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Introduction: Children's sports motion pose estimation has significant applications in sports 

training, health monitoring, and rehabilitation assessment. However, existing 3D pose 

estimation methods still face challenges in sports scenarios, including insufficient stability in 

keypoint detection, unreasonable 3D structures, and a lack of temporal consistency in motion 

trajectories. These issues lead to poor robustness in pose prediction under high-speed motion 

and occlusion conditions. 

Objectives: To address the limitations of current 3D pose estimation methods, this paper aims 

to propose a novel framework that enhances the stability, structural plausibility, and temporal 

consistency of pose estimation in dynamic and complex children’s sports scenarios. 

Methods: This paper proposes a novel 3D pose estimation framework, STSP-Net (Spatial-

Temporal Skeletal Perception Network), which integrates 2D keypoint detection, skeletal 

structure modeling, and temporal information modeling. Specifically: The Efficient Keypoint 

Detection Module (EPE-Module) employs a motion-region adaptive enhancement 

mechanism to improve keypoint detection accuracy and reduce jitter. The Graph-based 

Skeletal Representation Module (GSR-Module) constructs a human skeleton graph and 

utilizes a graph attention mechanism to optimize spatial relationships and ensure physical 

plausibility. The Temporal Motion Perception Module (TMP-Module) adopts a cross-

attention mechanism to capture long-term motion trends and applies global temporal 

constraints to enhance smoothness and consistency. 

Results: Experimental results demonstrate that STSP-Net achieves the lowest MPJPE of 48.5 

mm on Human3.6M and 49.6 mm on ChildPlay, reducing error by 2.6% and 3.1% compared to 

the best baseline. It also achieves the lowest TS values of 3.3 mm/s² and 3.4 mm/s², ensuring 

smoother motion trajectories. Furthermore, STSP-Net maintains stable pose estimation in high-

speed motion and occlusion scenarios, consistently outperforming existing methods. 

Conclusions: STSP-Net effectively addresses the core challenges in children's sports motion 

pose estimation by improving keypoint detection stability, enforcing 3D skeletal consistency, and 

enhancing temporal smoothness. It offers a robust solution for practical applications in sports, 

health, and rehabilitation domains. 

Keywords: Children’s Pose Estimation, Sports Motion Analysis, Computer Vision. 

 

INTRODUCTION 

Children's sports motion pose estimation is an important interdisciplinary research area in computer vision and 

sports science, with broad applications in sports training, health monitoring, and rehabilitation assessment[1]. 

Accurate pose estimation enables coaches and teachers to analyze children's dynamic postures in sports in real-time, 

providing scientific training guidance and effectively preventing injuries caused by poor movement habits. However, 

traditional pose estimation methods often rely on annotated data or wearable sensors, which not only increase the 

cost of data acquisition but also limit their applicability in natural environments. In recent years, deep learning has 

made significant advancements in 2D/3D human pose estimation, making real-time pose estimation based on 

monocular video feasible[2]. Nevertheless, due to the diversity of children's motion postures, existing methods still 

face numerous challenges in sports scenarios, including significant pose variations across different movement 
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patterns, difficulty in accurately reconstructing 3D keypoints with monocular cameras, and occlusions affecting 

certain joints. Therefore, developing an efficient and robust children’s sports motion pose estimation method can 

provide crucial technological support for sports monitoring, physical education, and youth health management[3].   

Although deep learning techniques have made considerable progress in pose estimation in recent years, existing 

methods still have limitations. Directly regressing 3D keypoints from monocular images often struggles to adapt to 

complex motion scenarios, is highly susceptible to viewpoint variations and occlusions, and suffers from weak 

generalization ability[4]. Methods that infer 3D poses from 2D keypoints offer improved stability, but they heavily 

rely on the accuracy of keypoint detection and lack explicit modeling of temporal consistency in motion trajectories, 

leading to large prediction errors in fast-motion scenarios. Furthermore, most existing approaches are based on 

Convolutional Neural Networks (CNNs) or Long Short-Term Memory (LSTM) networks, which struggle to fully 

capture global information, thereby limiting their motion trajectory prediction accuracy[5][6]. At the same time, 

human poses inherently exhibit a graph-structured topology, yet current methods rarely explicitly model the 

relationships between joints, restricting the model’s ability to assess pose plausibility. Therefore, how to achieve real-

time 3D keypoint estimation while improving motion trajectory temporal consistency and enhancing skeletal 

topology modeling remains an urgent problem to be addressed. 

To overcome the aforementioned limitations, we propose a novel framework—STSP-Net (Spatial-Temporal Skeletal 

Perception Network)—which integrates temporal modeling and skeletal structure modeling to achieve high-precision 

and stable 3D pose estimation. STSP-Net consists of three core modules: Efficient Pose Extraction (EPE-Module), 

Graph-Based Skeletal Representation (GSR-Module), and Temporal Motion Perception (TMP-Module)[7][8]. These 

modules are designed to enhance keypoint detection stability, improve the physical consistency of 3D poses, and 

optimize the temporal continuity of motion trajectories, respectively. Specifically, the EPE-Module utilizes HRNet to 

extract 2D keypoints and employs a motion-region adaptive enhancement mechanism to improve keypoint detection 

stability. By computing feature variations across consecutive frames, our method dynamically identifies high-speed 

motion regions and enhances their features, enabling the model to track keypoints more accurately and reduce 

localization errors caused by motion blur. Additionally, we introduce a local trajectory constraint during training to 

model short-term motion trends of keypoints, preventing abrupt changes between consecutive frames. This results 

in smoother temporal keypoint transitions, providing a more stable input for 3D pose reconstruction. The GSR-

Module optimizes the spatial consistency of 3D keypoints by constructing a Skeleton Graph[9]. We model human 

joints as graph nodes and skeletal connections as edges, leveraging graph attention mechanisms to enhance 

information interactions between critical joints, ensuring that predicted 3D keypoints align with human skeletal 

structures. Moreover, we compute local motion patterns based on skeletal topology to maintain the relative 

proportions between joints across different motion states, preventing 3D keypoint distortions or discontinuities and 

improving pose estimation structural stability. The TMP-Module employs a cross-attention mechanism to model 

temporal sequences, improving motion trajectory coherence. By computing temporal dependencies between the 

current frame and historical frames, the model captures long-term motion trends, reducing short-term keypoint drift 

in predictions. Furthermore, we impose global temporal constraints on motion trajectories to optimize variations in 

keypoint velocity and acceleration, ensuring smooth and stable pose predictions even in high-speed motion and 

complex posture transitions, thereby enhancing temporal consistency and robustness against noise[10][11]. 

Experimental results demonstrate that STSP-Net achieves superior performance on the Human3.6M and ChildPlay 

datasets. Notably, STSP-Net maintains stable pose estimation even in high-speed motion and occlusion scenarios. 

Additionally, it exhibits strong adaptability in children's sports motion scenarios, accurately tracking different 

movement patterns and ensuring reliable and robust pose estimation. The main contributions of this paper are as 

follows:   

1. We propose a novel 3D pose estimation framework, STSP-Net, which achieves high-precision and stable children’s 

sports motion pose estimation. This framework integrates 2D keypoint detection, skeletal structure modeling, and 

temporal sequence modeling, enabling accurate 3D keypoint reconstruction and motion trajectory optimization from 

monocular video input. It enhances the stability and robustness of pose estimation.   

2. We design three core modules to address key challenges in keypoint detection stability, 3D structural consistency, 

and motion trajectory coherence. The Efficient Pose Extraction Module (EPE-Module) employs a motion-region 

adaptive enhancement mechanism to improve keypoint detection accuracy and reduce keypoint jitter in high-speed 

motion scenarios. The Graph-Based Skeletal Representation Module (GSR-Module) constructs a human skeleton 



977  

 
 J INFORM SYSTEMS ENG, 10(29s) 

graph and utilizes graph attention mechanisms to optimize spatial dependencies between joints, ensuring that 

predicted 3D keypoints conform to human motion structures. The Temporal Motion Perception Module (TMP-

Module) adopts a cross-attention mechanism to capture long-term motion trends and applies global temporal 

constraints, enhancing motion trajectory smoothness and temporal consistency.   

3. Experimental results demonstrate that STSP-Net achieves the lowest MPJPE of 48.5 mm on Human3.6M and 49.6 

mm on ChildPlay, reducing error by 2.6% and 3.1% compared to the best baseline. It also achieves the lowest TS 

values of 3.3 mm/s² and 3.4 mm/s², ensuring smoother motion trajectories.   

METHODS 

Overall Framework 

The proposed STSP-Net is a spatiotemporal fusion network framework for monocular video-based human pose 

estimation. The entire network consists of three main modules: 2D keypoint detection, skeletal structure modeling, 

and temporal information modeling, forming an end-to-end unified architecture. First, STSP-Net employs an 

efficient keypoint detection module to extract accurate 2D human joint positions from each frame of the video. Then, 

the skeletal structure modeling module lifts these 2D keypoints into the 3D space and applies human skeletal priors 

to constrain and optimize joint positions, ensuring reasonable and reliable 3D pose estimation within a single frame. 

Finally, the temporally aware motion modeling module captures temporal correlations across multiple frames, 

integrating historical frame information to refine the current frame’s 3D pose estimation. By combining spatial 

skeletal structure information with temporal continuity, STSP-Net effectively mitigates common issues in single-

frame estimation, such as depth ambiguity and jitter. Overall, this method significantly enhances the accuracy, 

stability, and consistency of 3D pose estimation while maintaining real-time efficiency, enabling smooth 

reconstruction of human motion trajectories. In the following sections, we will elaborate on these modules in detail. 

Shown in Figure 1. 

 

Figure 1. Overall Framework of our STSP-Net. 

Efficient Pose Extraction Module (EPE-Module) 

The Efficient Keypoint Extraction Module (EPE-Module) is designed to precisely extract 2D human keypoints from 

video frames and mitigate keypoint jitter in high-speed motion scenarios through the Motion-Aware Adaptive 

Enhancement (MAE) mechanism. This module consists of the following key components: Multi-Scale Feature 

Extraction, Motion-Aware Adaptive Enhancement, Keypoint Detection and Stability Constraint. Shown inFigure 2. 

Multi-Scale Feature Extraction 

The EPE-Module employs HRNet as the backbone network to extract multi-scale features from the input video frame 
sequence {𝐼𝑡}𝑡=1

𝑇 : 

𝐹𝑡 = ΦHRNet(𝐼𝑡) (1) 

where  𝐼𝑡 ∈ 𝑅𝐻×𝑊×3 represents the input image at frame  𝑡 , ΦHRNet denotes the HRNet operation, and 𝐹𝑡 ∈ 𝑅𝐻′×𝑊′×𝐶 

is the extracted feature map, which contains rich multi-resolution information. 

Motion-Aware Adaptive Enhancement 

To improve detection accuracy in high-speed motion regions, we propose the Motion-Aware Adaptive Enhancement 
mechanism. First, we compute the optical flow field between adjacent frames: 



978  

 
 J INFORM SYSTEMS ENG, 10(29s) 

𝒪𝑡 = Ψ(𝐼𝑡−1, 𝐼𝑡) (2) 

where Ψ represents the optical flow estimation algorithm, and 𝒪𝑡 ∈ 𝑅𝐻×𝑊×2 is the estimated optical flow field. 

Based on the optical flow information, we compute the motion saliency map 𝑆𝑡 to quantify the motion magnitude at 

each pixel: 

𝑆𝑡(𝑥, 𝑦) = |𝒪𝑡(𝑥, 𝑦)|2 (3) 

Next, we construct the motion saliency weight matrix: 

𝑊𝑡(𝑥, 𝑦) = 1 + γ ⋅ exp(λ ⋅ 𝑆𝑡(𝑥, 𝑦)) (4) 

where 𝜆  and 𝛾  are hyperparameters that control the enhancement magnitude. Finally, we apply adaptive 

enhancement to the feature map: 

𝐹𝑡
∗ = 𝑊𝑡 ⊙ 𝐹𝑡 (5) 

where ⊙ denotes the element-wise multiplication, and 𝐹𝑡
∗ is the enhanced feature map. 

Keypoint Detection and Stability Constraint 

The enhanced feature map is fed into the keypoint detection head to generate the heatmap: 

𝐻𝑡 = ΦKP(𝐹𝑡
∗) (6) 

where ΦKP represents the keypoint detection network, and 𝐻𝑡 ∈ 𝑅𝐻′×𝑊′×𝑁 is the generated heatmap, with  𝑁 being 

the number of keypoints. 

The keypoint coordinates are extracted from the heatmap using a weighted integral approach: 

𝑝𝑡
𝑖 = ∑ (𝑥, 𝑦)

(𝑥,𝑦)

⋅ softmax (𝐻𝑡
𝑖(𝑥, 𝑦)) (7) 

where 𝑝𝑡
𝑖 ∈ 𝑅2 represents the 2D coordinate of the 𝑖-th keypoint at frame 𝑡. To reduce keypoint trajectory jitter, we 

introduce the Local Trajectory Constraint (LTC): 

ℒsmooth =
1

𝑁
∑ |𝑝𝑡

𝑖

𝑁

𝑖=1

− 2𝑝𝑡−1
𝑖 + 𝑝𝑡−2

𝑖 |2
2 (8) 

This constraint models keypoint acceleration, encouraging smoother trajectories over time. The total loss function of 

the EPE-Module is defined as: 

ℒ𝐸𝑃𝐸 = ℒKP  +  𝛼ℒsmooth (9) 

where ℒKP is the keypoint detection loss (Mean Squared Error loss), and 𝛼 is a balance coefficient. 

 

Figure 2. The architecture of Efficient Pose Extraction Module. 
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Graph-Based Skeletal Representation Module (GSR-Module) 

The GSR-Module aims to optimize the spatial consistency of 3D keypoints by leveraging the topological structure of 

the human skeleton. Built upon a graph neural network framework, this module ensures that 3D pose estimation 

adheres to human kinematic constraints.  Shown in Figure 3. 

Skeleton Graph Construction 

The GSR-Module first maps the sequence of 2D keypoints {𝑝𝑡}𝑡=1
𝑇  into an initial 3D space and constructs a skeleton 

graph 𝐺 = (𝑉, 𝐸) based on human anatomical structures:   

𝑉 = {𝑣𝑖|𝑖 = 1,2, … , 𝑁},      𝐸 = {𝑒𝑖𝑗|(𝑖, 𝑗) ∈ 𝐶} (10) 

where 𝑉 represents a set of 𝑁 nodes corresponding to keypoints, and 𝐸 is the set of edges, with 𝐶 being a predefined 

set of skeletal connections. Each node 𝑣𝑖 corresponds to a feature vector ℎ𝑖 ∈ 𝑅𝑑, with initial features including the 

2D keypoint positions and visual features extracted from the EPE-Module. 

Graph Attention Mechanism 

To enhance information exchange between joints, the GSR-Module employs a Graph Attention Network (GAT) to 

update node features: 

ℎ𝑖
′ = σ ( ∑ α𝑖𝑗

𝑗∈𝒩(𝑖)∪{𝑖}

⋅ 𝑊 ⋅ ℎ𝑗) (11) 

where 𝒩(𝑖) represents the set of neighboring nodes of node 𝑖,  𝑊 ∈ 𝑅𝑑×𝑑  is a learnable weight matrix, and 𝜎 is a 

nonlinear activation function. The attention coefficient 𝛼𝑖𝑗 is computed as follows: 

𝑒𝑖𝑗 = LeakyReLU(𝑎𝑇[𝑊ℎ𝑖|𝑊ℎ𝑗]),     α𝑖𝑗   =  
exp(𝑒𝑖𝑗)

∑ exp(𝑒𝑖𝑘)𝑘 ∈ 𝒩(𝑖) ∪ {𝑖}  
(12) 

where α ∈ 𝑅𝟚𝑑  is the attention vector, and  |  denotes feature concatenation. This mechanism enables the model to 

dynamically adjust information transfer weights based on the importance of joint relationships. 

After  𝐿  iterations of multi-layer GAT updates, the final node features are obtained as: 

𝐻′ = GAT𝐿 (GAT𝐿−1(… GAT1(𝐻))) (13) 

3D Keypoint Reconstruction and Structural Constraints   

Based on the updated node features, the GSR-Module predicts 3D keypoint coordinates:   

𝑃3D = Φ3D(𝐻′) (14) 

where Φ3D is a 3D coordinate regression network, and 𝑃3D ∈ 𝑅𝑁×3 represents the predicted 3D keypoint coordinates. 

To ensure the structural integrity of the 3D skeleton, we introduce two constraints:   

1.Skeletal Consistency Constraint: ensuring bone lengths remain consistent with reference values 𝑙𝑖𝑗  from training 

data.   

ℒskel =
1

|𝐸|
∑ ||𝑃3D

𝑖 − 𝑃3D
𝑗

|2 − 𝑙𝑖𝑗|
(𝑖,𝑗)∈𝐸

(15) 

2. Skeletal Angle Constraint: restricting joint angles within physiological limits.   

ℒ𝑎𝑛𝑔𝑙𝑒 =
1

|𝒜|
∑ max(0, 𝜃𝑖𝑗𝑘 − 𝜃𝑖𝑗𝑘

max) + max(0, 𝜃𝑖𝑗𝑘
min − 𝜃𝑖𝑗𝑘)

(𝑖,𝑗,𝑘)∈𝒜

(16) 

The final loss for the GSR-Module is:   

ℒ𝐺𝑆𝑅 = ℒ3𝐷 + 𝛽1 ℒ𝑠𝑘𝑒𝑙 + 𝛽2 ℒ𝑎𝑛𝑔𝑙𝑒 

where ℒ3𝐷 is the MPJPE-based regression loss, and 𝛽1, 𝛽2 are balancing coefficients. 
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Figure 3. The architecture of Graph-Based Skeletal Representation Module (left) and the skeletal structure. 

 Temporal Motion Perception Module (TMP-Module) 

The Temporal Motion Perception Module (TMP-Module) ensures the temporal consistency of 3D keypoint 

trajectories by modeling motion trends within a historical time window. It integrates a cross-attention mechanism 

and global temporal constraints to enhance trajectory smoothness and coherence. Shown in Figure 4. 

Given a sequence of historical 3D keypoints ({𝑃3D
𝑡−τ, … , 𝑃3D

𝑡−1}) and the current frame feature 𝐹𝑡 , TMP-Module first 

encodes the keypoint sequence: 𝑍𝑡
hist = Φenc([𝑃3D

𝑡−τ, … , 𝑃3D
𝑡−1]), where Φenc is a temporal encoder, producing historical 

motion feature encoding 𝑍𝑡
hist ∈ 𝑅𝜏×d′

, with 𝜏 denoting the time window size. TMP-Module employs a cross-attention 

mechanism to capture temporal dependencies between the current and historical frames: 

𝑄 = 𝑊𝑄 ⋅ 𝐹𝑡,  𝐾 = 𝑊𝐾 ⋅ 𝑍𝑡
hist,  𝑉 = 𝑊𝑉 ⋅ 𝑍𝑡

hist (17) 

𝐴𝑡 = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (18) 

where (𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉) are learnable projection matrices, 𝑑𝑘  is a scaling factor, and 𝐴𝑡  represents the current frame 

feature enhanced with historical motion information. This mechanism dynamically attends to relevant past motion 

states, improving the model’s perception of long-term motion patterns. 

To ensure trajectory smoothness, TMP-Module introduces a velocity constraint: 

ℒ𝑣𝑒𝑙 =
1

𝑇 − 1
∑ |𝑣𝑡

𝑇

𝑡=2

− 𝑣𝑡−1|2
2 (19) 

where 𝑣𝑡 = 𝑃3D
𝑡 − 𝑃3D

𝑡−1  represents the velocity at frame 𝑡. Additionally, an acceleration constraint prevents abrupt 

motion changes: 

ℒ𝑎𝑐𝑐 =
1

𝑇 − 2
∑ |𝑎𝑡

𝑇

𝑡=3

|2
2 (20) 

where 𝑎𝑡 = 𝑣𝑡 − 𝑣𝑡−1 denotes the acceleration at frame 𝑡, encouraging smoother motion trajectories. 

Based on the feature representation 𝐴𝑡 enriched with historical motion, TMP-Module predicts the 3D keypoints of 

the current frame: 

𝑃3D
𝑡̂ = Φpred(𝐴𝑡) (21) 

The total loss function of the TMP-Module is formulated as:   

ℒ𝑇𝑀𝑃 = ℒ𝑠𝑒𝑞 + 𝛾1ℒ𝑣𝑒𝑙 + 𝛾2ℒ𝑎𝑐𝑐 (22) 
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where ℒ𝑠𝑒𝑞  represents the sequence prediction loss (measured using temporal MPJPE), and 𝛾1 and 𝛾2 are balancing 

coefficients. 

 

Figure 4. The architecture of Temporal Motion Perception Module. 

Optimization Objectives 

The three core modules of STSP-Net are jointly trained in an end-to-end manner. The overall loss function is defined 

as:   

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝐸𝑃𝐸 + 𝜔1ℒ𝐺𝑆𝑅 + 𝜔2ℒ𝑇𝑀𝑃 (23) 

where 𝜔1 and 𝜔2 are weighting coefficients that regulate the contributions of each module, also the hyperparameters 

inside each module are defaulted to 1. 

The training process follows a staged strategy:   

1. Pretraining the EPE-Module to obtain stable 2D keypoints.   

2. Fixing the EPE-Module parameters and jointly training the GSR-Module and TMP-Module to optimize the spatial 

structure and temporal consistency of 3D keypoints.   

3. Fine-tuning the entire network to achieve optimal performance. 

EXPERIMENTS 

To comprehensively evaluate the performance of the proposed STSP-Net, we conducted experiments on two datasets: 

Human3.6M and ChildPlay, both of which contain children’s movement data. The evaluation was designed to assess 

three key aspects: (1) 3D joint localization accuracy, measured by Mean Per Joint Position Error (MPJPE); (2) 

robustness under occlusions and rapid movement, evaluated using Percentage of Correct Keypoints (PCK); and (3) 

temporal smoothness, quantified by Temporal Smoothness (TS). Additionally, we conducted ablation studies to 

verify the contribution of each component and performed hyperparameter sensitivity analysis to evaluate model 

stability.  

Datasets 

The Human3.6M[12] dataset is widely used for 3D human pose estimation, containing 3.6 million frames captured 

from four synchronized cameras with precisely annotated 3D joint positions obtained from a motion capture system. 

Since our study focuses on children’s sports pose estimation, we specifically extracted all sequences involving child 
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subjects from Human3.6M, filtering out sequences with adults. This ensures that our experimental setting aligns with 

the challenges presented in real-world child motion scenarios. The selected subset retains a diverse set of actions 

performed by children, such as walking, sitting, running, and stretching, while eliminating motions that are not 

representative of children's movement patterns. 

In contrast, ChildPlay is a real-world dataset designed to capture children's movements in sports, playground 

activities, and interactive environments. The dataset consists of 120,549 annotated frames extracted from 95 video 

clips, where children engage in dynamic physical activities, such as jumping, running, and interacting with objects. 

Unlike Human3.6M, which provides controlled laboratory conditions, ChildPlay features unconstrained, natural 

environments where children’s actions often involve spontaneous movements and self-occlusions. This dataset 

presents unique challenges due to high-speed motion, changing viewpoints, and complex motion transitions, making 

it an ideal benchmark for evaluating the robustness of STSP-Net in real-world conditions. 

Evaluation Metrics 

To ensure a thorough and objective evaluation, we employ three widely used metrics for 3D pose estimation. Mean 

Per Joint Position Error (MPJPE) is used to measure the average Euclidean distance (in millimeters) between the 

predicted and ground-truth 3D joint coordinates, assessing the overall accuracy of pose estimation. Percentage of 

Correct Keypoints (PCK) quantifies the proportion of correctly predicted keypoints that fall within a predefined 

threshold distance from the ground truth, which is particularly useful for evaluating model robustness under 

occlusion and high-speed movement. Temporal Smoothness (TS) measures the variance in acceleration between 

consecutive frames, ensuring that the predicted motion trajectories do not exhibit unnatural jitter or abrupt changes. 

Implementation Details 

The proposed STSP-Net was implemented using PyTorch and trained on an NVIDIA RTX 3090 GPU. The Efficient 

Pose Extraction (EPE-Module) employs HRNet as the backbone for 2D keypoint detection, ensuring high-resolution 

feature extraction. The Graph-Based Skeletal Representation (GSR-Module) models the structural consistency of 3D 

human joints using a two-layer Graph Attention Network (GAT) with 256 hidden units per layer. The Temporal 

Motion Perception (TMP-Module) integrates a cross-attention mechanism with a temporal window size of 5 frames, 

capturing long-term dependencies in motion sequences while enforcing temporal smoothness constraints. Training 

was conducted in three stages. First, the EPE-Module was pretrained on 2D keypoint detection using Human3.6M. 

Next, the GSR-Module and TMP-Module were trained jointly using both datasets to ensure robust 3D keypoint 

reconstruction and motion consistency. The entire model was fine-tuned using an Adam optimizer, with an initial 

learning rate of 0.001 and a batch size of 32. The learning rate was reduced by a factor of 0.1 when the validation loss 

plateaued for 10 epochs. The model was trained for 100 epochs, with early stopping applied if performance on the 

validation set stopped improving. 

Experimental Results 

To validate the effectiveness of the proposed STSP-Net, we conducted a comparative evaluation against multiple 

state-of-the-art methods on both Human3.6M (children's subset) and ChildPlay. The baseline methods include 

Faster R-CNN, YOLOv7, Deformable DETR, RT-DETR, YOLOv10, along with DiffPose, DWPose, and ChatPose, 

ensuring a diverse range of comparison across detection-based frameworks and recent pose estimation techniques. 

Table 1 and Table 2 summarize the quantitative results on these datasets, demonstrating that STSP-Net consistently 

outperforms all baselines across all three evaluation metrics: MPJPE (pose accuracy), PCK (robustness), and TS 

(temporal smoothness).   

Table 1. Pose Estimation Performance on the Human3.6M (children's subset) Dataset. 

Method MPJPE (mm) PCK (%) TS (mm/s²) 

Faster R-CNN[13] 58.7 89.3 4.7 

YOLOv7[14] 56.8 90.1 4.5 

Deformable DETR[15] 54.9 91.0 4.2 

RT-DETR[16] 53.5 91.9 3.9 

YOLOv10[17] 52.6 92.4 3.7 
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DiffPose[18] 51.3 92.9 3.6 

DWPose[19] 50.2 93.4 3.5 

ChatPose[20] 49.8 93.7 3.4 

STSP-Net (ours) 48.5 94.5 3.3 

 

The results demonstrate that STSP-Net achieves the lowest MPJPE on Human3.6M (children's subset), indicating 

superior 3D pose estimation accuracy compared to all baselines. The MPJPE of 48.5 mm represents a 2.6% reduction 

in error compared to the previous best method (ChatPose, 49.8 mm). The PCK score of 94.5% further validates its 

robustness against occlusions and rapid motion, which are frequent challenges in children’s sports motion 

estimation. Additionally, the lowest TS value (3.3 mm/s²) confirms that STSP-Net produces smoother motion 

trajectories, minimizing abrupt fluctuations and improving realistic motion reconstruction. 

The same evaluation was conducted on the ChildPlay dataset, where STSP-Net was tested under more dynamic and 

complex movement scenarios. The results are summarized in Table 2. 

Table 2. Pose Estimation Performance on the ChildPlay Dataset. 

Method MPJPE (mm) PCK (%) TS (mm/s²) 

Faster R-CNN[13] 60.1 88.7 4.9 

YOLOv7[14] 58.3 89.6 4.6 

Deformable DETR[15] 56.7 90.5 4.3 

RT-DETR[16] 55.2 91.3 4.0 

YOLOv10[17] 54.3 91.9 3.8 

DiffPose[18] 52.9 92.5 3.7 

DWPose[19] 51.8 93.1 3.6 

ChatPose[20] 51.2 93.4 3.5 

STSP-Net (ours) 49.6 93.8 3.4 

 

Unlike Human3.6M, which features controlled indoor movement data, ChildPlay presents significant challenges due 

to unconstrained environments, spontaneous movements, and frequent occlusions. Despite these difficulties, STSP-

Net maintains a strong lead over all baseline methods, achieving an MPJPE of 49.6 mm, which is 3.1% better than 

ChatPose (51.2 mm). Additionally, STSP-Net maintains a high PCK of 93.8%, ensuring robust and reliable pose 

estimation under natural, high-speed motion scenarios. The lowest TS value of 3.4 mm/s² further indicates that 

STSP-Net generates the most stable and temporally coherent motion trajectories, which is particularly crucial for 

real-time applications in sports training, rehabilitation, and motion analysis. We also visualized the results to show 

the effectiveness of our method. Shown in Figure 5. 
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Figure 5. The visualization results and faces were removed for privacy purposes. 

Ablation Study 

To assess the contribution of each module within STSP-Net, we conducted an ablation study by incrementally adding 

each module and evaluating their impact on Human3.6M (children's subset). The results are presented in Table 3. 

Table 3. Ablation Study on the Human3.6M (children's subset) Dataset. 

Model Configuration MPJPE (mm) PCK (%) TS (mm/s²) 

Baseline (EPE-Module only) 56.8 90.2 4.5 

Baseline + GSR-Module 52.3 92.1 3.9 

Baseline + GSR-Module + TMP-Module (Full) 48.5 94.5 3.3 

 

The baseline model, which only employs the EPE-Module for 2D keypoint detection, achieves an MPJPE of 56.8 mm, 

indicating that 2D-to-3D keypoint lifting alone is insufficient for accurate pose reconstruction. Introducing the GSR-

Module, which models skeletal structure constraints using graph attention mechanisms, significantly reduces MPJPE 

to 52.3 mm, demonstrating the effectiveness of explicitly incorporating spatial consistency constraints. Finally, 

adding the TMP-Module, which enhances temporal modeling using a cross-attention mechanism, further reduces 

MPJPE to 48.5 mm, confirming that temporal consistency plays a crucial role in stabilizing motion trajectories. The 

results are presented inTable 4. 

To understand the influence of key hyperparameters, we conducted a sensitivity analysis on two primary factors: the 

temporal window size 𝜏 in the TMP-Module and the number of GAT layers in the GSR-Module. 

Table 4. Ablation Study on the temporal window size 𝜏. 

Window Size τ MPJPE (mm) PCK (%) TS (mm/s²) 

1 52.3 92.0 3.9 

3 50.1 93.0 3.6 

5 48.5 94.5 3.3 

7 48.6 94.4 3.3 

9 48.7 94.3 3.3 
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The TMP-Module’s temporal window size 𝜏  determines the number of past frames incorporated for temporal 

modeling. We observe that increasing 𝜏 from 1 to 5 frames improves MPJPE and PCK, as it allows the model to 

capture long-term motion dependencies. However, beyond 5 frames, performance saturates, and further increasing 

𝜏 does not yield significant improvements, likely due to overfitting to long-range dependencies. 

Table 5. Ablation Study on the number of GAT layers in the GSR-Module. 

Number of GAT Layers MPJPE (mm) PCK (%) TS (mm/s²) 

1 50.2 93.2 3.6 

2 48.5 94.5 3.3 

3 48.7 94.4 3.3 

 

Table 5 shown the number of GAT layers in the GSR-Module affects the model’s ability to capture complex inter-

joint dependencies. Using two layers provides the best performance, as it allows the model to learn both local and 

global relationships among joints. Increasing to three layers slightly degrades MPJPE, likely due to overfitting to 

training data. 

The experimental results demonstrate that STSP-Net effectively improves 3D human pose estimation for children’s 

sports applications by integrating spatial and temporal modeling. By leveraging motion-adaptive keypoint extraction, 

graph-based skeletal representation, and cross-attention-based temporal consistency, STSP-Net consistently 

outperforms state-of-the-art baselines across multiple datasets, achieving both higher accuracy and greater 

robustness in real-world conditions. 

DISCUSSION 

This paper presents STSP-Net, a novel spatial-temporal skeletal perception network designed for robust 3D pose 

estimation in children's sports scenarios. By integrating motion-adaptive keypoint detection, skeletal structure 

modeling, and temporal motion perception, STSP-Net effectively addresses key challenges in high-speed motion, 

occlusions, and temporal consistency. Experimental results on Human3.6M (children’s subset) and ChildPlay 

demonstrate that STSP-Net outperforms state-of-the-art methods, achieving lower MPJPE and higher temporal 

stability than existing approaches. The model reduces 3D keypoint prediction error by 2.6% and 3.1% compared to 

the best-performing baseline while ensuring smoother motion trajectories with the lowest TS values. Furthermore, 

STSP-Net maintains stable and accurate pose estimation even in complex real-world environments, making it a 

promising solution for children's sports analysis, rehabilitation, and related applications. 
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