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The global coronavirus disease (COVID-19) pandemic has highlighted the urgent need for 

accessible, effective, and accurate diagnostic tools, especially in low- or no-service settings. Chest 

X-ray, a widely used diagnostic test, provides a rapid and non-invasive way to identify COVID-

19 symptoms. Deploying deep learning models for COVID-19 detection on resource-constrained 

edge devices, such as the Raspberry Pi 4, requires a balance between model accuracy, inference 

speed, and hardware limitations. This study evaluates the performance of four deep learning 

models—ResNet18, ResNet50, DenseNet121, and SqueezeNet—based on key metrics such as 

inference time, memory usage, and model size after TensorFlow Lite conversion. Experimental 

results show that SqueezeNet offers the best trade-off, achieving the fastest inference time 

(10.76s per 100 images) and the lowest memory usage (2.8MB), making it the most suitable for 

real-time edge deployment. In contrast, ResNet50, despite its high accuracy, has the longest 

inference time (42.32s) and highest memory consumption (90MB), limiting its feasibility for 

Raspberry Pi-based applications. The findings highlight the importance of selecting lightweight 

architectures for efficient and scalable deep learning-based COVID-19 detection on edge devices. 

Detailed performance parameters including sensitivity, specificity, accuracy, reproducibility, and 

inference time were analysed to assess the suitability of each model for clinical trials. This study 

demonstrates the revolutionary potential of combining deep learning with portable devices to 

provide effective diagnostic tests for COVID-19 and similar respiratory diseases, address 

healthcare inequities, and facilitate timely interventions for epidemic control. 

Keywords: Deep Learning, Raspberry Pi 4, Edge AI, COVID-19 Detection, Model Optimization, 

TinyML. 

 

INTRODUCTION 

The rapid spread of COVID-19 globally has highlighted the urgent need for easy-to-use, effective, and accurate 

diagnostic tools. Traditional diagnostic methods such as reverse transcription polymerase chain reaction (RT-PCR) 

are highly reliable but are often limited by logistical challenges, cost, and time delays. In this context, chest X-ray 

imaging appears to be a promising alternative due to its versatility, speed, and ability to detect abnormal lung 

involvement with COVID-19. However, the interpretation of these images requires specialized knowledge that is often 

unavailable in confined environments. A deep learning model for the automatic detection of COVID-19 on a low-cost 

portable platform (Raspberry Pi 4) is implemented and evaluated in this study to close this gap. The COVID-19 

pandemic has posed significant challenges to global healthcare, necessitating the development of rapid and accurate 

diagnostic methods.  Reverse transcription polymerase chain reaction (RT-PCR) is still the gold standard for testing, 

but it has some drawbacks like being expensive, taking a long time to complete, and requiring specialized laboratory 

facilities [9]. To detect COVID-19 from medical imaging data such as chest X-rays (CXR) and computed tomography 

(CT) scans, AI-driven diagnostic techniques, particularly deep learning (DL) models, have gained attention [2], [11]. 

Convolutional neural networks (CNNs) are widely used for automated feature extraction and classification [3, 6]. 

Deep learning-based approaches have demonstrated exceptional performance in medical image classification. CNN 
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architectures like ResNet, DenseNet, and MobileNet have been the subject of a number of investigations and have 

demonstrated high accuracy in distinguishing COVID-19 from other pulmonary infections [14, 13]. In addition, recent 

studies have highlighted the viability of putting AI models on edge devices like Raspberry Pi for portable and real-

time diagnosis [1, 12].Despite the potential advantages, deploying deep learning models on edge computing devices 

presents challenges such as computational limitations, storage constraints, and inference speed [5], [8]. Several 

model compression and optimization techniques, including quantization and pruning, have been proposed to reduce 

model size while preserving diagnostic performance [4]. Comparative analyses of deep learning models for COVID-

19 detection and object detection on edge devices have also been conducted to optimize performance and efficiency 

[7], [10]. 

This study focuses on developing and deploying optimized CNN models for COVID-19 detection from chest X-ray 

images on a Raspberry Pi 4 system. The research involves data preprocessing, transfer learning, model fine-tuning, 

and deployment using TensorFlow Lite. Four CNN architectures (ResNet18, ResNet50, DenseNet121, and 

SqueezeNet) will be evaluated based on key metrics, including accuracy, precision, recall, F1-score, and inference 

time. The findings of this study will contribute to the development of low-cost, real-time, and AI-driven COVID-19 

detection solutions, particularly for resource-limited settings.  

However, the use of computational models for devices with limited processing and memory has faced serious probl

ems. Raspberry Pi 4 provides a suitable platform for medical edge solutions due to its low cost and portability. This 

study investigated the effectiveness of using an intelligent learning model such as Raspberry Pi 4 to help visualize se

nsitive areas. 

The main goal of this research is to bridge the gap between deep learning models and their practical use in computing 

by converting and leveraging these models to the TensorFlow Lite format. This research aims to improve accuracy 

and balance rather than learning technology. It is done on computational efficiency. The implementation involves 

training these models on a database of 5,000 chest X-ray images, optimizing them for distribution, and evaluating 

their performance using metrics such as accuracy, precision, recall, time perception, and memory usage. 

 

Figure 1. Shows three sample COVID-19 pictures along with the locations that our radiologist 

In Figure 1 shows that the three sample COVID-19 pictures along with the locations that our radiologist applying 

deep learning models to resource-constrained datasets requires overcoming several challenges. First, comparisons 

between models such as ResNet50 and DenseNet121 can lead to high runtime and memory usage, making them 

unsuitable for real-time use on devices such as the Raspberry Pi 4. limited. Third, ensuring a reliable and robust 

model in real-world conditions requires extensive testing and optimization. 

OBJECTIVES 

The integration of deep learning models for abnormality detection in clinical practice, such as the detection of 

COVID-19 in chest X-ray, has received significant attention in recent research. The use of low-cost, resource-

constrained hardware such as Raspberry Pi provides solutions for implementing deep learning models in limited 
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environments. Many studies have proven the possibility of using this model for humidity perception while checking 

the accuracy. Clinical studies consistently demonstrate the effectiveness of deep learning models for clinical tasks 

when deployed in a limited resource. Research has evolved from simple object detection to complex diagnostic tasks 

such as COVID-19 detection, demonstrating advances in advanced techniques such as quantization, transfer learning, 

and model compression. Additionally, the use of this model on devices such as the Raspberry Pi provides practical 

solutions for instant, efficient analysis in limited spaces. These advances continue to pave the way for applicable, 

effective, and cost-effective healthcare solutions in underserved areas. The effectiveness of deep learning-based 

object detectors for detecting anomalies in melon leaves using Raspberry Pi was examined by Rahmat et al. (2022), 

demonstrating the potential of edge computing in agricultural applications. In a similar vein, Alqahtani et al. (2024) 

compared and contrasted various deep learning models for object detection on edge devices, highlighting the trade-

offs between accuracy and efficiency in computation. Moreover, Velasco-Montero et al. (2018) explored real-time 

deep neural network (DNN) inference on Raspberry Pi, addressing challenges related to processing power and 

latency.  Additionally, extensive research has been conducted on the application of deep learning models to medical 

image analysis on low-cost computing platforms. Hosny et al. (2021) demonstrated the effectiveness of Raspberry Pi 

in diagnosing COVID-19 from CT scans and chest X-rays, proving the feasibility of affordable AI-powered diagnostic 

systems.  Likewise, Mhamdi et al. (2023) employed deep learning techniques for COVID-19 contamination analysis 

using ECG images on Raspberry Pi 4, emphasizing the importance of edge computing in healthcare applications.  

Mohammed and Ridha (2022) implemented a deep learning approach for COVID-19 detection in X-ray images using 

Raspberry Pi, further validating its potential for decentralized diagnostic tools.  Optimizing deep learning models for 

deployment on edge devices is a crucial research area.  Mou and Milanova (2024) evaluated model compression 

techniques for audio classification on edge devices, providing insights into efficient neural network architectures.  

MobileNetV2, an optimized deep learning architecture for mobile and edge computing applications, was introduced 

by Sandler et al. (2018). It maintains accuracy while significantly speeding up inference. Brownlee (2018) went on to 

talk about ways to cut down on overfitting and make it easier to train models in deep learning applications. The 

application of machine learning and deep learning to the diagnosis and treatment of COVID-19 has been the subject 

of numerous studies. In their systematic review of deep learning methods for COVID-19 diagnosis, Bhosale and 

Patnaik (2023) compiled a list of various methods for image-based classification. An alternative to image-based 

diagnostics, Zoabi et al. (2021) developed a machine learning-based model for predicting COVID-19 diagnosis from 

symptoms. A novel COVID-19 detection method based on human genome sequences was proposed by Arslan and 

Arslan (2021), demonstrating the interdisciplinarity of AI-driven medical research. Methods like hybrid and transfer 

learning have been looked into to increase classification accuracy. A comparison of convolutional neural network 

(CNN) architectures for real-time facial mask detection by Lad et al. (2021) demonstrates the significance of model 

selection in deep learning applications. Phumkuea et al. (2023) developed a hybrid machine learning strategy that 

combined multiple algorithms to improve diagnostic performance in order to classify COVID-19 patients from chest 

X-ray images. Ponnusamy et al. (2020) introduced a YOLO-based transfer learning model for real-time leaf disease 

detection, demonstrating the adaptability of deep learning techniques across various domains.  Responding to the 

COVID-19 pandemic has been made easier by incorporating AI and the Internet of Things (IoT) into healthcare. In 

their review of AI-IoT applications in pandemic response, Khan et al. (2022) emphasized the significance of smart 

technologies in disease management and surveillance. The systematic reviews carried out by Tiwari et al. (2022) and 

Syeda et al. (2021) on the application of machine learning strategies to the fight against COVID-19 provided 

comprehensive insights into AI-driven pandemic mitigation strategies. 

The existing body of research underscores the growing adoption of deep learning in edge computing environments, 

particularly using Raspberry Pi for real-time object detection and medical diagnosis. While these studies demonstrate 

promising results, challenges remain in optimizing model performance, reducing computational overhead, and 

improving inference accuracy. Future research should focus on developing lightweight models, enhancing transfer 

learning techniques, and exploring novel applications of AI in resource-limited settings. 

METHODS 

The implementation process began with data preparation, which included collecting and processing 5,000 chest X-

ray images from publicly available sources. Images were labeled as positive or negative for COVID-19 and recorded 

by an electronic card to ensure accuracy. Use data enhancement techniques such as translation, rotation, and warping 

to improve datasets and resolve inconsistencies between good and bad samples. 
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Four CNN architectures (ResNet18, ResNet50, DenseNet121, and SqueezeNet) were selected due to their 

performance in image classification tasks. Models were pre-trained on the ImageNet dataset and fine-tuned on the 

COVID-Xray-5k dataset using transform learning. The last few layers of each model were modified to produce binary 

distributions, allowing discrimination between positive and negative COVID-19 cases. The models were then 

converted to TensorFlow Lite format to reduce their size and make them suitable for use on the Raspberry Pi 4. 

DATA PREPROCESSING 

Given a dataset of medical images (e.g., X-ray or CT scans), let: 

• X={x1,x2,...,xn}X ={ x_1, x_2, ..., x_n}X={x1,x2,...,xn} be the set of input images 

• Y={y1,y2,...,yn}Y = { y_1, y_2, ..., y_n }Y={y1,y2,...,yn} be the corresponding labels, where yi∈{0,1}yi  in  {0,1 

}yi ∈{0,1} (0: Non-COVID, 1: COVID) 

• Preprocessing functions include resizing, normalization, and augmentation: 

• 𝑥𝑖
′ = 𝑓\𝑡𝑒𝑥𝑡𝑟𝑒𝑠𝑖𝑧𝑒(𝑥𝑖), 𝑥𝑖

′′ = 𝑓\𝑡𝑒𝑥𝑡𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑥𝑖
′)                              …(1) 

Normalization typically follows: 

𝑥𝑖
′′ =  {𝑥𝑖

′ −  𝜇}/{𝜎}]where μ and σ are the mean and standard deviation of pixel values. 

DEEP LEARNING MODEL INFERENCE 

Let  𝑓{𝜃}) represent the deep learning model with parameters (θ), which maps input images to predicted probabilities: 

{𝑦}𝑖 =  𝑓{𝜃}(𝑥𝑖
′′)                                                                                      …(2) 

𝑦𝑖 = 𝑓𝜃(𝑥𝑖
′′)where yi is the predicted probability of COVID-19. 

MODEL DEPLOYMENT ON RASPBERRY PI 4 

Given hardware constraints, model quantization and optimization techniques such as TensorFlow Lite (TFLite) or 

ONNX Runtime are used. The inference time per image is: 

whereas is the inference time for the image.    

Memory usage is: 

𝑀𝑡𝑜𝑡𝑎𝑙 =  1/{𝑀𝑓𝑟𝑒𝑒} ∑ 𝑥𝑡
{𝑖=1}

𝑖
{𝑁}𝑡                                                             …(3) 

Mtotalis the total RAM available, and Mfree is the free RAM. 

PERFORMANCE METRICS 

Overall, all models demonstrated strong classification capabilities with minimal false positives and false 

negatives. These results highlight their potential for reliable and efficient COVID-19 detection in diverse 

deployment scenarios. 
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To represent the performance metrics mathematically, we can define the following expressions: 

Accuracy measures the proportion of correctly classified instances out of the total instances. 

                       𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                … (4) 

Where as: 

TP = True Positives (correctly predicted COVID cases) 

TN = True Negatives (correctly predicted Non-COVID cases) 

FP = False Positives (incorrectly predicted COVID cases) 

FN = False Negatives (incorrectly predicted Non-COVID cases) 

Precision measures how many of the predicted COVID cases were actually correct. 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                …(5) 

A high precision means fewer false positives. 

Recall measures how many of the actual COVID cases were correctly predicted. 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                (6) 

A high recall means fewer false negatives 

Specificity measures how well the model identifies Non-COVID cases correctly. 

 

𝑆 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                              …(7) 

A high specificity means fewer false positives. 

 

 

 

MATTHEWS CORRELATION COEFFICIENT (MCC) 

MCC gives a balanced measure of classification quality, even for imbalanced datasets. 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                        …(8) 

ResNet50 delivered the highest accuracy at 99.83%, making it the most effective model for COVID-19 detection. 

However, its higher computational demands make it more suitable for resource-rich environments. ResNet18 and 

DenseNet121 struck a balance between accuracy and efficiency, while Squeeze Net’s lightweight design and fastest 

inference time made it ideal for real-time deployment on Raspberry Pi 4. 

EXPERIMENTAL SETUP: ~ 
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Using deep learning models for the detection of COVID-19 on a resource-limited system such as the Raspberry Pi 4 

requires careful consideration of hardware and software configuration. This section provides an overview of the 

experimental setup used in this study, detailing the hardware specifications, software environment, and deployment 

procedures to ensure performance and reliability over time in applications. 

HARDWARE CONFIGURATION: ~ 

The computer hardware used in this study is the Raspberry Pi 4 Model B, chosen for its balance between computing 

power and affordability, making it ideal for edge medical applications. The device is powered by a quad-core Cortex-

A72 (ARM v8) 64-bit SoC running at 1.5 GHz and supported by 4 GB LPDDR4 RAM. Use a 32 GB Class 10 microSD 

card for storage to have enough space for workflows, presets, and TensorFlow Lite models. 

 

Figure 2. shows Raspberry Pi 4 Model B 

To support heavy computing tasks, the device is equipped with a VideoCore VI GPU that assists with image processing 

and inference. The Raspberry Pi is powered by a 5V/3A USB-C adapter, ensuring stable operation under high loads. 

A cooling fan is installed on the unit to ensure thermal stability during continuous use. Also connect peripherals such 

as HDMI cables, USB keyboards, and mice for interactive model testing and debugging. 

SOFTWARE CONFIGURATION: ~ 

The software stack has been carefully designed to optimize the performance of deep learning models on the custom-

built Raspberry Pi 4. Python 3.9 is the initial programming language and integrates with the TensorFlow Lite 

framework and other libraries. 

TensorFlow Lite is a special version of TensorFlow optimized for edge devices, designed to support high-demand 

models with limited resources. Convert predefined models (such as ResNet18, ResNet50, DenseNet121, and Squeeze 

Net) to TensorFlow Lite mode using the TensorFlow Model Optimization Toolkit. This conversion reduces the sample 

size and increases the required speed, making them suitable for deployment on power-intensive devices. Figure 3 

shown that Processing at the Raspberry Pi Level 

Additional libraries, such as OpenCV and NumPy, are integrated into the software environment to handle image 

preprocessing tasks, including resizing, normalization, and augmentation. The TensorFlow Lite Interpreter is utilized 

for executing the models on the Raspberry Pi, ensuring compatibility and efficient utilization of the available 

computational resources. 
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Figure 3: Processing at the Raspberry Pi Level 

DEPLOYMENT WORKFLOW: ~ 

The deployment process begins with converting the pre-trained model to TensorFlow Lite mode. The model was 

trained using a transform learning technique on the COVID-Xray-5k dataset, a collection of 5,000 chest X-ray 

images.  

The transformed model is then transferred to the Raspberry Pi 4, where it instantly completes the processing. 

Outcome scores for 19 diseases. These scores are further processed to classify images as COVID-19 positive or 

negative. Throughout the inference process, use tools like htop and Power stat to monitor performance metrics like 

inference time, memory usage, and power consumption. 

PERFORMANCE EVALUATION: ~ 

The experimental setup is designed to evaluate the performance of the model in terms of accuracy checking and       

computational performance. The inference time of each model is recorded to evaluate its timeliness, while the mem

ory usage and power consumption are analyzed to determine the feasibility of deployment in Space. 
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Figure 4: Performance Evaluation 

This Figure 4 represents an edge computing architecture integrating TinyML on Raspberry Pi for data processing, 

anomaly detection, and feature extraction within an IoT-based system. Here’s a breakdown of the different layers 

and their roles: 

A. Raspberry Pi and TinyML Layer 

• The Raspberry Pi acts as an edge computing device, handling TinyML (Tiny Machine Learning) models to 

process incoming sensor data before sending it to the cloud. 

• This layer is responsible for three key processing steps:  

1. Data Cleaning – Filtering and preprocessing raw sensor data to remove noise and inconsistencies. 

2. Anomaly Detection – Identifying unusual patterns that might indicate faults, failures, or critical 

events. 

3. Feature Extraction – Extracting essential features from raw data for further analysis and machine 

learning models. 

B. Communication Layer 

• Facilitates data transmission between the Raspberry Pi and the Centralized Big Data System. 

• Ensures secure and reliable connectivity for real-time updates and data synchronization. 

C. Centralized Big Data System 

• This system aggregates and processes the incoming preprocessed and extracted features from edge devices. 

• It can perform deep learning model training, advanced analytics, and cloud storage. 

• Model updates and configuration changes are sent back to the Raspberry Pi to optimize TinyML inference 

models for improved accuracy and efficiency. 
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D. Feedback and Synchronization 

• The system supports a feedback loop where model updates, configuration changes, and new learning insights 

are transmitted back to the Raspberry Pi layer to enhance real-time decision-making. 

RESULTS 

MODEL TRAINING RESULTS AND PERFORMANCE EVALUATION: ~ 

After training the models, we evaluate their performance on the test set using several key metrics, including accuracy, 

precision, recall, F1-score, ROC curve, AUC (Area Under the Curve), and the confusion matrix. These metrics shed 

light on the methods' accuracy in identifying healthy versus COVID-19-positive chest X-ray images. 

 

RESNET18 - MODEL EVALUATION: ~ 

After 10 training periods, the ResNet18 model achieved an accuracy of 99.69%, which shows its strong ability to 

correctly identify the system. The accuracy of 99.78% indicates that the model has a high chance of predicting a 

patient to be COVID-19 positive. The recovery rate of 99.89% shows the model’s performance in identifying almost 

all positive aspects of COVID-19 except for the negative ones. The F1 score of 99.84% indicates a high level of accuracy 

and recall. The confusion matrix of ResNet18 shows 96 negatives (healthy patients are identified), 4 negatives 

(COVID-19 positives are not classified as healthy), 2783 positives (correctly identified COVID-19 person), and 2 

negatives (healthy is not classified as disease). (such as COVID-19). 

DENSENET121 - MODEL EVALUATION: ~ 

The DenseNet121 model, also trained for 10 epochs, achieved an accuracy of 99.45%, slightly lower than ResNet18 

but still very high. With a precision of 99.54%, it demonstrated a high ability to correctly identify COVID-19 cases. 

The recall of 99.89% meant that the model accurately identified almost all COVID-19-positive cases, minimizing false 

negatives. The F1-score of 99.71% reflected the model's strong performance across both precision and recall. The 

confusion matrix for DenseNet121 showed 100 true negatives, 13 false negatives, 2783 true positives, and 3 false 

positives. 

SQUEEZENET - MODEL EVALUATION: ~ 

The SqueezeNet model was trained 10 times and achieved an accuracy of 99%, showing that it can classify the test set 

well. Precision and recall are both 99%, indicating that the model has a high probability of identifying positive 

COVID-19 cases while minimizing negative cases. The F1 score of 99% also validates the model’s performance. The 

confusion matrix of SqueezeNet shows 91 negatives, 22 negatives, 2784 positives, and 2 negatives. 

RESNET50 - MODEL EVALUATION: ~ 

The ResNet50 model, after training for 10 epochs, achieved an impressive accuracy of 99.83%, showing its strong 

ability to distinguish between healthy and COVID-19 cases. The precision of 99.93% demonstrated the model's high 

confidence in predicting COVID-19 cases correctly. With a recall of 99.89%, ResNet50 was able to detect nearly all 

COVID-19 cases, minimizing false negatives. The F1-score of 99.91% reflected the model’s excellent balance between 

precision and recall. The confusion matrix for ResNet50 showed 111 true negatives, 2 false negatives, 2783 true 

positives, and 3 false positives. 
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Figure 5: performance Comparison of deep Learning on Raspberry Pi 4 

Confusion Matrix for Each Model: ~ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5: Confusion Matrix for Each Model (a) esNet18, (b) DenseNet121, (c) SqueezeNet, (d) ResNet50 

The confusion matrix provides detailed information about the performance of each model by displaying the number 

of correct or incorrect classifications for each model in figures 5 a, b, c, and d. The number of COVID-19 positive cases 

correctly identified is referred to as the true positive rate (TP), while the number of healthy patients excluded is 

(a) ResNet18-Model (b) DenseNet121-Model 

 (c) SqueezeNet -Model 
(d) ResNet50-Model 
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referred to as the true negative rate (TN). False positives (FP) are healthy patients who were not diagnosed with 

COVID-19, and false negatives (FN) are healthy patients who were diagnosed with COVID-19. Each model's confusion 

matrix demonstrates how well it differentiates between health and COVID-19. The model is performing well when 

there are a small number of false positives and true negatives and a large number of true positives and true negatives. 

The confusion matrix helps assess the balance between precision and recall, providing insight into the model’s ability 

to identify the two groups while minimizing error.  The overall goal is to reach a balance where the model correctly 

assigns the majority of cases and minimizes misclassification.  

Deployment Analysis 

Evaluate model performance on Raspberry Pi, emphasizing real-world applicability.When evaluating the models 

on the Raspberry Pi 4, the following key performance metrics were collected: 

1. Inference Time (Latency): 

➢ The inference time measures how long the model takes to classify a single image after being loaded 

onto the device. 

➢ Models were tested on a batch of 100 chest X-ray images, and the average inference time per image 

was recorded. 

2. Memory Usage: 

➢ The memory consumption during model inference was monitored to ensure that the Raspberry Pi 4 

could handle the models without running out of resources. 

➢ Memory usage was tracked for both the CPU and GPU usage during model execution. 

3. Power Consumption: 

➢ Although not always a priority in all contexts, measuring the power consumption of the models on 

the Raspberry Pi helps to understand how efficient the models are in a real-world deployment. 

4. Model Size: 

➢ The models were converted to TensorFlow Lite format, which significantly reduced their size 

compared to the original versions. Smaller models make it easier to deploy and faster to load. 

 

PERFORMANCE METRICS ON RASPBERRY PI 4 

The models were evaluated based on: 

• Inference Time (Latency): The time taken by each model to classify a single image. 

• Memory Usage: The memory consumed during inference. 

• Model Size: The size of each model after conversion to TensorFlow Lite format. 

 

Test Results: ~ 

➢ Performance Summary: SqueezeNet performs exceptionally well in terms of memory use and 

inference time. Its smallest memory footprint and fastest inference time make it the ideal option for 

real-time deployment on the Raspberry Pi 4, particularly for resource-constrained edge computing 

applications.  

 

After TensorFlow Lite conversion, the inference time, memory utilisation, and model size of each model were 

measured in order to evaluate its performance on the Raspberry Pi 4. 
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Figure 6: Test Result of Comparative performance of deep learning models on Raspberry Pi 4 

• Inference Time: SqueezeNet is the fastest (10.76s), while ResNet50 is the slowest (42.32s). 

• Memory Usage: ResNet50 consumes the most (90MB), while SqueezeNet is the most efficient (2.8MB). 

• Model Size: ResNet50 is the largest (20MB), and SqueezeNet is the smallest (6MB). 

COMBINED ROC CURVE: 

The ability of each model to differentiate between COVID-19 and healthy patients at different thresholds is shown in 

comparison by the combined ROC curve. Each model's Area Under the Curve (AUC), which represents overall 

classification performance, was computed: 

 
Figure 7: ROC curve. Each model's Area Under the Curve (AUC) 

 

• ResNet18: AUC = 0.992 (Accuracy = 99.23%) 

• ResNet50: AUC = 0.982 (Accuracy = 98.29%) 

• DenseNet121: AUC = 0.978 (Accuracy = 97.88%) 

• SqueezeNet: AUC = 0.986 (Accuracy = 98.63%) 

The ROC curves show that every model performs remarkably well, with ResNet18 attaining the best accuracy and 

AUC and SqueezeNet coming in second and third, respectively, in terms of efficiency. SqueezeNet compensates with 

better inference speed and memory efficiency, making it ideal for deployment on edge devices like as the Raspberry 



734  

 
 J INFORM SYSTEMS ENG, 10(29s) 

Pi 4, whereas DenseNet121 performs well despite a minor AUC lag. Table 1 represent the Model Performance 

Summary. 

Table 1 Model Performance Summary 

Model Accuracy AUC Memory 

Usage 

Inference 

Time 

Strengths Recommendation 

ResNet18 99.23% 0.992 42.7 MB 13.44 sec Highest accuracy 

and AUC.  

Effective but 

higher resource 

usage. 

Best for high accuracy, 

not ideal for resource-

constrained devices. 

ResNet50 98.29% 0.982 90 MB 42.32 sec Strong 

performance but 

high memory and 

time 

requirements. 

Suitable for high-

performance systems, 

not ideal for edge 

devices. 

DenseNet121 97.88% 0.978 27.1 MB 39.44 sec Balanced 

performance and 

memory usage. 

Good for balancing 

performance and 

resource consumption. 

SqueezeNet 98.63% 0.986 2.8 MB 10.76 sec Lowest memory 

and fastest 

inference time. 

Best choice for minimal 

resource usage and edge 

deployment. 

The model selection for deployment on the Raspberry Pi 4 should be based on the specific requirements of the use 

case: 

• For high accuracy and performance, ResNet18 is the best choice. However, it is not ideal for edge 

devices due to its high memory and inference time requirements. 

• For high performance with higher resource demands, ResNet50 is a strong choice, but it is better 

suited for more powerful systems rather than resource-constrained devices like the Raspberry Pi 4. 

• For a balance between performance and resource usage, DenseNet121 provides reliable results 

while maintaining moderate memory usage and faster inference times than ResNet50. 

For minimal resource requirements and edge deployment, SqueezeNet is the optimal choice. Its 

lightweight nature makes it perfect for systems like the Raspberry Pi 4, where memory and processing power are 

limited 

DISCUSSION 

In this study, with a focus on using it on devices with limited resources like the Raspberry Pi 4. A variety of metrics, 

including accuracy, AUC (area under the curve), memory usage, inference time, precision, recall, and F1-score, were 

used to evaluate the tested models—ResNet18, ResNet50, DenseNet121, and SqueezeNet. SqueezeNet is the best 

choice for deployment on the Raspberry Pi 4 because it uses the fewest resources. These metrics also allowed us to 

evaluate the models' suitability for use in real-world applications, particularly on devices with limited processing 

power and memory, as well as their performance in distinguishing between COVID-19 and healthy cases. ResNet18 

is the ideal choice for applications where accuracy is crucial and hardware resources are not a significant limitation. 

While ResNet50 is better suited for high-performance systems but less suitable for edge deployment because of its 

greater resource requirements, DenseNet121 provides a good balance between performance and resource utilisation. 

Edge processing on Raspberry Pi reduces latency and minimizes cloud dependency, making it efficient for IoT 

applications. The Big Data System ensures scalability and advanced analytics, leveraging cloud computing for deeper 

insights. Anomaly detection and feature extraction help improve system accuracy and reliability in real-world 

applications. This study evaluates the performance of deep learning models on the Raspberry Pi 4 for COVID-19 

detection, focusing on accuracy, computational efficiency, and resource utilization. ResNet18 achieves the highest 

accuracy (99.23%) and AUC (0.992) but requires significant memory (42.7 MB). ResNet50, while highly accurate 
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(98.29%), has the highest memory demand (90 MB) and longest inference time (42.32 sec), making it unsuitable for 

edge applications. DenseNet121 offers a balanced trade-off between accuracy (97.88%) and memory efficiency (27.1 

MB). SqueezeNet stands out as the most lightweight model, requiring only 2.8 MB of memory and delivering the 

fastest inference time (10.76 sec), making it ideal for real-time edge deployment. Ultimately, SqueezeNet is 

recommended for resource-constrained environments, while ResNet18 is preferred for high-accuracy applications 

where computational resources are available. 
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