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This paper introduces Hercules, an autonomous robot designed to simulate a specialized 

cellulose bale forklift, integrating cutting-edge technologies in natural language processing 

(NLP) and speech synthesis. Equipped with advanced sensors and communication capabilities 

— such as 2D cameras, LiDAR, and a microphone array — Hercules interacts with its 

environment and operators using its sensors, actuators, and natural language supported by text-

to-speech and speech-to-text functionalities. The robot's architecture enables real-time 

interaction with non-expert users, allowing it to autonomously navigate, detect objects, and 

perform precise grasping tasks. This work outlines the development and integration of state-of-

the-art large language models into a robotic system to enable two-way communication and 

execution of commands, demonstrating the robot's efficiency, accuracy, and versatility in a 

simulated warehouse environment. Our experiments and evaluations exhibit Hercules' 

capabilities to understand, respond to, and execute natural language commands effectively, 

presenting promising prospects for enhanced human-robot interaction in practical industrial 

settings. 

Keywords: Autonomous Robot, Cellulose Bale Forklift, Human-Robot Interaction, Natural 

Language Processing, Speech Synthesis, Speech Recognition, Large Language Models. 

 

INTRODUCTION 

Over the past few years, we have witnessed a significant transformation in the way robotics permeates our daily lives 

and impacts industrial processes (Garrido-Jurado et al., 2014). Autonomous robots have found applications in a 

variety of sectors, such as automotive (Benotsmane et al., 2020), logistics and storage (Bernardo et al., 2022), 

agriculture (Rose et al., 2021), self-driving cars (Badue et al., 2021), among many others (Ma et al., 2020), (Alatise & 

Hancke, 2020). As robots advance in their capabilities, they are increasingly deployed in environments governed by 

people who may not be experts in robotics (Tellex et al., 2020). In these contexts, the ability to interact with robots 

naturally is a key factor in the successful deployment of robots in the real world (Zucker et al., 2015). Using 

abstractions such as visual programming (Coronado et al., 2020) provides some flexibility; however, it still requires 

training. Hence, building robots that are capable of interacting with humans through natural language is highly 

desired in the area. 

Recently, the field of Artificial Intelligence (AI) has undergone a revolution due to the advent of the Transformer 

neural architecture (Vaswani et al., 2017) which is the foundation of today's Large Language Models (LLMs) — such 

as GPT-4 (Achiam et al., 2023), Llama-2 (Hugo Touvron et al., 2023), and Mistral (Jiang et al., 2023). 

Also, the Transformer architecture has been used as the basis for robust speech-to-text (STT) models such as Whisper 

(Alec Radford et al., 2022) or has inspired relevant aspects (attention mechanism) of text-to-speech (TTS) models 

such as Tacotron 2 (Shen et al., 2018). These models achieve human-level performance in a variety of tasks, such as 

text generation, question answering, and code generation (Achiam et al., 2023), (Hugo Touvron et al., 2023), (Jiang 

et al., 2023). Naturally, the LLM’s success has also been extended to the field of robotics. Since Natural language 

processing (NLP) is fundamental for human-robot interaction, there are multiple applications where robots can 

benefit from LLMs, including task instruction, navigation, and information retrieval (Vemprala et al., 2023). The 
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integration of LLMs has emerged as a game-changer in the robotics domain, redefining the scope and potential of 

the use of autonomous robots and human-robot interaction. 

 

Figure 1: Illustration of Hercules interacting with a non-expert robotics operator, understanding natural language 

commands, formulating responses, planning, executing tasks, and reporting back through speech. 

In this paper, we introduce Hercules, an autonomous robot equipped with a variety of sensors — including 2D 

cameras, a LiDAR, and a microphone array — that simulates a specialized cellulose bale forklift, enabling the 

comprehensive study of the environmental perception and interaction capabilities required within industrial settings. 

As illustrated in Figure 1, Hercules' main goal is to interact with the environment through the use of natural language, 

i.e. Text-to-Speech (TTS), and Speech-to-Text (SST) capabilities, to perform complex tasks, including autonomous 

navigation, precise object detection, and object grasping. To do so, Hercules is designed to integrate state-of-the-art 

neural models to perform NLP and speech synthesis tasks. The integration empowers not only two-way 

communication in natural language, but also the robot's ability to understand, respond to, and execute commands 

efficiently and accurately, significantly enhancing its versatility and usefulness in varied environments. The main 

contributions of this paper are: 

● We build a robot that integrates state-of-the-art technologies to perform NLP and speech synthesis tasks. 

The robot simulates a real-world task of cargo transportation, which has multiple applications in the industry. 

● We present an architecture enabling real-time interaction between the robot and non-expert users. The 

robot operates autonomously, identifying tasks and executing them without human intervention. This includes 

navigation, obstacle avoidance, object detection, and grasping. 

● We carry out experiments to assess the robot's performance in a warehouse simulation. Results 

demonstrate its ability to understand, respond to, and execute natural language commands efficiently and accurately. 

The remainder of this paper is organized as follows. Section 2 presents the related work. Section 3 describes the 

robot's hardware, software architecture, and capabilities. Section 4 presents the robot's performance in a real-world 

scenario. Finally, Section 5 concludes the paper and discusses future work. 

RELATED WORK 

While there has been a recent increase in enthusiasm for integrating natural language into robotics, this field of 

research has been active for a long time (Chen & Mooney, 2011), (Tellex et al., 2020). Historically, language 

processing has been used in a variety of applications such as search and rescue tasks (Murphy et al., 2007), general 

object description (Morales et al., 2006), and assistive robotics (Fasola & Mataric, 2012). However, its integration 

into robotics has been limited by the lack of robust and efficient NLP models. The recent development of 

Transformers (Vaswani et al., 2017) and the emergence of LLM models (Achiam et al., 2023), (Hugo Touvron et al., 

2023), (Jiang et al., 2023) have been leading to a new wave of research in the field, with the integration of LLMs in a 

variety of applications aiming to enable seamless communication, sophisticated understanding of human commands, 

and intelligent decision-making by autonomous agents. 

Different studies have showcased the integration of language models in robotics. Recently, (Vemprala et al., 2023) 

introduced the ChatGPT (Achiam et al., 2023) for robotics, which creates a set of functions that can be called by the 
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GPT model, being instructed using prompt engineering. In summary, the authors propose a collaborative framework 

named PromptCraft to allow the creation of high-level commands using the ChatGPT API. A similar idea was 

proposed by (Singh et al., 2023), who introduced ProgPrompt, a framework that uses programming language 

structures as prompts for performing the robot task planning. Experiments show promising results; however, the 

framework demands basic knowledge in programming to create the prompts. (Wu et al., 2023) introduced the 

TidyBot, a robot that employs an LLM to learn the user's preferences — via prior interactions — and autonomously 

tidy up a given room. The authors claim that their approach integrates language-based planning and perception 

alongside the few-shot summarization capabilities of LLMs to deduce generalized user preferences that hold broad 

applicability for future interactions. 

Other works propose the use of LLMs to perform navigation tasks. (Wang et al., 2023) use few-shot prompts collected 

from the physical environment to allow a Large Language Model to autoregressively generate low-level control 

commands for robots without task-specific fine-tuning. Their experiments demonstrated the effective capability of 

their model in guiding a quadruped robot's locomotion, enabling it to walk proficiently. (Bucker et al., 2022) trained 

an LLM model to reshape robot trajectories using natural language commands. In brief, when a robot is performing 

a task, the user may intervene and provide a command to change the robot's trajectory. (Lin et al., 2023) proposed 

Text2Motion, a planning framework rooted in language that empowers robots to tackle sequential manipulation tasks 

demanding long-horizon reasoning. This framework, when provided with a natural language directive, generates 

comprehensive plans at both task and motion levels, ensuring the attainment of inferred symbolic goals. 

Applying LLMs to robotics is currently an area of intense interest. Nonetheless, most of the studies are still in the 

early stages of development, and there is still substantial progress required before the models can be effectively 

deployed in real-world applications. While most of the studies are focused on prompting a network to obtain 

trajectories/navigation instruction, in this paper we focus on the user-friendly interaction between the robot and the 

humans. As previously mentioned, the proposed architecture aims to integrate state-of-the-art technologies to allow 

the robot to interact with non-expert users and perform the requested tasks without human intervention. In addition, 

the robot interacts with the environment through speech, which is not explored in the related works. 

MATERIAL AND METHODS 

This section provides a detailed overview of the key elements supporting the development and functionalities of our 

autonomous robotic system. Subsections cover the conceptual design, hardware architecture, Autonomy System, and 

the integration of the Large Language Model (LLM), Text-to-Speech (TTS), and Speech-to-Text (STT) systems. 

A. Conceptual design 

The problem studied was inspired by the work of forklift operators in cellulose transportation at. Employees are 

typically assigned to transport piles of bales from a warehouse to a truck. Once the truck is full it departs. Usually, 

the industrial environment is controlled. Workers are restricted to use sidewalks; and the piles and the truck are 

placed in predefined positions. 

The designed robot is fully autonomous and emulates a specialized cellulose bale forklift used for transporting 

materials within warehouse environments. Figure 2. illustrates both the designed robot and the real forklift it aims 

to emulate. Note that this forklift type picks up bales by pressing them on both sides instead of using forks from the 

bottom. Like the real forklift, Hercules employs an Ackermann steering mechanism, like a car's articulated steering, 

enabling precise maneuvering and navigation in confined warehouse spaces. 

B. Architecture overview 

To enable Hercules to operate autonomously and interact seamlessly with the environment and individuals, a 

comprehensive array of sensors, actuators, and controllers was integrated into its system, represented in Figure 3 as 

green, yellow, and blue, respectively. 
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Figure 2: Illustration of the designed robot Hercules and the real forklift it aims to emulate. 

Hercules' Autonomy System runs on a laptop equipped with an Intel i7 processor, 16GB of RAM, and an NVIDIA 

RTX 3070 graphics card. The system integrates data from various sensors, including encoders on wheel motors, 

steering wheel angle measurements, Inertial Measurement Unit (IMU), Global Positioning System (GPS), and Light 

Detection and Ranging (LiDAR). This fusion of inputs is vital for accurately determining Hercules' position and 

velocity. Movement commands are sent to specific actuators, including DC, Servo, and Step motors, as well as a 5-

degree of freedom (DOF) robot arm designed for grasping and manipulating objects. 

 

Figure 3: A high-level schematic diagram that shows an overview of Hercules' hardware and software architectures. 

Despite the manipulator having more degrees of freedom than a standard cellulose bale forklift, its movements are 

deliberately restricted through software. This is done to mimic the operational limitations of a traditional forklift, 

thereby ensuring it remains compatible with and adheres to the usual handling procedures found in warehouse 

settings.  

The robot is also equipped with a total of five cameras. Four of these cameras operate in RGB mode and mimic human 

viewing in remote operation scenarios. The fifth camera, an RGBD Intel RealSense D435i, is strategically positioned 

at the gripper of the manipulator. It aims to accurately estimate the pose of objects to be picked and realize the 

recognition of ArUco (Garrido-Jurado et al., 2014) markers used for fine localization. 
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C. CARMEN-LCAD 

Hercules' Navigation System follows the architecture commonly found in self-driving cars (Badue et al., 2021). It 

relies on a version of the Carnegie Mellon Robot Navigation Toolkit1 named CARMEN LCAD2, which is a modular 

open-source software dedicated to mobile robot control, and it is the main software of IARA (an acronym for 

Intelligent Autonomous Robotic Automobile), an autonomous vehicle designed to navigate in complex large-scale 

urban environments (Cavalcante et al., 2021). As shown in Figure 3, CARMEN LCAD is the Hercules' main controller 

block. 

Hercules Navigation System closely mirrors IARA's architecture, which is composed of two main systems: perception 

and decision-making systems. The perception system utilizes onboard sensors such as LIDAR, cameras, GPS, IMU, 

and more to estimate the robot's state and build an internal representation of the environment. The decision-making 

system guides the robot from its starting point to the user-defined destination by analyzing the robot's state and 

internal environment representation (Badue et al., 2021). 

Hercules closely mirrors this architecture, primarily encompassing the following functional blocks (see Figure 4): 

 

Figure 4: Illustration of the Intelligent Autonomous Robotic Automobile (IARA). For further details, please refer to 

(Badue et al., 2021). 

● Localizer: it is responsible for estimating the robot's state (pose, linear velocities, angular velocities, etc.) 

in relation to the static map of the environment. The static map, also referred to as the offline map, is generated prior 

to autonomous operations, employing the identical set of sensors integrated into the robot. 

● Mapper: this module takes the offline map and the robot's state as inputs, producing the online map as 

output. This online map combines data from the offline map with an occupancy grid map computed in real time using 

sensor data and the present state of the car. 

● Moving Obstacles Tracker: this component utilizes the offline map and the current state of the robot, 

enabling the detection and tracking of nearby moving obstacles, such as other vehicles and individuals. It calculates 

both the pose and velocity of these obstacles for real-time monitoring and assessment. 

● Route Planner: it computes a route, in the offline map, from the current robot's state to the final goal. A 

route is a sequence of waypoints, where each waypoint is a coordinate pair in the offline map. 

● Path Planner: this component calculates a series of paths by evaluating the robot's present state and its 

internal representation of the environment. A path is essentially a sequence of poses, wherein each pose denotes a 

coordinate pair within the offline map, specifying the desired orientation of the robot at that particular location. 

● Motion Planner: it is tasked with computing a trajectory from the robot’s current state to the designated 

goal, ensuring adherence to the defined path while accommodating the robot’s kinematic and dynamic constraints. 

This trajectory is composed of a sequence of commands, each specifying a desired velocity, a desired steering angle, 

and the duration for which each command should be applied. A trajectory navigates the robot from its current state 

to the intended goal in a smooth and safe manner. 

● Obstacle Avoider: this module receives the computed Trajectory from the Motion Planner and, when 

necessary, adjusts it -- often by reducing the velocity -- to prevent potential collisions. 

 
1 https://carmen.sourceforge.net 
2 The project that is available on https://github.com/LCAD-UFES/carmen_lcad 
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● Controller: this module takes the Motion Planner's trajectory, possibly modified by the Obstacle Avoider 

module, and calculates effort commands directed to the steering wheel servo and traction DC motors. These 

commands are intended to guide the robot in executing the modified trajectory as closely as possible, considering 

real-world physical constraints. 

An extra module is introduced for the control of Hercules, the Task Manager. The module is responsible for high-

level control of the robot. Using a custom created language, the developers can define missions, which are sequence 

of operations that need to be performed by the robot to achieve a final goal. The summarized mission used by 

Hercules was the following: 

# hercules_mission.txt 

get_first_bale: 

park at 7757696.37, -363595.74, 1.557 

yolo get bale from pile 

 

put_first_bale_on_truck: 

park at 7757695.97, -363593.13, 3.128 

put bale on the truck 

 

get_second_bale: 

park at 7757696.37, -363595.74, 1.557 

yolo get bale from pile 

 

put_second_bale_on_truck: 

park at 7757695.97, -363593.13, 3.128 

put bale on top 

 

# Retorna a posicao inicial 

park at 7757691.46, -363593.36, -3.086 

announce "Mission completed!" 

The language supports recovery in case of failed tasks, which were omitted in the paper for conciseness, but are 

implemented in Hercules. It also supports flow control so that the approach would generalize for an arbitrary number 

of bales, but for the sake of simplicity it was not implemented in Hercules. 

As shown in the mission, Hercules is asked to move the bales one by one from the pile to the truck in a way that a 

new pile is created in the truck. The park commands used in the mission trigger the Navigation System to 

autonomously navigate the robot to a specified pose. The commands such as yolo get bale from pile trigger task 

manager routines that communicate with the Manipulator and Step Motor Controller via ROS topics to acquire the 

position of ArUco makers and bales and send simple commands, such as: 

● Move forward: x (meters) 

● Move horizontally: y (meters) 

● Move vertically: z (meters) 

● Close gripper: c (%) 
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By doing this, the Task Manager can perform all the calculations necessary to determine the individual movements 

the manipulator need to perform, considering its own dimensions and the environment. 

With all the necessary integrations, a graphical user interface is available for the user to monitor the data from the 

sensors and visualize the goals and paths determined by CAMEN-LCAD’s navigation framework, as illustrated by 

Figure 5. 

 

Figure 5: Autonomous navigation using CARMEN-LCAD software: simultaneous visualization of the robot-

generated map, onboard cameras, and sensor data for environment mapping and localization. 

D. Bale Recognition 

This study's problem consists of autonomously transporting bales from a pile in a warehouse to a truck. To achieve 

this, the robot must identify the center of the bale with an accuracy of a few centimeters. Similarly, the forklift must 

detect the position where the bales need to be placed. 

A YOLOv8 model, based on the You Only Look Once (YOLO) object detection framework (Redmon et al., 2016) was 

fine-tuned to detect the bales. To do so, a dataset of 330 images was collected using a cell phone camera and labeled 

using Roboflow, a web-based tool for computer vision tasks. An example of a labeled image used for training is 

presented in Figure 6. To enhance the dataset and improve model robustness, 529 additional images were generated 

through data augmentation techniques. These augmentations included horizontal flipping, random rotations 

between -15º and +15º, and brightness adjustments ranging from -15% to +15%. The final dataset was divided into 

795 images for training, 32 for validation, and 32 for testing. The trained model was then integrated into a ROS-based 

vision pipeline to enable real-time object detection. 

 

Figure 6: Example of labeled bale used for training. 
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The detection process utilizes an Intel RealSense depth camera, which provides both RGB and depth images. The 

YOLOv8 model, running on a GPU for reduced latency and higher frame rate, processes the RGB frames to detect 

bales based on the pre-trained dataset. The bounding boxes of detected objects are extracted, and the topmost and 

leftmost bale are selected for further processing. 

Once the center of the topmost and leftmost bale is detected, the 3D position of the pixel with respect to the camera 

is calculated using the camera's intrinsic parameters and the corresponding pixel's depth. The equations that describe 

the system are: 

𝑥3𝐷 =
𝑥𝑝𝑖𝑥𝑒𝑙 − 𝑐𝑥

𝑓𝑥
⋅ 𝑧𝑝𝑖𝑥𝑒𝑙  

𝑦3𝐷 =
𝑦𝑝𝑖𝑥𝑒𝑙 − 𝑐𝑦

𝑓𝑦
⋅ 𝑧𝑝𝑖𝑥𝑒𝑙  

𝑧3𝐷 = 𝑧𝑝𝑖𝑥𝑒𝑙  

The position (𝑥3𝐷 , 𝑦3𝐷 , 𝑧3𝐷) is given with respect to the optical frame. The optical frame uses the z-axis pointing 

forward, the x-axis to the right, and the y-axis downwards. The position is then included as a child of the 

"camera_optical_link" in the ROS2 TF-tree, which can be seen in Figure 7. This transformation allows the system to 

determine the bale's position relative to the robotic manipulator's base, enabling precise grasping and placement of 

the bales during the transport operation. 

Detected bales are further grouped into stacks based on their horizontal alignment. The system selects the topmost 

bale from the leftmost stack to be picked by the manipulator. 

 

Figure 7: Representation of the use of the Open Manipulator with the YOLO Bale Detector and ArUco Detection. 

E. ArUco Recognition 

Once Hercules picks the first bale, it is required to place it on top of the truck at a specified position. To accurately 

determine the position in the truck, an ArUco (Garrido-Jurado et al., 2014) marker is positioned on top of the 

platform and the bales must be placed at a determined pose relative to the marker. Figure 8 shows examples of ArUco 

markers. 

 

Figure 8: Representation of the use of the Open Manipulator with the YOLO Bale Detector and ArUco Detection. 
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ArUco markers are fiducial markers that allow accurate 3D pose recognition using an Intel RealSense D435i depth 

camera attached to the robotic arm. It was used the aruco_ros package (Bence Magyar et al, 2024), which integrates 

ROS with an OpenCV ArUco recognition. As a result, the package publishes a frame transformation from the 

coordinate system placed on the camera, denoted “camera_link”, to the coordinate system at the position of the 

ArUco Marker, shown as “aruco_marker_frame” in Figure 7. 

After the first bale is placed on top of the truck, the ArUco marker is no longer used, and the model uses the placed 

bale as reference for putting the next bale on top. 

F. Manipulator and Step Motor Controller 

The Manipulator inherently has 4 degrees of freedom. However, its movements are limited by software to be like a 

forklift. The robotic arm is mounted over a step motor rail, which enables it to move sideways, also to resemble the 

structure of the industrial forklift. 

The first step for picking up or delivering a load is adjusting the step motor so that the Manipulator is aligned with 

the bale. To do so, the position of the bale is detected using the Bale Recognition module and the distance (in meters) 

that the manipulator is required to dislocate horizontally is determined by the Manipulator and Step Motor 

Controller. 

The step motor movement command is sent via a CAN interface to an ESP-32 installed at Hercules for interacting 

with its sensors and actuators. The microcontroller determines the number and directions of steps to be taken by the 

mechanism and sends the signal to the Step Motor. The system repeats the alignment once again to ensure precision. 

After that, the Bale Recognition is used a second time, and the Manipulator and Step Motor Controller computes the 

required upwards and forwards movement for correctly grasping the bale. The path and trajectory computed for the 

Manipulator is calculated using the open-source OpenManipulatorX software to send commands to an OpenCR 

board installed at Hercules, which sends the voltage signals to the manipulator’s servo motors. 

G. Human-Robot Interaction System 

As shown in Figure 3, Hercules incorporates a Human-Robot interaction system seamlessly integrated with CARMEN 

LCAD. The main goal of this module is to enable Hercules to receive and understand commands given by individuals 

with no expertise in robotics, using natural language via speech. This module achieves this by utilizing speech-to-text 

(STT) and text-to-speech (TTS) neural models, which are integrated with a Large Language Model (LLM). 

The Human-Robot Interaction system within Hercules follows a structured flow of operation that begins when a 

person communicates to the robot verbally. The Human-Robot Interaction system in Hercules works as the following 

structured process. First, verbal communication from a person prompts the robot to transform speech into text via 

STT. This text is then sent to the LLM, pre-instructed through few-shot learning prompts about Hercules' tasks. The 

LLM comprehends the command and forwards it to the Trigger Module and TTS model. The Trigger Module assesses 

feasibility and, if feasible, communicates with CARMEN LCAD for navigation and task execution. Simultaneously, 

the LLM’s response is converted into voice by the TTS model, enabling the robot to communicate back to the user. 

This flow is depicted in Figure. 9. 

 

Figure 9: Human-Robot Interaction System flow. 
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The Human-Robot Interaction System is accessible via a web-based interface for users to communicate with 

Hercules. It is agnostic to the specific architecture or model used for Text-to-Speech (TTS), Speech-to-Text (STT), 

and Large Language Model (LLM) functions. 

H. STT 

The STT component was implemented using Whisper (Radford et al., 2022), an advanced open-source model tailored 

for Automatic Speech Recognition (ASR) tasks. Trained on a comprehensive dataset that includes over 680,000 

hours of audio in various languages, it offers efficient performance across a wide range of accents and can effectively 

handle background noise. We utilized the whisper small variant, which comprises 244 million parameters. This 

version demonstrated strong ASR capabilities for Brazilian Portuguese and provided rapid transcription, essential 

for maintaining conversational fluidity. 

Other STT models were evaluated by the authors, such as Kaldi and DeepSpeech. However, they showed suboptimal 

results for Brazilian Portuguese. 

I. TTS 

The available Text-to-Speech (TTS) models for Brazilian Portuguese are not as developed as their Speech-to-Text 

(STT) counterparts. The open-source TTS models either lack support for Brazilian Portuguese or exhibit substandard 

performance. For this reason, we utilized Amazon Polly (Werchniak et al., 2021), a proprietary online technology 

designed for human-like speech synthesis. It enables the transformation of written text into clear audible speech, 

offering high-quality vocal output that closely resembles human speech, including Brazilian Portuguese. 

J. LLM 

We configured the Large Language Model (LLM) with specific prompts to enable it to act as a robot for stacking and 

unstacking bales in a warehouse. Then, we developed a response pattern to efficiently process the results from the 

LLM’s inferences. Essentially, the LLM is programmed to generate three distinct types of responses based on its 

input: 

● RESPONSE TO THE USER: <sentence>: this type is used when the model provides a generic response to 

the user, such as when the user asks about the robot's name after introducing themselves. It is activated when there 

is no specific mission-related query. 

● COMMAND: <command>: this type is used when the response indicates a mission for the robot to 

undertake, like when the user instructs the robot to unload a block at a specified position. It is activated when there 

is a clear mission outlined in the input. 

● CONFIRMATION REQUEST: <sentence>: this type activates when the model requests confirmation of a 

command, like when the user instructs the robot to execute a mission. The model prompts the user to confirm the 

mission, and the subsequent response falls under the COMMAND type. 

The raw answer is sent to the Trigger Module and the RESPONSE TO THE USER is sent to the TTS block to be played 

to the user, ensuring a smooth flow before vocalizing the answer to the user. 

The system prompt (translated to English) consists of the following: 

Your name is Hercules, and you are the virtual operator of a forklift in the company's warehouse. In 

the warehouse, there is a truck to where the bales need to be moved with move_pile_to_truck. You 

must follow the instructions to operate the forklift. To do this, you can invoke the following 

commands: 

MOVE_PILE_TO_TRUCK: moves the cargo from the truck to aisle in stack; 

If the user's speech is not a command, respond normally. 

If the user's speech contains a command, you must respond as follows: 

USER RESPONSE: spoken response to the user before executing the command 

COMMAND: command to be invoked 
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CONFIRMATION REQUEST: Do you want the command to be executed? 

You must invoke only one command at a time. 

If the user confirms the command, respond only with: 

"COMMAND: command to be executed" 

An example of interaction with the Human-Robot Interaction System is presented in Figure 10. 

 

Figure 10: Human-Robot Interaction System 

The model’s response shown in the web chat interface is the result of a filter applied to remove the control tags output. 

This result is also the sentence sent to the TTS module to be played to the user. The raw response from the LLM in 

the case shown was the following: 

USER RESPONSE: Understood. I will move the load from the truck to the warehouse at the 

end of the aisle. 

COMMAND: MOVE_PILE_TO_TRUCK 

CONFIRMATION REQUEST: Do you want the command to be executed? 

 

K. Trigger module 

The trigger module processes the LLM’s response to determine the robot's task, especially if it involves executing a 

command. It analyzes contextual information from the LLM, extracting and defining the specific task based on the 

response. Using regular expression methods, it extracts the command and assesses if it should trigger a task. The 

LLM does not generate code for the robot; instead, all tasks are predefined as missions available to the Task Manager, 

represented as a Task Pool in Figure 9. If the extracted command corresponds to a valid task, it is forwarded to the 

Task Manager for execution, represented by the CARMEN LCAD block in Figure 9. 

As explained in the previous modules, in industrial controlled environments, the sequence of operations necessary 

to complete the tasks assigned to the forklift operators is fully described by hercules_mission.txt. The mission is 

made available to the robot as the single task in the Task Pool, being called MOVE_PILE_TO_TRUCK. Whenever 

the LLM confirms this command, the mission is initiated in the Task Manager. 

The architecture is proposed with a Task Pool to allow flexibility of implementation and scalability for other robotics 

application. The accuracy of the models to identify the desired action in situations where extra actions are available 

is evaluated in one of the experiments presented in the next section. 
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EXPERIMENTS 

We conducted experiments to evaluate our proposed architecture's feasibility and performance in two phases. First, 

we assessed the human-robot interaction system's efficiency. Next, we tested the fully integrated robot in a real-world 

scenario resembling a cellulose bale warehouse with a Task Pool containing only the MOVE_PILE_TO_TRUCK 

mission. All experiments were conducted in Brazilian Portuguese, reflecting the robot's intended use among 

Portuguese speakers3. 

A. Human-Robot Interaction 

This phase assessed the Human-Robot Interaction System's effectiveness in a hypothetical warehouse with five aisles 

and ten cellulose bale stack locations per aisle. The aisles and stack locations were numerically identified from 1 to 5 

and 1 to 10, respectively. 

B. Experimental setup 

To conduct this experimental phase, various Language Models were used and evaluated. 

We evaluated five LLMs which were popular and performant at the time of the experiment: Llama 2 chat 70B and 

Llama 2 chat 13B, open-source models developed by Meta (Hugo Touvron et al., 2023); Mixtral-7x8B, an open-source 

model from Mistral AI; and OpenAI's advanced models for chat tasks, GPT-3.5-Turbo (Mann et al., 2020) and GPT-

4 (Achiam et al., 2023). These LLMs were chosen for their ability to understand user queries, recognize commands, 

and produce appropriately formatted responses. 

Performing inference of these models on Hercules is impractical due to their computational demands. Instead, they 

are accessed via Wi-Fi through API calls, with open-source models running on local high-performance computers. 

For Llama 2 and Mixtral, the deployment was on a system equipped with 3 NVIDIA A100 GPUs, utilizing vLLM 

(Kwon & Woosuk, 2023), an efficient LLM serving system designed to minimize KV cache memory waste and to 

enable flexible sharing of KV cache within and across requests, thereby enhancing the throughput. GPT-3.5-Turbo 

and GPT-4, on the other hand, are proprietary models and were used via OpenAI’s chat completions API. All models 

were configured with a temperature setting of 0.0 and prompted to respond in the format outlined in Section human-

interaction-system. 

To simulate a warehouse scenario, the Task Pool comprised two possible actions: 

● LOAD(x, y): Move the topmost bale from aisle x, pile y to the truck 

● UNLOAD(x, y): Move a bale from the truck to the top of aisle x, pile y 

C. Experimental results 

To evaluate the Human-Robot Interaction System, we assessed the LLMs' performance with various inputs to the 

robot4. Two datasets of common commands that the robot may receive were created, and the responses generated by 

the models were assessed. 

The first dataset includes feasible tasks, representing actions the robot is expected to execute. In contrast, the second 

dataset consists of unfeasible tasks, denoting actions the robot must decline as it cannot perform them. Examples of 

feasible and unfeasible tasks: 

● Feasible: Hello Hercules, can you take the bale in aisle 2 and pile 3, and put it in the truck? 

● Unfeasible: Hello Hercules, can you take the bale in aisle 10 and pile 3, and put it in the truck? 

It is worth noting that while both tasks are similar, the second task is unachievable because the simulated warehouse 

lacks an aisle 10 – it only includes aisles numbered from 1 to 5. 

 
3 Code available at https://github.com/i2ca/tts-stt 
4 The performance results of the TTS and STT models are not included for two primary reasons: (1) their error rate is quite 
low, consistently nearing 100% accuracy; (2) their influence on the overall effectiveness of the proposed system is quite low 
compared to the impact of the LLM. 
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Our evaluation started with testing the models on feasible tasks. Each model underwent 30 standard feasible 

questions, with 60 different follow-up responses — evenly split between 30 approvals and 30 disapprovals. For each 

question, the expected model response involved suggesting a command for task execution and requesting user 

confirmation. If approved, the corresponding task was activated; otherwise, the robot initiated a new interaction cycle 

to determine the correct task. An example of an interaction with a feasible task is illustrated below: 

● User: Hey Hercules, could you take the cellulose placed in the 3rd pile in aisle 4? 

● Hercules: Hello, for sure. I'm going to take the cellulose in aisle 4 and pile 3. Do you confirm this request? 

● User: Yes, do it!     

Note that the confirmation serves as a security mechanism to prevent the robot from executing incorrect requests. 

The model must wait for human approval to generate an action command following the rules previously described -

- for example, COMMAND: 

LOAD(4, 3). If the user disapproves the request, the model cannot generate a task command. 

In Table 1, it is presented the performance for each model, considering both approval and disapproval. An approval 

pipeline is correct if the model generates the accurate task command after positive human feedback. Similarly, the 

disapproval pipeline is considered correct if the model does not generate a task command after negative human 

feedback. In Table 1 is shown that the overall performance is better for the disapproval pipeline than the approval 

one, which is expected since denying a command is generally easier than extracting the correct answer from a natural 

language specification. GPT-4 achieves the best performance, with 100% accuracy in the approval pipeline and 93.3% 

in the disapproval pipeline. Among the open-source models, Mixtral stands out, with 53.3% accuracy in the approval 

pipeline and 90.0% in the disapproval pipeline. 

Table 1: Performance of each LLM considering feasible tasks for both approval and disapproval pipelines. All values 

represent the percentage of correct interactions. 

Pipeline 

Model 

GPT-3.5-turbo GPT-4 
Llama-2-13b-

chat 
Llama-2-70b-

chat 
Mixtral-8x7b-

instruct 

Approval 96.7% 100% 26.7% 6.7% 53.3% 

Disapproval 53.3% 93.3% 70.0% 70.0% 90.0% 

 

Next, we evaluated the models' capabilities considering the unfeasible tasks. All models were evaluated with 19 

questions, and refusals to perform the tasks were considered correct answers. Consequently, answers that resulted 

in commands to the robot are labeled as incorrect. In Table 2 is shown the performance of the LLMs for the unfeasible 

tasks. Remarkably, GPT-4 stands out once more, successfully identifying unfeasible tasks in 83.3% of the requests, 

followed by Mixtral at only 23.3%. 

Table 2: Performance of each LLM considering unfeasible tasks. All values represent the percentage of correct 

interactions. 

Metric 
Model 

GPT-3.5-turbo GPT-4 
Llama-2-13b-

chat 
Llama-2-70b-

chat 
Mixtral-8x7b-

instruct 

Accuracy 13.3% 83.3% 0% 0% 23.3% 

 

D. Discussion 

The experimental results show varying performance of the LLMs across different evaluation scenarios. For feasible 

tasks, GPT-4 emerged as the top performer, displaying a higher percentage of correct interactions in both approval 

and disapproval pipelines, reflecting its sophistication and effectiveness in generating accurate task commands 
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following user feedback. Notably, among the open-source models, Mixtral presented promising results, highlighting 

its competitive performance in this context. 

However, challenges emerged when evaluating the models' capabilities with unfeasible tasks. Despite this complexity, 

GPT-4 demonstrated a notable success rate, correctly identifying unfeasible tasks in the majority of requests. While 

dealing with unfeasible tasks is inherently more complex, GPT-4's performance in this context showcased a notable 

advantage over other models. Mixtral presented better performance compared to the Llama models — which failed 

to identify all unfeasible tasks —, but it was much lower when compared to the GPT-4. These findings underscore the 

nuanced nature of language understanding in robotics applications and emphasize the significance of robust language 

models for effective human-robot interactions. 

E. Real-World Emulation of a Cellulose Bale Forklift Robot 

The goal of this experiment phase was to demonstrate Hercules' capabilities in a simulated real-world setting, 

utilizing the entire system, including autonomous navigation and human-robot interaction. 

A laboratory room was modified to simulate a warehouse, featuring cellulose bales and a platform serving as a truck 

for unloading. This setup allowed us to evaluate Hercules' ability to navigate autonomously, engage in natural 

language interactions with users, and effectively handle cellulose bales, providing insights into its overall 

functionality and practical utility. 

The simulation utilized GPT-4 as the LLM, which achieved the best performance in the experiments, along with the 

TTS and STT described earlier. Hercules was configured to engage in conversations with individuals and activate a 

single task upon identification of the request. The task consisted of moving a pile of two bales from the warehouse to 

the truck, as described in the section 3. 

The robot can initiate the task from any random location within the map and execute the following steps: (1) Navigate 

to the pile location; (2) Retrieve the topmost bale; (3) Proceed to the unloading area; (4) Unload the bale; (5) Return 

to the rest position. The result of one of these experiments was documented in a video available as supplemental 

material5. 

Overall, Hercules successfully completed the task, demonstrating its seamless navigation in the simulated warehouse 

environment and its effective response to user-initiated commands. Through voice and natural language interactions, 

Hercules accurately identified requests and initiated tasks from random locations within the map. This indicates 

promising results for the integrated Navigation and Human-Robot Interaction Systems. 

CONCLUSION 

In this paper, we developed and evaluated Hercules, an autonomous bale handling robot with advanced navigation 

and human-robot interaction systems. Using Text-to-Speech (TTS), Speech-to-Text (STT), and Large Language 

Models (LLMs), Hercules effectively responds to natural language commands and operates in dynamic settings. 

Experiments showed GPT-4 as the top-performing LLM, followed by Mixtral. Hercules successfully executed voice-

based tasks in a simulated warehouse environment, demonstrating its practical utility. Future fields of improvement 

include reducing model latency for better conversation, refining prompts to improve the LLM performance. With the 

further developments in LLM research, newer models have surpassed the models used at these studies and future 

projects should observe an accuracy gain when using open-source models like DeepSeek-v3 and llama-3.2 and 

proprietary ones such as GPT-4o and Gemini-2.0. 
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