
Journal of Information Systems Engineering and Management
2025, 10(29s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Evaluating Deep Learning Model Performance on Raspberry

Pi 4 for COVID-19 Diagnosis

Mr.Bharat Tank1, Dr.Mitul Patel2, Dr.Khemraj Deshmukh3,

1Phd Scholar, Parul University, Vadodara, Gujarat, India

2Assistant Professor, Parul University, Vadodara, Gujarat, India

3Assistant Professor, Parul University, Vadodara, Gujarat, India

Corresponding Author

kdeshmukh.phd2019.bme@nitrr.ac.in

ARTICLE INFO ABSTRACT

Received: 30 Dec 2024

Revised: 05 Feb 2025

Accepted: 25 Feb 2025

The global coronavirus disease (COVID-19) pandemic has highlighted the urgent need for

accessible, effective, and accurate diagnostic tools, especially in low- or no-service settings. Chest

X-ray, a widely used diagnostic test, provides a rapid and non-invasive way to identify COVID-

19 symptoms. Deploying deep learning models for COVID-19 detection on resource-constrained

edge devices, such as the Raspberry Pi 4, requires a balance between model accuracy, inference

speed, and hardware limitations. This study evaluates the performance of four deep learning

models—ResNet18, ResNet50, DenseNet121, and SqueezeNet—based on key metrics such as

inference time, memory usage, and model size after TensorFlow Lite conversion. Experimental

results show that SqueezeNet offers the best trade-off, achieving the fastest inference time

(10.76s per 100 images) and the lowest memory usage (2.8MB), making it the most suitable for

real-time edge deployment. In contrast, ResNet50, despite its high accuracy, has the longest

inference time (42.32s) and highest memory consumption (90MB), limiting its feasibility for

Raspberry Pi-based applications. The findings highlight the importance of selecting lightweight

architectures for efficient and scalable deep learning-based COVID-19 detection on edge devices.

Detailed performance parameters including sensitivity, specificity, accuracy, reproducibility, and

inference time were analysed to assess the suitability of each model for clinical trials. This study

demonstrates the revolutionary potential of combining deep learning with portable devices to

provide effective diagnostic tests for COVID-19 and similar respiratory diseases, address

healthcare inequities, and facilitate timely interventions for epidemic control.

Keywords: Deep Learning, Raspberry Pi 4, Edge AI, COVID-19 Detection, Model Optimization,

TinyML.

INTRODUCTION

The rapid spread of COVID-19 globally has highlighted the urgent need for easy-to-use, effective, and accurate

diagnostic tools. Traditional diagnostic methods such as reverse transcription polymerase chain reaction (RT-PCR)

are highly reliable but are often limited by logistical challenges, cost, and time delays. In this context, chest X-ray

imaging appears to be a promising alternative due to its versatility, speed, and ability to detect abnormal lung

involvement with COVID-19. However, the interpretation of these images requires specialized knowledge that is often

unavailable in confined environments. A deep learning model for the automatic detection of COVID-19 on a low-cost

portable platform (Raspberry Pi 4) is implemented and evaluated in this study to close this gap. The COVID-19

pandemic has posed significant challenges to global healthcare, necessitating the development of rapid and accurate

diagnostic methods. Reverse transcription polymerase chain reaction (RT-PCR) is still the gold standard for testing,

but it has some drawbacks like being expensive, taking a long time to complete, and requiring specialized laboratory

facilities [9]. To detect COVID-19 from medical imaging data such as chest X-rays (CXR) and computed tomography

(CT) scans, AI-driven diagnostic techniques, particularly deep learning (DL) models, have gained attention [2], [11].

Convolutional neural networks (CNNs) are widely used for automated feature extraction and classification [3, 6].

Deep learning-based approaches have demonstrated exceptional performance in medical image classification. CNN

723

 J INFORM SYSTEMS ENG, 10(29s)

architectures like ResNet, DenseNet, and MobileNet have been the subject of a number of investigations and have

demonstrated high accuracy in distinguishing COVID-19 from other pulmonary infections [14, 13]. In addition, recent

studies have highlighted the viability of putting AI models on edge devices like Raspberry Pi for portable and real-

time diagnosis [1, 12].Despite the potential advantages, deploying deep learning models on edge computing devices

presents challenges such as computational limitations, storage constraints, and inference speed [5], [8]. Several

model compression and optimization techniques, including quantization and pruning, have been proposed to reduce

model size while preserving diagnostic performance [4]. Comparative analyses of deep learning models for COVID-

19 detection and object detection on edge devices have also been conducted to optimize performance and efficiency

[7], [10].

This study focuses on developing and deploying optimized CNN models for COVID-19 detection from chest X-ray

images on a Raspberry Pi 4 system. The research involves data preprocessing, transfer learning, model fine-tuning,

and deployment using TensorFlow Lite. Four CNN architectures (ResNet18, ResNet50, DenseNet121, and

SqueezeNet) will be evaluated based on key metrics, including accuracy, precision, recall, F1-score, and inference

time. The findings of this study will contribute to the development of low-cost, real-time, and AI-driven COVID-19

detection solutions, particularly for resource-limited settings.

However, the use of computational models for devices with limited processing and memory has faced serious probl

ems. Raspberry Pi 4 provides a suitable platform for medical edge solutions due to its low cost and portability. This

study investigated the effectiveness of using an intelligent learning model such as Raspberry Pi 4 to help visualize se

nsitive areas.

The main goal of this research is to bridge the gap between deep learning models and their practical use in computing

by converting and leveraging these models to the TensorFlow Lite format. This research aims to improve accuracy

and balance rather than learning technology. It is done on computational efficiency. The implementation involves

training these models on a database of 5,000 chest X-ray images, optimizing them for distribution, and evaluating

their performance using metrics such as accuracy, precision, recall, time perception, and memory usage.

Figure 1. Shows three sample COVID-19 pictures along with the locations that our radiologist

In Figure 1 shows that the three sample COVID-19 pictures along with the locations that our radiologist applying

deep learning models to resource-constrained datasets requires overcoming several challenges. First, comparisons

between models such as ResNet50 and DenseNet121 can lead to high runtime and memory usage, making them

unsuitable for real-time use on devices such as the Raspberry Pi 4. limited. Third, ensuring a reliable and robust

model in real-world conditions requires extensive testing and optimization.

OBJECTIVES

The integration of deep learning models for abnormality detection in clinical practice, such as the detection of

COVID-19 in chest X-ray, has received significant attention in recent research. The use of low-cost, resource-

constrained hardware such as Raspberry Pi provides solutions for implementing deep learning models in limited

724

 J INFORM SYSTEMS ENG, 10(29s)

environments. Many studies have proven the possibility of using this model for humidity perception while checking

the accuracy. Clinical studies consistently demonstrate the effectiveness of deep learning models for clinical tasks

when deployed in a limited resource. Research has evolved from simple object detection to complex diagnostic tasks

such as COVID-19 detection, demonstrating advances in advanced techniques such as quantization, transfer learning,

and model compression. Additionally, the use of this model on devices such as the Raspberry Pi provides practical

solutions for instant, efficient analysis in limited spaces. These advances continue to pave the way for applicable,

effective, and cost-effective healthcare solutions in underserved areas. The effectiveness of deep learning-based

object detectors for detecting anomalies in melon leaves using Raspberry Pi was examined by Rahmat et al. (2022),

demonstrating the potential of edge computing in agricultural applications. In a similar vein, Alqahtani et al. (2024)

compared and contrasted various deep learning models for object detection on edge devices, highlighting the trade-

offs between accuracy and efficiency in computation. Moreover, Velasco-Montero et al. (2018) explored real-time

deep neural network (DNN) inference on Raspberry Pi, addressing challenges related to processing power and

latency. Additionally, extensive research has been conducted on the application of deep learning models to medical

image analysis on low-cost computing platforms. Hosny et al. (2021) demonstrated the effectiveness of Raspberry Pi

in diagnosing COVID-19 from CT scans and chest X-rays, proving the feasibility of affordable AI-powered diagnostic

systems. Likewise, Mhamdi et al. (2023) employed deep learning techniques for COVID-19 contamination analysis

using ECG images on Raspberry Pi 4, emphasizing the importance of edge computing in healthcare applications.

Mohammed and Ridha (2022) implemented a deep learning approach for COVID-19 detection in X-ray images using

Raspberry Pi, further validating its potential for decentralized diagnostic tools. Optimizing deep learning models for

deployment on edge devices is a crucial research area. Mou and Milanova (2024) evaluated model compression

techniques for audio classification on edge devices, providing insights into efficient neural network architectures.

MobileNetV2, an optimized deep learning architecture for mobile and edge computing applications, was introduced

by Sandler et al. (2018). It maintains accuracy while significantly speeding up inference. Brownlee (2018) went on to

talk about ways to cut down on overfitting and make it easier to train models in deep learning applications. The

application of machine learning and deep learning to the diagnosis and treatment of COVID-19 has been the subject

of numerous studies. In their systematic review of deep learning methods for COVID-19 diagnosis, Bhosale and

Patnaik (2023) compiled a list of various methods for image-based classification. An alternative to image-based

diagnostics, Zoabi et al. (2021) developed a machine learning-based model for predicting COVID-19 diagnosis from

symptoms. A novel COVID-19 detection method based on human genome sequences was proposed by Arslan and

Arslan (2021), demonstrating the interdisciplinarity of AI-driven medical research. Methods like hybrid and transfer

learning have been looked into to increase classification accuracy. A comparison of convolutional neural network

(CNN) architectures for real-time facial mask detection by Lad et al. (2021) demonstrates the significance of model

selection in deep learning applications. Phumkuea et al. (2023) developed a hybrid machine learning strategy that

combined multiple algorithms to improve diagnostic performance in order to classify COVID-19 patients from chest

X-ray images. Ponnusamy et al. (2020) introduced a YOLO-based transfer learning model for real-time leaf disease

detection, demonstrating the adaptability of deep learning techniques across various domains. Responding to the

COVID-19 pandemic has been made easier by incorporating AI and the Internet of Things (IoT) into healthcare. In

their review of AI-IoT applications in pandemic response, Khan et al. (2022) emphasized the significance of smart

technologies in disease management and surveillance. The systematic reviews carried out by Tiwari et al. (2022) and

Syeda et al. (2021) on the application of machine learning strategies to the fight against COVID-19 provided

comprehensive insights into AI-driven pandemic mitigation strategies.

The existing body of research underscores the growing adoption of deep learning in edge computing environments,

particularly using Raspberry Pi for real-time object detection and medical diagnosis. While these studies demonstrate

promising results, challenges remain in optimizing model performance, reducing computational overhead, and

improving inference accuracy. Future research should focus on developing lightweight models, enhancing transfer

learning techniques, and exploring novel applications of AI in resource-limited settings.

METHODS

The implementation process began with data preparation, which included collecting and processing 5,000 chest X-

ray images from publicly available sources. Images were labeled as positive or negative for COVID-19 and recorded

by an electronic card to ensure accuracy. Use data enhancement techniques such as translation, rotation, and warping

to improve datasets and resolve inconsistencies between good and bad samples.

725

 J INFORM SYSTEMS ENG, 10(29s)

Four CNN architectures (ResNet18, ResNet50, DenseNet121, and SqueezeNet) were selected due to their

performance in image classification tasks. Models were pre-trained on the ImageNet dataset and fine-tuned on the

COVID-Xray-5k dataset using transform learning. The last few layers of each model were modified to produce binary

distributions, allowing discrimination between positive and negative COVID-19 cases. The models were then

converted to TensorFlow Lite format to reduce their size and make them suitable for use on the Raspberry Pi 4.

DATA PREPROCESSING

Given a dataset of medical images (e.g., X-ray or CT scans), let:

• X={x1,x2,...,xn}X ={ x_1, x_2, ..., x_n}X={x1,x2,...,xn} be the set of input images

• Y={y1,y2,...,yn}Y = { y_1, y_2, ..., y_n }Y={y1,y2,...,yn} be the corresponding labels, where yi∈{0,1}yi in {0,1

}yi ∈{0,1} (0: Non-COVID, 1: COVID)

• Preprocessing functions include resizing, normalization, and augmentation:

• 𝑥𝑖
′ = 𝑓\𝑡𝑒𝑥𝑡𝑟𝑒𝑠𝑖𝑧𝑒(𝑥𝑖), 𝑥𝑖

′′ = 𝑓\𝑡𝑒𝑥𝑡𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑥𝑖
′) …(1)

Normalization typically follows:

𝑥𝑖
′′ = {𝑥𝑖

′ − 𝜇}/{𝜎}]where μ and σ are the mean and standard deviation of pixel values.

DEEP LEARNING MODEL INFERENCE

Let 𝑓{𝜃}) represent the deep learning model with parameters (θ), which maps input images to predicted probabilities:

{𝑦}𝑖 = 𝑓{𝜃}(𝑥𝑖
′′) …(2)

𝑦𝑖 = 𝑓𝜃(𝑥𝑖
′′)where yi is the predicted probability of COVID-19.

MODEL DEPLOYMENT ON RASPBERRY PI 4

Given hardware constraints, model quantization and optimization techniques such as TensorFlow Lite (TFLite) or

ONNX Runtime are used. The inference time per image is:

whereas is the inference time for the image.

Memory usage is:

𝑀𝑡𝑜𝑡𝑎𝑙 = 1/{𝑀𝑓𝑟𝑒𝑒} ∑ 𝑥𝑡
{𝑖=1}

𝑖
{𝑁}𝑡 …(3)

Mtotalis the total RAM available, and Mfree is the free RAM.

PERFORMANCE METRICS

Overall, all models demonstrated strong classification capabilities with minimal false positives and false

negatives. These results highlight their potential for reliable and efficient COVID-19 detection in diverse

deployment scenarios.

726

 J INFORM SYSTEMS ENG, 10(29s)

To represent the performance metrics mathematically, we can define the following expressions:

Accuracy measures the proportion of correctly classified instances out of the total instances.

 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 … (4)

Where as:

TP = True Positives (correctly predicted COVID cases)

TN = True Negatives (correctly predicted Non-COVID cases)

FP = False Positives (incorrectly predicted COVID cases)

FN = False Negatives (incorrectly predicted Non-COVID cases)

Precision measures how many of the predicted COVID cases were actually correct.

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 …(5)

A high precision means fewer false positives.

Recall measures how many of the actual COVID cases were correctly predicted.

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6)

A high recall means fewer false negatives

Specificity measures how well the model identifies Non-COVID cases correctly.

𝑆 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 …(7)

A high specificity means fewer false positives.

MATTHEWS CORRELATION COEFFICIENT (MCC)

MCC gives a balanced measure of classification quality, even for imbalanced datasets.

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 …(8)

ResNet50 delivered the highest accuracy at 99.83%, making it the most effective model for COVID-19 detection.

However, its higher computational demands make it more suitable for resource-rich environments. ResNet18 and

DenseNet121 struck a balance between accuracy and efficiency, while Squeeze Net’s lightweight design and fastest

inference time made it ideal for real-time deployment on Raspberry Pi 4.

EXPERIMENTAL SETUP: ~

727

 J INFORM SYSTEMS ENG, 10(29s)

Using deep learning models for the detection of COVID-19 on a resource-limited system such as the Raspberry Pi 4

requires careful consideration of hardware and software configuration. This section provides an overview of the

experimental setup used in this study, detailing the hardware specifications, software environment, and deployment

procedures to ensure performance and reliability over time in applications.

HARDWARE CONFIGURATION: ~

The computer hardware used in this study is the Raspberry Pi 4 Model B, chosen for its balance between computing

power and affordability, making it ideal for edge medical applications. The device is powered by a quad-core Cortex-

A72 (ARM v8) 64-bit SoC running at 1.5 GHz and supported by 4 GB LPDDR4 RAM. Use a 32 GB Class 10 microSD

card for storage to have enough space for workflows, presets, and TensorFlow Lite models.

Figure 2. shows Raspberry Pi 4 Model B

To support heavy computing tasks, the device is equipped with a VideoCore VI GPU that assists with image processing

and inference. The Raspberry Pi is powered by a 5V/3A USB-C adapter, ensuring stable operation under high loads.

A cooling fan is installed on the unit to ensure thermal stability during continuous use. Also connect peripherals such

as HDMI cables, USB keyboards, and mice for interactive model testing and debugging.

SOFTWARE CONFIGURATION: ~

The software stack has been carefully designed to optimize the performance of deep learning models on the custom-

built Raspberry Pi 4. Python 3.9 is the initial programming language and integrates with the TensorFlow Lite

framework and other libraries.

TensorFlow Lite is a special version of TensorFlow optimized for edge devices, designed to support high-demand

models with limited resources. Convert predefined models (such as ResNet18, ResNet50, DenseNet121, and Squeeze

Net) to TensorFlow Lite mode using the TensorFlow Model Optimization Toolkit. This conversion reduces the sample

size and increases the required speed, making them suitable for deployment on power-intensive devices. Figure 3

shown that Processing at the Raspberry Pi Level

Additional libraries, such as OpenCV and NumPy, are integrated into the software environment to handle image

preprocessing tasks, including resizing, normalization, and augmentation. The TensorFlow Lite Interpreter is utilized

for executing the models on the Raspberry Pi, ensuring compatibility and efficient utilization of the available

computational resources.

728

 J INFORM SYSTEMS ENG, 10(29s)

Figure 3: Processing at the Raspberry Pi Level

DEPLOYMENT WORKFLOW: ~

The deployment process begins with converting the pre-trained model to TensorFlow Lite mode. The model was

trained using a transform learning technique on the COVID-Xray-5k dataset, a collection of 5,000 chest X-ray

images.

The transformed model is then transferred to the Raspberry Pi 4, where it instantly completes the processing.

Outcome scores for 19 diseases. These scores are further processed to classify images as COVID-19 positive or

negative. Throughout the inference process, use tools like htop and Power stat to monitor performance metrics like

inference time, memory usage, and power consumption.

PERFORMANCE EVALUATION: ~

The experimental setup is designed to evaluate the performance of the model in terms of accuracy checking and

computational performance. The inference time of each model is recorded to evaluate its timeliness, while the mem

ory usage and power consumption are analyzed to determine the feasibility of deployment in Space.

729

 J INFORM SYSTEMS ENG, 10(29s)

Figure 4: Performance Evaluation

This Figure 4 represents an edge computing architecture integrating TinyML on Raspberry Pi for data processing,

anomaly detection, and feature extraction within an IoT-based system. Here’s a breakdown of the different layers

and their roles:

A. Raspberry Pi and TinyML Layer

• The Raspberry Pi acts as an edge computing device, handling TinyML (Tiny Machine Learning) models to

process incoming sensor data before sending it to the cloud.

• This layer is responsible for three key processing steps:

1. Data Cleaning – Filtering and preprocessing raw sensor data to remove noise and inconsistencies.

2. Anomaly Detection – Identifying unusual patterns that might indicate faults, failures, or critical

events.

3. Feature Extraction – Extracting essential features from raw data for further analysis and machine

learning models.

B. Communication Layer

• Facilitates data transmission between the Raspberry Pi and the Centralized Big Data System.

• Ensures secure and reliable connectivity for real-time updates and data synchronization.

C. Centralized Big Data System

• This system aggregates and processes the incoming preprocessed and extracted features from edge devices.

• It can perform deep learning model training, advanced analytics, and cloud storage.

• Model updates and configuration changes are sent back to the Raspberry Pi to optimize TinyML inference

models for improved accuracy and efficiency.

730

 J INFORM SYSTEMS ENG, 10(29s)

D. Feedback and Synchronization

• The system supports a feedback loop where model updates, configuration changes, and new learning insights

are transmitted back to the Raspberry Pi layer to enhance real-time decision-making.

RESULTS

MODEL TRAINING RESULTS AND PERFORMANCE EVALUATION: ~

After training the models, we evaluate their performance on the test set using several key metrics, including accuracy,

precision, recall, F1-score, ROC curve, AUC (Area Under the Curve), and the confusion matrix. These metrics shed

light on the methods' accuracy in identifying healthy versus COVID-19-positive chest X-ray images.

RESNET18 - MODEL EVALUATION: ~

After 10 training periods, the ResNet18 model achieved an accuracy of 99.69%, which shows its strong ability to

correctly identify the system. The accuracy of 99.78% indicates that the model has a high chance of predicting a

patient to be COVID-19 positive. The recovery rate of 99.89% shows the model’s performance in identifying almost

all positive aspects of COVID-19 except for the negative ones. The F1 score of 99.84% indicates a high level of accuracy

and recall. The confusion matrix of ResNet18 shows 96 negatives (healthy patients are identified), 4 negatives

(COVID-19 positives are not classified as healthy), 2783 positives (correctly identified COVID-19 person), and 2

negatives (healthy is not classified as disease). (such as COVID-19).

DENSENET121 - MODEL EVALUATION: ~

The DenseNet121 model, also trained for 10 epochs, achieved an accuracy of 99.45%, slightly lower than ResNet18

but still very high. With a precision of 99.54%, it demonstrated a high ability to correctly identify COVID-19 cases.

The recall of 99.89% meant that the model accurately identified almost all COVID-19-positive cases, minimizing false

negatives. The F1-score of 99.71% reflected the model's strong performance across both precision and recall. The

confusion matrix for DenseNet121 showed 100 true negatives, 13 false negatives, 2783 true positives, and 3 false

positives.

SQUEEZENET - MODEL EVALUATION: ~

The SqueezeNet model was trained 10 times and achieved an accuracy of 99%, showing that it can classify the test set

well. Precision and recall are both 99%, indicating that the model has a high probability of identifying positive

COVID-19 cases while minimizing negative cases. The F1 score of 99% also validates the model’s performance. The

confusion matrix of SqueezeNet shows 91 negatives, 22 negatives, 2784 positives, and 2 negatives.

RESNET50 - MODEL EVALUATION: ~

The ResNet50 model, after training for 10 epochs, achieved an impressive accuracy of 99.83%, showing its strong

ability to distinguish between healthy and COVID-19 cases. The precision of 99.93% demonstrated the model's high

confidence in predicting COVID-19 cases correctly. With a recall of 99.89%, ResNet50 was able to detect nearly all

COVID-19 cases, minimizing false negatives. The F1-score of 99.91% reflected the model’s excellent balance between

precision and recall. The confusion matrix for ResNet50 showed 111 true negatives, 2 false negatives, 2783 true

positives, and 3 false positives.

731

 J INFORM SYSTEMS ENG, 10(29s)

Figure 5: performance Comparison of deep Learning on Raspberry Pi 4

Confusion Matrix for Each Model: ~

Figure 5: Confusion Matrix for Each Model (a) esNet18, (b) DenseNet121, (c) SqueezeNet, (d) ResNet50

The confusion matrix provides detailed information about the performance of each model by displaying the number

of correct or incorrect classifications for each model in figures 5 a, b, c, and d. The number of COVID-19 positive cases

correctly identified is referred to as the true positive rate (TP), while the number of healthy patients excluded is

(a) ResNet18-Model (b) DenseNet121-Model

 (c) SqueezeNet -Model
(d) ResNet50-Model

732

 J INFORM SYSTEMS ENG, 10(29s)

referred to as the true negative rate (TN). False positives (FP) are healthy patients who were not diagnosed with

COVID-19, and false negatives (FN) are healthy patients who were diagnosed with COVID-19. Each model's confusion

matrix demonstrates how well it differentiates between health and COVID-19. The model is performing well when

there are a small number of false positives and true negatives and a large number of true positives and true negatives.

The confusion matrix helps assess the balance between precision and recall, providing insight into the model’s ability

to identify the two groups while minimizing error. The overall goal is to reach a balance where the model correctly

assigns the majority of cases and minimizes misclassification.

Deployment Analysis

Evaluate model performance on Raspberry Pi, emphasizing real-world applicability.When evaluating the models

on the Raspberry Pi 4, the following key performance metrics were collected:

1. Inference Time (Latency):

➢ The inference time measures how long the model takes to classify a single image after being loaded

onto the device.

➢ Models were tested on a batch of 100 chest X-ray images, and the average inference time per image

was recorded.

2. Memory Usage:

➢ The memory consumption during model inference was monitored to ensure that the Raspberry Pi 4

could handle the models without running out of resources.

➢ Memory usage was tracked for both the CPU and GPU usage during model execution.

3. Power Consumption:

➢ Although not always a priority in all contexts, measuring the power consumption of the models on

the Raspberry Pi helps to understand how efficient the models are in a real-world deployment.

4. Model Size:

➢ The models were converted to TensorFlow Lite format, which significantly reduced their size

compared to the original versions. Smaller models make it easier to deploy and faster to load.

PERFORMANCE METRICS ON RASPBERRY PI 4

The models were evaluated based on:

• Inference Time (Latency): The time taken by each model to classify a single image.

• Memory Usage: The memory consumed during inference.

• Model Size: The size of each model after conversion to TensorFlow Lite format.

Test Results: ~

➢ Performance Summary: SqueezeNet performs exceptionally well in terms of memory use and

inference time. Its smallest memory footprint and fastest inference time make it the ideal option for

real-time deployment on the Raspberry Pi 4, particularly for resource-constrained edge computing

applications.

After TensorFlow Lite conversion, the inference time, memory utilisation, and model size of each model were

measured in order to evaluate its performance on the Raspberry Pi 4.

733

 J INFORM SYSTEMS ENG, 10(29s)

Figure 6: Test Result of Comparative performance of deep learning models on Raspberry Pi 4

• Inference Time: SqueezeNet is the fastest (10.76s), while ResNet50 is the slowest (42.32s).

• Memory Usage: ResNet50 consumes the most (90MB), while SqueezeNet is the most efficient (2.8MB).

• Model Size: ResNet50 is the largest (20MB), and SqueezeNet is the smallest (6MB).

COMBINED ROC CURVE:

The ability of each model to differentiate between COVID-19 and healthy patients at different thresholds is shown in

comparison by the combined ROC curve. Each model's Area Under the Curve (AUC), which represents overall

classification performance, was computed:

Figure 7: ROC curve. Each model's Area Under the Curve (AUC)

• ResNet18: AUC = 0.992 (Accuracy = 99.23%)

• ResNet50: AUC = 0.982 (Accuracy = 98.29%)

• DenseNet121: AUC = 0.978 (Accuracy = 97.88%)

• SqueezeNet: AUC = 0.986 (Accuracy = 98.63%)

The ROC curves show that every model performs remarkably well, with ResNet18 attaining the best accuracy and

AUC and SqueezeNet coming in second and third, respectively, in terms of efficiency. SqueezeNet compensates with

better inference speed and memory efficiency, making it ideal for deployment on edge devices like as the Raspberry

734

 J INFORM SYSTEMS ENG, 10(29s)

Pi 4, whereas DenseNet121 performs well despite a minor AUC lag. Table 1 represent the Model Performance

Summary.

Table 1 Model Performance Summary

Model Accuracy AUC Memory

Usage

Inference

Time

Strengths Recommendation

ResNet18 99.23% 0.992 42.7 MB 13.44 sec Highest accuracy

and AUC.

Effective but

higher resource

usage.

Best for high accuracy,

not ideal for resource-

constrained devices.

ResNet50 98.29% 0.982 90 MB 42.32 sec Strong

performance but

high memory and

time

requirements.

Suitable for high-

performance systems,

not ideal for edge

devices.

DenseNet121 97.88% 0.978 27.1 MB 39.44 sec Balanced

performance and

memory usage.

Good for balancing

performance and

resource consumption.

SqueezeNet 98.63% 0.986 2.8 MB 10.76 sec Lowest memory

and fastest

inference time.

Best choice for minimal

resource usage and edge

deployment.

The model selection for deployment on the Raspberry Pi 4 should be based on the specific requirements of the use

case:

• For high accuracy and performance, ResNet18 is the best choice. However, it is not ideal for edge

devices due to its high memory and inference time requirements.

• For high performance with higher resource demands, ResNet50 is a strong choice, but it is better

suited for more powerful systems rather than resource-constrained devices like the Raspberry Pi 4.

• For a balance between performance and resource usage, DenseNet121 provides reliable results

while maintaining moderate memory usage and faster inference times than ResNet50.

For minimal resource requirements and edge deployment, SqueezeNet is the optimal choice. Its

lightweight nature makes it perfect for systems like the Raspberry Pi 4, where memory and processing power are

limited

DISCUSSION

In this study, with a focus on using it on devices with limited resources like the Raspberry Pi 4. A variety of metrics,

including accuracy, AUC (area under the curve), memory usage, inference time, precision, recall, and F1-score, were

used to evaluate the tested models—ResNet18, ResNet50, DenseNet121, and SqueezeNet. SqueezeNet is the best

choice for deployment on the Raspberry Pi 4 because it uses the fewest resources. These metrics also allowed us to

evaluate the models' suitability for use in real-world applications, particularly on devices with limited processing

power and memory, as well as their performance in distinguishing between COVID-19 and healthy cases. ResNet18

is the ideal choice for applications where accuracy is crucial and hardware resources are not a significant limitation.

While ResNet50 is better suited for high-performance systems but less suitable for edge deployment because of its

greater resource requirements, DenseNet121 provides a good balance between performance and resource utilisation.

Edge processing on Raspberry Pi reduces latency and minimizes cloud dependency, making it efficient for IoT

applications. The Big Data System ensures scalability and advanced analytics, leveraging cloud computing for deeper

insights. Anomaly detection and feature extraction help improve system accuracy and reliability in real-world

applications. This study evaluates the performance of deep learning models on the Raspberry Pi 4 for COVID-19

detection, focusing on accuracy, computational efficiency, and resource utilization. ResNet18 achieves the highest

accuracy (99.23%) and AUC (0.992) but requires significant memory (42.7 MB). ResNet50, while highly accurate

735

 J INFORM SYSTEMS ENG, 10(29s)

(98.29%), has the highest memory demand (90 MB) and longest inference time (42.32 sec), making it unsuitable for

edge applications. DenseNet121 offers a balanced trade-off between accuracy (97.88%) and memory efficiency (27.1

MB). SqueezeNet stands out as the most lightweight model, requiring only 2.8 MB of memory and delivering the

fastest inference time (10.76 sec), making it ideal for real-time edge deployment. Ultimately, SqueezeNet is

recommended for resource-constrained environments, while ResNet18 is preferred for high-accuracy applications

where computational resources are available.

Code Availability

The code supporting this study can be made available upon reasonable request to the corresponding author.

Authors' contributions

Mitul Patel had formulated the problem and Structure, Bharat Tank executed the problem and prepared the draft of

manuscript. Khemraj deshmukh had reviewed the manuscript.

Consent for publication

All Authors will give the full consent to the journal for the publication

Funding Information

No funding has been received for this research work.

Conflict of interest

All authors declare no conflict of interest associated with these manuscripts.

REFERENCES

[1] Rahmat, H., Wahjuni, S., & Rahmawan, H. (2022). Performance analysis of deep learning-based object

detectors on Raspberry Pi for detecting melon leaf abnormality. International Journal of Applied Science and

Engineering Technology, 33(6).

[2] Hosny, K. M., Darwish, M. M., Li, K., & Salah, A. (2021). COVID-19 diagnosis from CT scans and chest X-ray

images using low-cost Raspberry Pi. PLoS ONE, 16(5), e0250688.

[3] Mhamdi, L., Dammak, O., Cottin, F., & Ben Dhaou, I. S. (2023). Deep learning for COVID‐19 contamination

analysis and prediction using ECG images on Raspberry Pi 4. International Journal of Imaging Systems and

Technology, 33(6), n/a-n/a.

[4] Mou, A., & Milanova, M. (2024). Performance analysis of deep learning model-compression techniques for

audio classification on edge devices. Sci, 6(2), 21.

[5] Velasco-Montero, D., Fernández-Berni, J., Carmona-Galan, R., & Rodríguez-Vázquez, Á. (2018). Performance

analysis of real-time DNN inference on Raspberry Pi. Proceedings of the Real-Time Image and Video Processing

2018.

[6] Bhosale, Y. H., & Patnaik, K. S. (2023). Application of deep learning techniques in diagnosis of Covid-19

(Coronavirus): A systematic review. Neural Processing Letters, 55(3), 3551–3603.

[7] Lad, A. M., et al. (2021). Comparative Analysis of Convolutional Neural Network Architectures for Real-Time

COVID-19 Facial Mask Detection. Journal of Physics: Conference Series, 1969, 012037.

[8] Alqahtani, D. K., Cheema, A., Toosi, A. N., Zoabi, Y., Deri-Rozov, S., & Shomron, N. (2024). Benchmarking Deep

Learning Models for Object Detection on Edge Computing Devices. [Published on September 25, 2024].

[9] Zoabi, Y., Deri-Rozov, S., & Shomron, N. (2021). Machine Learning-Based Prediction of COVID-19 Diagnosis

Based on Symptoms. Digital Medicine, 4(1), 3.

[10] Arslan, H., & Arslan, H. (2021). A New COVID-19 Detection Method from Human Genome Sequences Using

CpG Island Features and KNN Classifier. Engineering Science and Technology, an International Journal.

[11] Phumkuea, T., Wongsirichot, T., Damkliang, K., & Navasakulpong, A. (2023). Classifying COVID-19 Patients

from Chest X-ray Images Using Hybrid Machine Learning Techniques: Development and Evaluation. Vol. 7

(2023). Published on February 28, 2023.

[12] Mohammed, T. S., & Ridha, O. A. L. A. (2022). Implementation of Deep Learning in Detection of COVID-19 in

X-ray Images Using Raspberry Pi. In Proceedings of the 2022 Iraqi International Conference on

736

 J INFORM SYSTEMS ENG, 10(29s)

Communication and Information Technologies (IICCIT), Basrah, Iraq, 07-08 September 2022. IEEE. DOI:

10.1109/IICCIT55816.2022.10010353. Added to IEEE Xplore on 13 January 2023.

[13] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted Residuals and

Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 4510–4520, January 2018.

[14] Elgendi, M., et al. (2020). The Performance of Deep Neural Networks in Differentiating Chest X-Rays of COVID-

19 Patients from Other Bacterial and Viral Pneumonias. Frontiers in Medicine, vol. 7, August 2020.

[15] Ponnusamy, V., Coumaran, A., Shunmugam, A. S., Rajaram, K., & Senthilvelavan, S. (2020). Smart Glass: Real-

Time Leaf Disease Detection Using YOLO Transfer Learning. In Proceedings of the 2020 IEEE International

Conference on Communication and Signal Processing (ICCSP), pp. 1150–1154, July 2020.

[16] Brownlee, J. (2018). Better Deep Learning: Train Faster, Reduce Overfitting, and Make Better Predictions (Vol.

1, No. 2).

[17] Khan, J. I., Khan, J., Ali, F., et al. (2022). Artificial Intelligence and Internet of Things (AI-IoT) Technologies in

Response to COVID-19 Pandemic: A Systematic Review. IEEE Access, 10, 62613-62660.

[18] Tiwari, S., Dogan, O., Jabbar, M. A., et al. (2022). Chapter Ten - Applications of Machine Learning Approaches

to Combat COVID-19: A Survey. In A. Kaklauskas, A. Abraham, K. Okoye, & S. Guggari (Eds.), Lessons from

COVID-19 (pp. 263-287). Academic Press.

[19] Syeda, H. B., Syed, M., Sexton, K. W., Syed, S., Begum, S., Syed, F., Prior, F., & Yu Jr, F. (2021). Role of Machine

Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review. JMIR Medical Informatics, 9(1),

e23811.

