLMM LMM Algorithm 
Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Parametric Part 

(4.1e-02)*** -8.3e-01 (3.2e-02)*** -8.2e-01 (5.3e+01)*** 5.7e+03 0.2202*** 8.56843 0.5413*** 8.5626 6200.24 12594.7 Intercept 

(2.1e-02)*** -2.5e-01 (1.5e-02)*** 5.6e-02 (2.4e+01)*** -1.2e+02 0.0170*** -0.1058 0.0140*** -0.1214 525.62*** -3637.4 VB C2 

(1.8e-02)*** -2.5e-01 (1.3e-02)*** 5.4e-02 (2.1e+01)*** -1.0e+02 0.0150*** -0.1211 0.0124*** -0.1333 462.35*** -4149.2 VB C3 

(2.5e-02)* ** -1.1e-01   (2.9e+01) . -5.1e+01 0.0197* -0.0448 0.0163*** -0.0607 611.68** -1985.8 VB C4 

(2.6e-02)*** 2.6e-01 (2.1e-02)** 5.6e-02   0.0335*** 0.12845 0.0186*** 0.1405 712.25*** 2459.7 VT C2 

(2.3e-02)*** -1.1e-01 (1.7e-02)*** 9.4e-02 (3.1e+01)*** -3.1e+02 0.0289 0.02112 0.0156*** 0.0680 604.70*** 3818.4 VT C3 

(2.0e-02)*** -1.2e-01 (1.0e-02)*** 3.9e-02 (1.4e+01)*** -7.4e+01 0.0110*** -0.0690 0.0090*** -0.0781 342.50*** -2456.3 VU C2 

(1.3e-02)*** 1.8e-01   (2.4e+01)*** 1.2e+02 0.0138** 0.03788 0.0113*** 0.0480 425.50* 1059.1 VF C2 

(1.4e-02)*** -2.4e-01   (3.1e+01)*** -1.1e+02 0.0168 -0.0093 0.0138 -0.0013 516.09** 1450.0 VF C3 

      0.0098*** -0.0762 0.0075*** -0.0761 288.03*** -3706.9 VA 

      0.0084** 0.02723 0.0066*** 0.0272 247.546 401.6 HP 

      0.0049*** 0.05088 0.0044*** 0.0508 146.06*** 1533.0 VV 

      0.0095** 0.02806 0.0074*** 0.0281 281.33 459.4 CD 

      0.0178** 0.05207 0.0139*** 0.0520 523.76 335.8 BM 

            Random Effects 

  1.046 156794982 𝝈𝟐
GA 

  0.8128 23853 𝝈 Residual 

      Ref.df edf     Smooth Terms 

      4*** 3.31     𝒔(GA) 

            P-Splines 

(8.6e-04)*** -1.0e-02 (6.8e-04)*** 8.2e-03 (1.0e+00)*** -6.7e+00       pb (VA) 

  (2.1e-06) .       3.7e-06         pb (HP) 

(1.6e-08)*** 2.6e-07 (1.1e-08)*** -7.2e-08 (2.4e-05)*** 2.2e-04       pb (VV) 

(1.5e-02)*** 1.3e-01   (1.8e+01)* 4.2e+01       pb (CD) 

(3.4e-04)*** 3.8e-03 (2.5e-04)** 6.5e-04 (4.0e-01)* 8.2e-01       pb (BM) 

            Cubic-Splines 

(1.9e-02)*** -1.1e-02 (6.8e-04)*** 8.6e-03 (9.8e-01)*** -5.6e+00       Cs (VA) 

(8.2e-04)*** 9.6e-05 (2.1e-06)*** 9.1e-06 (3.6e-03)* ** -2.0e-02       Cs (HP) 

(1.6e-08)*** 1.6e-07 (1.1e-08)*** -7.5e-08 (2.4e-05)*** 2.9e-04       Cs (VV) 

(1.4e-02)*** 6.9e-02   (1.7e+01)*** 6.4e+01       Cs (CD) 

(3.0e-04)*** 7.4e-03 (2.5e-04)** 7.9e-04         Cs (BM) 

567569.2 597031.2 600091.6 694198.8 GDEV 

568098.8 597063.2 600055.1 694230.8 AIC 

Table 3: Comparison Between Coefficients Estimation of Four Machine Learning Algorithms for Price Forecasting: LMM, GLMM, GAMM, and GAMLSS. In GLMM and 

GAMM "GAMMA Distribution" was fitted. In GAMM without smooth terms, a random effect smoother is applied to the predictor GA. In GAMLSS (BCT, 𝜇𝑖, ∅𝑖, 𝑣𝑖 , 𝜏𝑖) modeled 

with two algorithms: Cubic splines compared to penalized P-splines smooth functions for nonparametric predictors, penalized random effect smoother is applied to the categorical 

variable GA when necessary. Ineffective estimates have been removed. All variables Using (RS) Algorithm. the corresponding link function is displayed.  Additionally, C1 is a 

categorical dummy variable, Goodness-of-Fit Statistics (GDEV, AIC), and *Stands for 5% significance for fitting claim severities. 

Source: Author`s contributions. 
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DISCUSSION 

Table 3 summarizes a comparison between Classic LMM, GLMM, and GAMM models and advanced GAMLSS 

machine learning theory for price forecasting using the Programming language “gamlss” R packages software. Firstly, 

there is a growing use of LMM in data analysis where random effects are considered in addition to fixed effects to 

better estimate the response variable distribution. Secondly, in GAMM (with no smoother), it could be used a random 

effect smoother for GA which appears significantly larger than in the GLMM model. This illustrates the sensitivity of 

the results to the algorithm. One can detect variations in the estimates, standard errors, effective degrees of freedom 

(edf), and p-values; in particular, the estimate for GA is significantly larger than in the GLMM model. This illustrates 

the sensitivity of the results to the algorithm. Thirdly, in terms of AIC, i.e., taking into account the number of degrees 

of freedom used by the models, the (BCT, 𝜇𝑖, ∅𝑖, and 𝑣𝑖) and (BCT, 𝜇𝑖 , ∅𝑖 , 𝑣𝑖 , and 𝜏𝑖) models were the best (AIC = 

631981.7), with only a slight difference between them, but are followed very closely by the Generalized Beta Type 2 

(GB2) distribution (AIC = 631701.6) via the maximum likelihood (ML) approach. Finally, in GAMLSS degrees of 

freedom df equals (141.5796 and 36.40257 for Cubic splines and P-splines algorithms, respectively), and the higher 

the degrees of freedom, the better the smooth algorithms will improve the semi-parametric model. 

    

FIGURE 4 | Diagnostics for  

 BCT Cubic-splines GAMLSS 

Algorithm: deviance residuals 

vs. fitted values and Q-Q plot. 

FIGURE 3 | Diagnostics for  

 GAMM Model: deviance 

residuals vs. fitted values and 

Q-Q plot of these residuals. 

FIGURE 2 | Diagnostics for  

 GLMM Model: deviance 

residuals vs. fitted values and 

Q-Q plot of these residuals. 

FIGURE 1 | Diagnostics for  

 LMM Model: deviance 

residuals vs. fitted values and 

Q-Q plot of these residuals. 

      Source: Author`s contributions. 

  

  
 

FIGURE 5 | Diagnostics for smooth terms of Box-Cox t GAMLSS machine learning: for two smoothing algorithms: cubic 

splines, and P-splines. Additive terms for VA, HP, CD, VV, and BM for the 𝜇𝑖 components of the (BCT, 𝜇𝑖 , ∅𝑖 , 𝑣𝑖 , and 𝜏𝑖)  

model reported in Table 7. A cubic spline and P-splines smooth function is constant to CD and BM for 𝜇𝑖. 

     Source: Author`s contributions. 

The various graphs illustrate that heteroscedasticity in GAMLSS is more moderate and more efficiently captures the 

stylized characteristics of data for modeling heavy-tailed claim severities compared to LMM, GLMM, and GAMM.    

Additionally, the BCT (Cubic-splines GAMLSS) algorithm achieved more efficient assumptions of the actual claims 

amount distribution compared to the BCT (P-splines GAMLSS) Algorithm. P-splines smooth algorithm results in 

relationships displays little “wiggliness” compared to Cubic-splines. Cubic splines lead to high degrees of non-
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linearity, especially for (HP, and VV), which is reflected by the larger values of df, lower standard errors, higher p-

values, and hence lower values in (AIC = 568098.8) comparison to P-splines smooth algorithm. The effect of smooth 

terms on two variables CD and BM for μi remains constant in both cases, Cubic-splines and P-splines. 
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