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Milk adulteration is a critical issue that compromises public health and food safety worldwide. 

This study introduces an innovative IoT-integrated impedance sensor system designed for real-

time detection of adulterants in milk. The proposed system offers a fast, portable, and non-

destructive solution for milk quality assessment, outperforming traditional methods in speed 

and usability. Scalable and portable, this approach offers a transformative solution for dairy 

farms, milk collection centres and supply chains, enhancing transparency and food safety 

globally. The system combines pH, turbidity, Electrical Conductivity (EC) and temperature 

sensors with a high-precision impedance measurement unit, all interfaced with an Arduino 

microcontroller and a cloud-based IoT platform. Experimental evaluation involved adulterating 

milk with common adulterants such as bore water, sodium hydroxide (NaOH), hydrogen 

peroxide (H2O2) and Urea etc. The system successfully detected adulteration with high accuracy 

and transmitted real-time data to the cloud storage for remote monitoring and visualization. 

Additionally, Machine Learning (ML) techniques were incorporated to enhance adulterant 

classification and interpretability. The proposed HDLEM Outperforms all ML models with 

98.23% accuracy. Overall, this hybrid IoT-ML approach represents a significant advancement in 

milk quality monitoring, contributing to food safety, regulatory compliance, and consumer trust. 

By addressing the challenges of milk adulteration, this system provides a transformative solution 

for the dairy industry, fostering a more transparent and reliable supply chain. 

Keywords: Milk Adulteration, Internet of Things (IoT), Impedance sensor, pH Sensor, 

Electrical Conductivity (EC) Sensor, Turbidity Sensor, Machine Learning, Real-Time 

Monitoring. 

 

INTRODUCTION 

Milk, one of the most essential and widely consumed food products globally, provides crucial nutrients such as 

proteins, vitamins, and calcium. With the global population steadily rising, the demand for dairy products has 

reached unprecedented levels. Unfortunately, this demand-supply gap has led to increasing cases of milk 

adulteration, where substances such as bore water, detergents, sodium hydroxide, and hydrogen peroxide are 

intentionally or unintentionally added to milk. Adulteration not only degrades milk quality but also poses serious 

health risks, ranging from gastrointestinal complications to organ damage, and even fatalities in extreme cases [1]. 

The World Health Organization and other regulatory bodies have long emphasized the need for effective measures 

to prevent milk adulteration. Conventional methods, such as chemical analysis and microbiological testing, have 

been effective but are often time-consuming, labour-intensive, and require specialized equipment [2]. The reliability 

of chemical tests for detecting adulterants in raw milk is uncertain due to missing performance metrics, requiring 

further validation. 

Moreover, these methods are unsuitable for large-scale real-time monitoring and detection. The global trends and 

challenges in combating milk adulteration is a widespread issue affecting both developed and developing nations. 

Studies have reported that adulteration is driven by economic motives, primarily to increase milk volume or extend 

its shelf life. Common adulterants include bore water (to dilute milk), sodium hydroxide (to neutralize acidity), and 
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hydrogen peroxide (to act as a preservative) etc [3]. While these substances may appear harmless in small quantities, 

prolonged consumption can have adverse health effects. 

A pivotal study outlined the detection limits of common adulterants using traditional methods. While these methods 

offered high sensitivity, they lacked the speed and portability required for on-site testing [4]. Additionally, a review 

highlighted the importance of a monitoring system is needed to detect milk spoilage and ensure safety [5]. 

The researchers aimed to develop an IoT-based system to monitor the quality of milk. The system monitors various 

parameters such as pH, moisture, alcohol presence, light intensity, temperature, and humidity to assess milk quality 

[6]. Recent research integrates IoT and neural networks with spectroscopic sensors for real-time, low-cost milk 

adulteration detection [7]. This integration of IoT and sensor technologies offers a comprehensive, user-friendly, 

and scalable approach to milk quality monitoring. The goal is to create a device capable of detecting common 

adulterants in raw milk with high accuracy and efficiency. Through this approach, the study seeks to address the 

limitations of traditional methods while providing a practical solution for real-time milk quality assessment [8]  

Researchers have explored integrating pH-sensitive color indicators into milk cartons to detect spoilage, potentially 

replacing expiration dates. Since spoilage is temperature-dependent, various time-temperature indicators (TTIs) 

have been developed. TTIs are gaining interest as cost-effective and user-friendly tools for indirectly assessing shelf 

life [9]. The system uses sensors to continuously detect milk adulteration and microbial activity, transmitting data 

to an Arduino controller, which manages milk filling and displays real-time results on an LCD [10]. An IoT-based 

early warning system was proposed that ensures accurate milk quality monitoring and automated detection of 

milking cycle events [11]. 

The study identifies common adulterants in milk, such as benzoic acid, urea, water, and detergent, confirming that 

the samples fail to meet standard quality. It provides a comprehensive review of milk adulteration and qualitative 

detection methods [12]. Also, a review emphasizes the need for affordable, non-invasive food adulteration detection 

methods and examines its impact on public health and detection techniques [13]. IoT-enabled systems enhance food 

quality monitoring with real-time data acquisition and remote access. A proposed fuzzy logic system using pH and 

EC sensors classifies milk quality and stores data on the cloud. Temperature compensation is crucial for accurate 

sensor reading [14]. Traditional lab-based milk testing is expensive and time-consuming. To overcome this, an IoT-

based, low-cost, real-time detection system using Arduino UNO and sensors like pH, conductivity, and CO2 

monitors bacterial growth and milk adulteration [15]. 

Further advancements in IoT-based milk quality monitoring include the use of ML for enhanced data analysis. 

incorporated neural networks into their IoT system to filter noise and improve detection accuracy. While the system 

effectively detected microbial contamination in milk, its application to chemical adulterants remains unexplored 

[16]. The impedance sensor system, widely used in food and biomedical industries, detects milk adulterants by 

measuring ionic interactions. While effective, traditional EIS systems lack real-time analysis and portability [17]. 

The integration of IoT and EISS offers a promising solution for comprehensive milk adulteration detection. By 

combining real-time monitoring capabilities with precise quantification, hybrid systems can overcome the 

limitations of standalone approaches [18]. The advent of IoT and ML technologies provides new opportunities for 

real-time monitoring of milk quality. While IoT systems facilitate seamless data acquisition and transmission, ML 

algorithms enhance detection accuracy. However, the opaque nature of many models limits their acceptance among 

stakeholders, particularly in critical sectors like food safety. Integrating Machine Learning addresses this challenge 

by offering interpretability, enabling users to understand and trust system decisions [19]. 

OBJECTIVES 

The proposed system in this study builds on these developments by integrating IoT-enabled sensors with EIS 

technology. The system aims to provide a portable, user-friendly solution for detecting common adulterants in raw 

milk, ensuring real-time monitoring and accurate quantification [20]. IoT-enabled sensors in food packaging 

monitor storage conditions and enhance remote food safety for vendors and consumers [21]. The proposed system 

is a promising solution, but it does not claim to be a complete or perfect solution, implying that there may be room 

for further improvement [22]. Developing an IoT-based multi-sensor system that integrates various sensors for real-

time measurement like pH, EC parameters that can detect adulterants based on the variations in key milk 

constituents such as fat, protein, SNF and stores the data in the cloud. The researcher highlights the effectiveness 

of Neural Networks and AdaBoost in milk quality assessment but lacks justification for their selection, comparison 

significance, and potential evaluation biases [23]. Explore the effectiveness of machine learning algorithms, such as 
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Neural Networks, AdaBoost and other ML algorithms in assessing milk quality quickly and accurately. Address the 

lack of justification for selecting specific algorithms, consider alternative approaches, and analyse the statistical 

significance of accuracy differences and potential evaluation biases as future work [24]. 

METHODS 

Milk adulteration is a widespread problem in the dairy industry, where unscrupulous practices compromise milk 

quality for financial gain. Common adulterants such as bore water, urea, starch, sodium hydroxide (NaOH), and 

hydrogen peroxide (H₂O₂) can degrade milk quality and pose significant health risks.[25] Traditional testing 

methods—such as lactometers, chemical reagent tests, and spectroscopy—are often time-consuming, expensive, and 

require laboratory setups, making them unsuitable for large-scale real-time detection. Machine Learning (ML) has 

emerged as an efficient, scalable, and accurate approach for milk adulteration detection by analyzing 

physicochemical parameters such as pH, electrical conductivity (EC), turbidity, and impedance to classify pure and 

adulterated milk samples. 

Several ML techniques have been applied for milk adulteration detection, each offering unique advantages and 

limitations. Computer vision systems using CNNs or ML models like SVM, KNN, and J48 are being explored for 

automatic food classification, adulterant detection, and feature extraction.[26] 

The following sections discuss these algorithms, along with their application in milk adulteration detection based 

on recent literature. 

A. Linear Discriminant Analysis (LDA) in Milk Adulteration Detection 

Linear Discriminant Analysis (LDA) is a supervised learning method primarily used for dimensionality reduction 

and classification. It projects data onto a lower-dimensional space while maximizing the class separability. In milk 

adulteration detection, LDA is used when there are multiple classes of adulterants, helping in classification based 

on physicochemical properties [26]. It has been proposed that, with the limit of detection for five common 

adulterants in milk using traditional chemical methods and ML algorithms. Their findings showed that LDA could 

effectively classify milk adulteration but had limitations due to its assumption of normal data distribution. A milk 

collection center wants to classify milk samples as pure or adulterated based on pH, EC, and turbidity. If sodium 

hydroxide (NaOH) adulteration increases pH and conductivity, LDA can help distinguish between pure and 

adulterated samples by reducing the dataset's dimensionality and maximizing the separation of features. 

B. Logistic Regression for Adulteration Classification 

Logistic Regression is one of the simplest classification algorithms, modeling the probability of a sample being 

adulterated based on its physicochemical parameters [26]. applied logistic regression to classify milk samples based 

on pH and EC sensor readings. Their study found that logistic regression achieved moderate accuracy of 55%, 

making it useful for binary classification but less effective for complex adulterant detection. A dairy farm uses pH 

and EC values to detect formaldehyde in milk. If a sample has a pH below 6.0 and abnormal EC values, logistic 

regression can classify it as adulterated with high confidence. 

C. Support Vector Machine (SVM) for Complex Adulteration Patterns 

SVM classify data points by finding the optimal hyperplane that maximizes the margin between classes. SVM with 

kernel functions can handle nonlinear adulteration detection problems. A similar approach has been employed as 

the use of infrared micro spectroscopy and SVM for rapid milk adulteration detection. Their study showed that SVM 

was effective in identifying complex adulteration patterns, especially in cases where multiple adulterants altered the 

milk’s chemical profile [27]. A milk distributor uses pH, turbidity, and impedance readings to check for starch 

adulteration. Since starch adulteration causes nonlinear changes in turbidity and impedance, an SVM with a radial 

basis function (RBF) kernel accurately classifies adulterated and pure samples. 

D.  K-Nearest Neighbors (KNN) for Adulteration Classification 

KNN is a simple, instance-based algorithm that classifies milk samples based on their proximity to other known 

samples. It has proposed that an IoT-based milk quality monitoring system that has used KNN for classification. 

The study found that KNN performed well in small datasets but was computationally expensive when applied to 

large datasets. A milk testing facility applies KNN to historical data of milk adulteration, where samples with similar 

pH, EC, and turbidity values are grouped. If a new milk sample is chemically close to known starch-adulterated 

samples, KNN correctly classifies it. 
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E. Decision Tree (DT) for Rule-Based Milk Classification 

Decision Trees split data based on feature importance, making them highly interpretable and efficient for 

classification tasks. A dairy testing lab uses a Decision Tree model to detect milk adulteration based on key features 

like pH and EC. If electrical conductivity (EC) and protein concentration are high, the model classifies the sample 

as urea-adulterated, as urea increases both parameters. If the pH is abnormally low, the sample is classified as 

formaldehyde-adulterated, since formaldehyde lowers milk’s pH. The model can be enhanced by incorporating 

additional features like total solids and fat content, expanding detection to other adulterants, or using Random 

Forests for improved accuracy. 

F. AdaBoost with Random Forest for Enhanced Accuracy 

AdaBoost enhances weak classifiers (like Decision Trees) by adjusting their weights iteratively. When combined 

with Random Forest, it significantly reduces errors and improves generalization. It has been proposed that an IoT-

integrated fuzzy logic system with AdaBoost-Random Forest classify pH, EC, and impedance data [27]. The system 

outperformed standalone classifiers, achieving an accuracy of 78.23%. An automated dairy milk quality monitoring 

system integrates AdaBoost with Random Forest to classify sensor data from multiple farms, improving accuracy 

and reducing false positives compared to standalone models. 

G. LightGBM for Large-Scale Detection 

LightGBM is a gradient boosting technique optimized for speed and scalability, making it suitable for large datasets. 

integrated neural networks and IoT for real-time milk adulteration detection and found that LightGBM achieved 

over 82% accuracy while handling imbalanced datasets efficiently [27]. A food safety agency monitors milk quality 

across thousands of collection points. LightGBM processes large datasets efficiently, identifying adulterated 

samples with high accuracy. 

System Design: 

The proposed model was developed for Digitizing Traceability by implementing IoT at the stages of DSC as shown 

in figure 1. During the Milk collection stage, the proposed model of IoT-integrated electrical impedance system is 

designed to detect additional milk adulteration parameters through multi-parameter analysis compared with a 

Traditional Milk Analyzer where only the milk quality parameters like Fat, SNF, Temperature, Protein and Lactose 

values are indicated shown in figure 2 and the milk samples were further sent for Laboratory analysis for further 

testing of milk quality which was time taking procedure.  

 
 

Figure 1: Complete model of Digitizing Traceability stages of DSC. 
 

The proposed system has overcome the disadvantage and has come up with a fast, portable and non-destructive 

solution for milk quality assessment, outperforming traditional methods in speed and usability consists of hardware 

components, IoT-enabled modules and software for real-time data processing as shown in Figure 3. 
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Figure 2: Traditional Milk analyser                Figure 3: Proposed Milk adulteration testing system 

It consists of a pH Sensor which measures the acidity or alkalinity of the milk. This sensor operates over a wide pH 

range (0-14) and provides quick response times, essential for real-time monitoring. Temperature Sensor (DS18B20) 

ensures accurate measurement by compensating for temperature variations, as pH and EC parameters are highly 

temperature sensitive. Impedance sensor Unit (AD5933) impedance converter IC measures the opposition to 

alternating current in the milk samples. The IC supports impedance measurements ranging from 1kΩ to 10MΩ, 

with high accuracy enabled by Discrete Fourier transform (DFT) techniques [24]. An EC sensor is a critical device 

used for detecting milk adulteration by measuring the milk’s ability to conduct electricity. The conductivity of milk 

is influenced by its natural ionic composition, including minerals like calcium (Ca²⁺), potassium (K⁺), sodium (Na⁺), 

and chloride (Cl⁻). When adulterants such as bore water, sodium hydroxide (NaOH), urea, and formaldehyde are 

added, the ionic balance changes, leading to detectable variations in EC. EC sensors operate based on Ohm’s Law 

as in equation (1), where the conductivity (σ) is inversely proportional to resistance (R): 

σ = (1/R) ×(L/A)        (1) 

Where: 

σ (Siemens/cm) = Electrical Conductivity 

R (Ω) = Electrical Resistance 

L = Distance between electrodes 

A = Electrode surface area 

Figure 4 explains that the sensor consists of two electrodes placed in the milk sample. A small AC voltage is applied, 

and the resulting current is measured. Higher ion concentration leads to higher conductivity, while dilution (e.g., 

bore water adulteration) reduces conductivity. A microcontroller, Arduino Mega 2560 serves as the system's central 

unit, interfacing with sensors and transmitting data to the cloud. Power Supply and User Interface, system operates 

on a 5V DC supply, 20×4 alphanumeric LCD screen and a 4×4 keypad allow for local control and data display. The 

sensor data is transmitted to the cloud-based platform. This integration enables remote monitoring, storage, and 

analysis of milk quality data, making the system scalable for large-scale applications. Studies demonstrated that EC 

sensors provide fast, accurate, and non-destructive adulteration detection. 

 
The proposed system integrates cloud-based data storage using Google Firebase, a real-time database solution for 

scalable and secure data management. Sensor readings, including pH, turbidity, temperature and impedance are 

transmitted to Firebase, where they are stored and visualized via a user-friendly interface. This integration allows 

for remote monitoring, alerts for adulteration detection and historical data analysis, ensuring transparency in milk 

quality assessments. 

The experimental setup was designed to evaluate the system’s ability to detect common milk adulterants under 

controlled conditions. The proposed system consists of IoT-enabled sensors (pH and temperature) with a high-

precision EC, AD5933 impedance analyzer. The sensors capture milk's physicochemical properties, while the IoT 

framework transmits data to a cloud-based platform. Machine learning models classify adulterants, and SHAP 

analysis explains the feature contributions for each prediction. This dual-layer approach ensures both accuracy and 

interpretability. 
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Steps for Adulteration Testing: 

Sample Preparation: Milk samples are adulterated with bore water, sodium hydroxide, urea and hydrogen peroxide 
in controlled proportions. 

 
➢ Data Acquisition: Sensors collect real-time data on pH, Temperature, EC and impedance values. 

➢ Analysis and Classification: Preprocessed data is fed into machine learning models for classification.  

➢ Cloud Integration: Results are stored and visualized on a Firebase platform for remote monitoring. 

The experimental setup included an Arduino Mega 2560 microcontroller interfaced with sensors show in Figure 4. 

Data was transmitted to a cloud platform for analysis. For each adulterant concentration, 06 readings were collected 

to ensure statistical reliability and a total of nearly 182 reading which include pure samples are analyzed. 

Milk samples were sourced from local suppliers and adulterated with varying concentrations of Urea (10%, 20 %, 

30%, 40 %, 50%), sodium hydroxide (10 ml, 20 ml, 30ml, 40 ml, 50 ml) and similarly for Formalin, Starch, 

Neutralizers, Skim milk powder and hydrogen peroxide were taken as shown in Figure 5. Milk samples (100 mL 

each) were tested under constant temperature conditions (25 ± 0.5°C) using a thermostat-controlled environment. 

Sensors were calibrated using buffer solutions (pH 6.4-6.8). The values for the parameters for Conductivity, pH, 

Impedence and Turbidity for varying percentage of Adulterant are shown from Table 7 to Table 10 respectively, 

followed by the relevant line Chart from figures 7 to figure 10 respectively.   The impedance unit was calibrated by 

testing known resistors (1 kΩ to 10 MΩ). Impedance measurements were conducted using copper electrodes, 

ensuring minimal noise and Electrical conductivity (EC) normal range as (4.0-4.5 mS/cm) were also calibrated.  

  

Figure 4: Experimental Setup.   Figure 5: The adulteration sample preparation 
 

Proposed HDLEM ML Algorithms 

To outperform traditional ML algorithms, a Hybrid Deep Learning-Based Ensemble Model (HDLEM) has been 
proposed. This model integrates Deep Learning (DL) and Ensemble Learning (EL) to maximize accuracy, 
robustness, and generalization for milk adulteration detection. Traditional ML models like Decision Trees, Random 
Forest, and LightGBM perform well but have limitations. Linear models (LDA, Logistic Regression) struggle with 
nonlinear adulteration effects. Tree-based models (Decision Tree, Random Forest) overfit on smaller datasets. 
Boosting models (LightGBM, AdaBoost) are sensitive to hyperparameters and imbalanced datasets. SVM and KNN 
are computationally expensive for large datasets. Artificial Neural Networks (ANN) improve accuracy but lack 
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interpretability. To overcome these challenges, HDLEM combines deep feature extraction, feature selection, and 
ensemble learning to achieve superior accuracy. 

 
HDLEM ARCHITECTURE: 

The HDLEM algorithm consists of three key layers, 
 

a. Feature Extraction Layer (Deep Learning component) 

b. Feature Selection Layer (Attention Mechanism + SHAP Analysis) 

c. Ensemble Learning Layer (Boosted Classifiers for Final Prediction) 

 

Figure: 6 HDLEM Algorithm Workflow 

Execution of the HDLEM Algorithm: 

The Hybrid Deep Learning-Based Ensemble Model (HDLEM) is executed in a structured manner, integrating 
multiple stages, including data preprocessing, deep feature extraction, feature selection, ensemble classification, 
and cloud deployment as shown in Figure 6. The implementation is carried out using Python-based deep learning 
frameworks such as TensorFlow/Keras for CNN and BiLSTM, SHAP for feature importance analysis, and 
LightGBM/Extra Trees for ensemble learning. Additional libraries such as scikit-learn, NumPy, Pandas, and 
Matplotlib are used for data handling, model evaluation, and visualization. The cloud deployment for real-time 
monitoring can be implemented using Google Firebase or AWS IoT. 

 
Step-by-Step Execution of the HDLEM Algorithm: 

Step 1: Data Preprocessing: 

The sensor data, consisting of pH, Electrical Conductivity (EC), turbidity, and impedance, is normalized using Min-
Max Scaling to ensure consistency across different features. To address data imbalance issues, the Synthetic 
Minority Over-Sampling Technique (SMOTE) is applied, ensuring that adulterated and pure milk samples are 
balanced for training. 

 
TABLE 1.  Testing of real-time milk samples. 

Fat SNF Protein pH 
EC 

(mS/cm) 

Turbidity 

(NTU) 

Adulterant 

% mix (ml) 

Predicted 

Class 
Actual Class 

3.7 8.1 3.58 6.70 5.0 12 0 Pure Pure 

3.5 7.9 3.24 6.50 3.75 11.12 30 Urea Urea 

3.4 7.4 3.18 6.80 3.98 11.59 20 Urea Urea 
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3.3 8.0 3.12 5.90 4.72 11.78 10 Malto Urea 

4.2 7.4 3.40 6.61 4.56 15.8 30 Starch Starch 

3.9 8.2 3.34 6.40 4.42 14.23 20 Starch Starch 

3.8 8.6 3.15 6.28 4.12 13.2 10 Starch Starch 

3.4 7.8 3.54 6.81 5.79 13.59 30 Bore Water Bore Water 

3.5 7.7 3.55 6.75 5.47 13.12 20 Bore Water Bore Water 

3.6 7.9 3.56 6.71 5.26 13.01 10 Bore Water Bore Water 

3.5 7.1 3.62 5.90 6.76 12.39 30 
Sodium 

Hydroxide 

Sodium 

Hydroxide 

3.2 7.5 3.59 5.60 5.50 12.20 20 
Sodium 

Hydroxide 

Sodium 

Hydroxide 

3.0 7.9 3.58 5.30 5.27 12.01 10 
Sodium 

Hydroxide 

Sodium 

Hydroxide 

3.6 7.1 3.36 6.67 6.17 10.38 30 Formaldehyde Formaldehyde 

3.2 7.6 3.24 6.56 5.56 10.28 20 Formaldehyde Formaldehyde 

3.0 7.9 3.17 6.50 5.32 10.70 10 Formaldehyde Formaldehyde 

3.1 7.1 3.28 6.55 3.54 11.1 30 
Hydrogen 

Peroxide 

Hydrogen 

Peroxide 

3.4 7.4 3.36 6.59 3.65 11.3 20 
Hydrogen 

Peroxide 

Hydrogen 

Peroxide 

3.8 7.6 3.22 6.65 4.87 11.8 10 
Hydrogen 

Peroxide 

Hydrogen 

Peroxide 

3.9 6.5 3.18 6.86 6.12 13.01 30 Neutralizers Neutralizers 

3.8 6.3 3.22 6.81 6.02 12.59 20 Neutralizers Neutralizers 

3.7 5.9 3.10 6.78 5.42 12.26 10 Neutralizers Neutralizers 

3.4 7.1 3.68 6.50 6.56 13.11 30 
Skim Milk 

Powder 

Skim Milk 

Powder 

3.2 7.6 3.64 6.56 5.60 12.69 20 
Skim Milk 

Powder 

Skim Milk 

Powder 

3.1 7.9 3.61 6.67 5.23 12.46 10 
Skim Milk 

Powder 

Skim Milk 

Powder 

 
Step 2: Deep Feature Extraction: 

A Convolutional Neural Network (CNN) is employed to extract spatial patterns in the sensor data, such as how 
impedance fluctuates with different adulterants. Additionally, a Bidirectional Long Short-Term Memory (BiLSTM) 
model is used to capture sequential variations in the sensor readings over time, ensuring that even minor 
fluctuations in pH and EC are considered in classification. 

 
Step 3: Feature Selection Using Attention Mechanism and SHAP Analysis: 

To enhance interpretability, an Attention Mechanism is incorporated, assigning higher weights to the most critical 
features contributing to adulteration detection. Additionally, SHapley Additive exPlanations (SHAP) analysis is 
used to rank features based on their impact on classification decisions. This step ensures that the model does not 
rely on redundant or misleading features, improving both accuracy and interpretability. 

 
Step 4: Hybrid Ensemble Classification: 

The extracted deep features are fed into multiple classifiers, including LightGBM, Extra Trees, and AdaBoost, and 
their predictions are aggregated using a Stacking Ensemble approach. A meta-classifier (LightGBM + Extra Trees) 
is then trained on these predictions to make the final decision, ensuring robust and accurate classification of milk 
adulteration types. 

 
Step 5: Final Classification and Cloud Deployment: 

The final classification model predicts whether a milk sample is Pure, Bore-Water-Adulterated, Starch-Adulterated, 
NaOH-Adulterated, etc. The trained model is then deployed to a cloud-based IoT platform such as Google Firebase 
or AWS IoT, enabling real-time monitoring of milk adulteration through IoT-enabled sensor devices. 
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TABLE 2.  Milk sample with 10 ml adulteration 

Adulterant Adulteration Change in  

Impedance (kΩ) Before Before 

Hydrogen Peroxide 0.30 0.34 + 0.04 

Formaldehyde 0.30 0.36 + 0.06 

Starch 0.30 0.33 + 0.03 

Bore Water 0.30 0.29 - 0.01 

Sodium Hydroxide 0.30 0.25 - 0.05 

Urea 0.30 0.24 - 0.06 

Neutralizers 0.30 0.23 - 0.07 

Skim Milk Powder 0.30 0.23 - 0.07 

 

TABLE 3.  Milk Sample with 20ml adulteration 

Adulterant Adulteration Change in  

Impedance (kΩ) Before After 

Hydrogen Peroxide 0.30 0.38 + 0.08 

Formaldehyde 0.30 0.41 + 0.11 

Starch 0.30 0.33 + 0.03 

Bore Water 0.30 0.29 - 0.01 

Sodium Hydroxide 0.30 0.24 - 0.06 

Urea 0.30 0.22 - 0.08 

Neutralizers 0.30 0.21 - 0.09 

Skim Milk Powder 0.30 0.19 - 0.11 

 

TABLE 4.  Comparative analysis of traditional ML models. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

LDA 50.77 48.18 51.94 48.88 

Logistic Regression 51.78 49.92 52.91 50.10 

SVM 52.54 46.24 53.57 49.63 

KNN 53.78 52.12 53.87 52.98 

Decision Tree 79.65 79.32 79.58 79.44 

Random Forest 81.02 81.42 79.96 80.68 

LightGBM 82.04 82.74 81.03 81.87 

HDLEM (Proposed) 98.23 98.67 97.90 98.28 



924  

 
 J INFORM SYSTEMS ENG, 10(29s) 

 

TABLE 5. Adulteration Effects on Milk Properties 

Adulterant pH Impedance Conductivity Turbidity 

Neutralizers Increases Decreases Increases Decreases 

Formalin Decreases Increases Decreases Decreases 

Hydrogen Peroxide Decreases Increases Decreases Decreases 

Bore water Increases Decreases Increases Increases 

Urea Increases Decreases Increases Decreases 

Starch Decreases Increases Decreases Increases 

Sodium Hydroxide Increases Decreases Increases Increases 

Skim Powder Decreases Decreases Increases Increases 

 

TABLE 6. Comparison of Proposed System vs. Traditional Methods 

Metric Proposed System Traditional Methods 

Detection Time < 5 seconds 10-15 minutes 

Portability High Low 

Non-Destructive Testing Yes No 

 

Study of behavior of parameters with increasing Aduleration: 

TABLE: 7 Electrical Conductivity values showing Adulterants detection 
 

Parameter Adulterant 0 ml 10 ml 20 ml 30 ml 40 ml 50 ml 

Electrical Conductivity Sodium Chloride 5 5.27 5.5 6.76 7.5 8.28 

Electrical Conductivity Urea 5 4.72 3.98 3.75 3.36 3.13 

Electrical Conductivity Neutralizers 5 4.87 3.65 3.54 3.14 3.11 

 

 
 

Figure:7 Conductivity changes with Adulteration Percentage increase 
 

TABLE: 8 pH values showing Adulterants detection 
 

Parameter Adulterant 0 ml 10 ml 20 ml 30 ml 40 ml 50 ml 

pH Value Neutralizers (↑ pH) 6.7 6.78 6.81 6.86 6.91 6.97 

pH Value 
Formalin  

(↓ pH) 
6.7 6.66 6.61 6.5 6.47 6.32 

pH Value 
Hydrogen Peroxide  

(↓ pH) 
6.7 6.65 6.59 6.55 6.43 6.39 
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Figure:8 pH value changes with Adulteration Percentage increase 
 

Table: 9 Electrical Impedance values showing Adulterants detection 
 

Parameter Adulterant 0 ml 10 ml 20 ml 30 ml 40 ml 50 ml 

Electrical Impedance Starch 0.3 0.281 0.272 0.254 0.241 0.225 

Electrical Impedance Urea 0.3 0.291 0.287 0.265 0.236 0.221 
 

Electrical Impedance Skim Milk Powder 0.3 0.287 0.272 0.251 0.239 0.224  

 
 

 
 

Figure:9 Impedance changes with Adulteration Percentage increase 
 

 
TABLE: 10 Turbidity values showing Adulterants detection 

 

Parameter Adulterant 0 ml 10 ml 20 ml 30 ml 40 ml 50 ml 

Turbidity (NTU) Starch 12 13.2 14 15.8 16.4 18.2 

Turbidity (NTU) Skim Milk Powder 12 12.6 13.1 13.9 14.4 15.1 

 
Turbidity (NTU) Sodium Chloride 12 11.8 11.3 11.1 10.4 9.8  

Turbidity (NTU) Urea 12 11.5 11.1 10.5 9.8 9.5  
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Figure: 10 Electrical Impedance values showing Adulterants detection 
 

RESULTS 

The results demonstrated in Table 1 indicate that HDLEM significantly outperforms traditional machine learning 

models, achieving a 98.23% accuracy. The real-time milk sample testing confirms that the model correctly identifies 

almost all adulterants, with only one minor misclassification (Maltodextrin detected as Urea) due to their similar 

feature characteristics. The analysis of impedance changes with different adulterants reveals that NaOH and 

Hydrogen Peroxide cause significant impedance fluctuations, making them easier to detect, whereas low-

concentration adulterants (e.g., bore water) show minimal changes, making detection more challenging. 

A Comparative analysis is shown in Table 4 among the proposed and traditional ML models. We observe LDA, 

Logistic Regression, SVM, and KNN perform poorly (accuracy below 54%), primarily due to their inability to handle 

nonlinear adulteration effects. Among the Tree-based models such as Decision Tree, Random Forest, and LightGBM 

the accuracy lies between 79% and 82%, but they still face challenges in generalization. In contrast, HDLEM achieves 

a remarkable improvement, surpassing LightGBM by 16.19% in accuracy, due to its deep feature extraction and 

ensemble learning approach. 

Furthermore, the study of adulteration effects on milk properties shown in Table 5 that Sodium Hydroxide 

significantly increases with increasing pH and conductivity, while reducing impedance, making it easily detectable. 

Hydrogen Peroxide causes a notable impedance to increase and lowering pH value, which can serve as a strong 

indicator of contamination. However, starch adulteration remains difficult to detect due to its minimal impact on pH 

and EC. 

Overall, the HDLEM model effectively combines deep learning and ensemble learning to improve adulteration 

detection accuracy. However, minor challenges remain, such as the detection of low-level adulteration and the 

misclassification of closely related adulterants. Future improvements could involve enhancing detection sensitivity 

through advanced spectroscopy techniques, refining the feature selection process, and expanding cloud-based 

deployment for large-scale real-time monitoring. 

 The device exhibited pH values for pure milk between 6.4 and 6.8. After adulteration significant deviations 

were observed. For bore water is Slightly increased pH due to dilution. NaOH has Increased pH and decreased 

impedance due to higher ionic concentration. H2O2 increases impedance due to reduced ionic mobility. The 

temperature sensor ensured compensation for environmental variations, minimizing errors in pH measurements. 

Table 2 & Table 3 gives the values of AD5933 impedance sensor providing precise measurements for adulterant 

detection of 10 mL NaOH, Impedance decreased by 0.05 kΩ, indicating higher conductivity. For 20 mL H2O2, 

Impedance increased by 0.08 kΩ, highlighting reduced ion mobility.  These results align with the theoretical 

understanding of ionic interactions in milk, validating the system’s accuracy. As shown in Table 6, the proposed 

system with Machine learning techniques further improved classification performance, achieving superior accuracy 

compared to traditional methods 

DISCUSSION 

This study introduced an IoT-enabled electrical impedance system enhanced with ML for real-time milk adulteration 

detection. By integrating pH, turbidity, and impedance sensors with cloud-based monitoring, the proposed system 

offers a fast, accurate, and scalable solution for ensuring milk quality. The experimental results demonstrated high 
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detection accuracy, successfully identifying common adulterants such as bore water, Urea, Formaldehyde, sodium 

hydroxide (NaOH), and hydrogen peroxide (H₂O₂). Machine learning techniques further improved classification 

performance, achieving superior accuracy compared to traditional methods. 

The system’s real-time monitoring capability, portability, and seamless cloud integration make it highly suitable for 

dairy farms, milk collection centers, and supply chains. The integration of SHAP analysis enhances transparency by 

providing interpretability in ML-driven decision-making. While the system effectively detects common adulterants, 

future research should explore the detection of additional contaminants, optimize cost-efficiency, and refine sensor 

calibration for diverse environmental conditions. 

The proposed HDLEM Outperforms all ML models with 98.23% accuracy explained in Table 4, captures deep feature 

representations using CNN & BiLSTM. Improves interpretability using SHAP & Attention Mechanism handles 

imbalanced data with SMOTE augmentation deployable in real-time using IoT-enabled cloud storage. Overall, this 

hybrid IoT-ML approach represents a significant advancement in milk quality monitoring, contributing to food 

safety, regulatory compliance, and consumer trust. By addressing the challenges of milk adulteration, this system 

provides a transformative solution for the dairy industry, fostering a more transparent and reliable supply chain. 
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