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The increasing use of unmanned aerial vehicles (UAVs), commonly referred to as drones, in 

various industries such as surveillance, logistics, and environmental monitoring has raised 

significant concerns regarding privacy, security, and aviation safety. This study focuses on 

addressing these concerns by developing a robust drone detection system using the Faster 

RCNN model with a ResNet-50 backbone, implemented in TensorFlow 2. The primary objective 

is to accurately detect and localize drones in aerial images containing drone objects. Data 

augmentation techniques, including Mosaic and Cutout, will be applied to enhance the model’s 

ability to detect small and occluded 

drones within complex image scenes. The research follows an iterative approach 

encompassing model training, validation, and continual improvement through error analysis. 

The expected outcomes include improved accuracy and robustness in drone detection across 

diverse aerial image datasets. These results have potential applications in enhancing image-

based drone detection systems for surveillance, environmental monitoring, and airspace 

management. 

Keywords: Drone Imagery Analysis, Faster R-CNN, Object Detection, ResNet-50, YOLO, 

Data Augmentation Technique 

 

 

INTRODUCTION 

Unmanned aerial vehicles (UAVs), sometimes known as drones [1], are becoming popular in industries 

such as surveillance, agriculture, and delivery services [2]. However, its broad use has generated 

concerns about privacy, security, and safety [3]. This study presents a solution to these concerns by 

creating a drone detection system utilising the Faster R-CNN (Region-based Convolutional Neural 

Network) model with the ResNet50 backbone, which is implemented in the TensorFlow API [4]. The 

goal is to contribute an accelerated object identification model that incorporates ResNet50 features into 

the Faster R-CNN framework. The findings are likely to help improve the trade-off between speed and 

accuracy in object detection algorithms [5]. 

To assess the performance of various object detection models in drone detection tasks, a comparative 
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gap analysis was conducted. Table 1 summarizes the key insights from various object detection 

methodologies used in drone detection research. It highlights the comparative strengths of different 

models and approaches based on speed, accuracy, and augmentation techniques. 

Table 1. Gap Analysis of Object Detection Model Based On Resnet-50 Within The Effective R-CNN Framework 

Method Used Result 

Baseline Faster R-CNN 

with ResNet-50 [21] 

Achieved high detection accuracy but faced challenges in detecting small 

drones in cluttered environments 

DeepVision with 

SqueezeNet [22] 

SqueezeNet outperformed others with an AP of 77.0% for medium area 

ratios, providing better accuracy. 

Faster R-CNN with 

ResNet-50 [23] 

Achieved a mAP of 68.5%, but was outperformed by YOLOv4, which 

achieved 75.31% mAP. 

Survey of Drone 

Detection Methods [24] 

Provided an overview of various deep learning techniques for drone 

detection but lacked specific performance metrics.YOLOv4 had the 

highest accuracy (75.31% mAP) but struggled with occlusions and small 

drone detection. Faster R-CNN achieved 68.5% mAP, with strong 

accuracy but slower inference speed 

Combination of Faster 

R-CNN and YOLOv2 

[25] 

Proposed a hybrid approach but did not provide specific AP values for the 

combination. 

Drone Object Detection 

using Deep Learning 

[26] 

Discussed implementation of CNN-based methods but lacked specific AP 

metrics. 

Faster R-CNN with Data 

Augmentation for 

Marine Organisms [27] 

Achieved an AP of 85.0% in detecting marine organisms; applicability to 

drone detection requires further research. 

Enhanced End-to-End 

Object Detector for 

Drone Aerial Imagery 

[28] 

Improved detection accuracy by integrating feature pyramid networks 

and attention mechanisms, achieving a mAP of 82.5%. 

Maritime Small Object 

Detection in Drone 

Aerial Images [29] 

Utilized a modified Faster R-CNN with ResNet-50 backbone, achieving a 

detection accuracy of 80.3% for small maritime objects. 

Real-Time Object 

Detection Using Fixed-

Wing UAVs [30] 

Implemented SSD with ResNet-50 backbone, achieving real-time 

detection with mAP of 75.4% on aerial datasets. 

Drone-TOOD: 

Lightweight Task-

Aligned Object Detection 

[31] 

Proposed a lightweight detector achieving competitive accuracy with 

reduced computational complexity, mAP of 78.6%. 

Aerial Data Exploration 

with Transformers [32] 

Demonstrated that transformer-based models outperformed Faster R-

CNN with ResNet-50, achieving higher mAP in aerial object detection. 

 

The Comparative Performance Analysis of Object Detection Models (2019-2024) Fig. 1 presents a 
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horizontal bar chart illustrating the Average Precision (AP) or mean Average Precision (mAP) % across 

various studies, from 2019 to 2024. The studies analyzed include Faster R-CNN, YOLO variants, hybrid 

models, and other approaches applied to drone object detection and related domains. 

From the chart, Huang et al. (2019) [27] achieved the highest AP of 85.0%, demonstrating the 

effectiveness of Faster R-CNN with data augmentation for marine organisms, which may suggest 

potential adaptability for drone detection. Yu et al. (2024) [28] followed closely, achieving 82.5% AP 

with an enhanced end-to-end object detector, integrating feature pyramid networks and attention 

mechanisms. Other notable performances include Pham (2021) [25], who achieved 80.0% AP with a 

hybrid Faster R-CNN and YOLOv2 approach, and Li et al. (2023) [29], who obtained 80.3% AP in 

detecting small maritime objects in drone aerial images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comparative Performance Analysis of Various Object Detection Methods Used in Drone 

 

Conversely, some models exhibited relatively lower performance. [23] reported the lowest AP at 

68.5%, where Faster R-CNN was outperformed by YOLOv4, which achieved 75.31% AP. [22] highlighted 

that SqueezeNet outperformed ResNet-50, achieving 77.0% AP, while [30] implemented SSD with a 

ResNet-50 backbone, resulting in 75.4% AP for real-time drone detection. 

The gradual increase in AP values over the years suggests advancements in object detection 

methodologies. Recent studies incorporating transformer-based models (e.g., (2024) [32] with 79.8% 

AP) and lightweight detection architectures (e.g., [31], with 78.6% AP) indicate a shift towards more 

efficient and computationally optimized detection models. These trends highlight how deep learning-

based object detection has evolved, balancing detection accuracy and computational efficiency, 

particularly in drone-based applications. 

Overall, the graph provides an insightful comparison of various object detection methodologies 

applied to drone imagery, showcasing the progressive improvements in AP/mAP values over time and 

the effectiveness of different model enhancements in addressing challenges such as small object 
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detection, occlusion, and real-time performance. 

 

Table 2. Key Insight Trends in Object Detections Methods 

Model Key Findings 

Faster R-CNN High precision, especially for small objects in cluttered backgrounds, 

but slower than YOLO models. [21], [23], [27] 

YOLO Variants YOLOv3, YOLOv4, and YOLOv2 are preferred for real-time detection 

due to speed, with moderate to high precision. [23], [24], [26] 

Hybrid Approaches Combining Faster R-CNN and YOLOv2 improved precision (+5%) and 

recall (+11%), showcasing potential of ensembles.[25] 

Model Performance ResNet18 outperformed ResNet50 for drone vs. bird detection.[22] 

Augmentation Turbulence, angle variations, and illumination changes improved mAP 

by ~20% in marine object detection.[27] 

Real-time Applications YOLOv3 balanced speed and accuracy, processing frames 84% faster 

than Faster R-CNN.[26] 

Dataset Dependence Dataset and context significantly impact performance, e.g., drone 

navigation, surveillance, and bird differentiation.[21], [22], [24] 

Research Gaps High precision in low-visibility conditions and ensemble methods need 

further exploration.[24], [25] 

Novel Applications Hybrid methods and augmentations are promising for niche 

scenarios.[25], [27] 

Enhanced End-to-End 

Object Detector 

Integrated feature pyramid networks and attention mechanisms, 

leading to a high AP of 82.5%. [28] 

Maritime Small Object 

Detection 

Achieved 80.3% AP for small object detection in drone aerial images, 

proving effectiveness in maritime applications. [29] 

Real-Time Object 

Detection with SSD 

Showed real-time detection capability with SSD and ResNet-50 but 

had lower AP (75.4%) compared to other models. [30] 

Lightweight Task-Aligned 

Object Detection 

Proposed a lightweight detector achieving competitive accuracy with 

reduced computational complexity, mAP of 78.6%. [31] 

Transformer-Based Object 

Detection 

Transformer-based models showed competitive AP (79.8%), indicating 

a shift towards newer architectures for aerial imagery. [32] 

 

BACKGROUND OF RESEARCH 

In recent years, object detection has become a core focus in computer vision research, significantly 

influencing areas such as surveillance, autonomous systems, smart cities, and aerial monitoring using 

drones. The primary challenge in object detection is to accurately localize and classify objects within an 

image or video stream while maintaining computational efficiency for real-time applications [6][7]. The 

increasing deployment of drones in defense, agriculture, and disaster response has further driven the 

demand for advanced detection models capable of handling occlusion, varied altitudes, and dynamic 

environmental conditions [8][9]. 
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Early object recognition methods depended on hand-crafted features and shallow learning 

techniques, requiring substantial manual effort for feature engineering and parameter tuning. 

Traditional approaches such as Scale-Invariant Feature Transform (SIFT), Histogram of Oriented 

Gradients (HOG), and Deformable Part Models (DPM) were commonly used but struggled with 

variations in scale, background clutter, and illumination [10][11]. However, recent advancements in 

deep learning, particularly Convolutional Neural Networks (CNNs), have revolutionized object 

detection by enabling automatic feature extraction and significantly improving detection accuracy [12]. 

The emergence of models like AlexNet, VGG-16, and GoogLeNet paved the way for more sophisticated 

object detection architectures, leading to the development of Region-based Convolutional Neural 

Networks (R-CNN) and its successors [13]. 

Among deep learning-based object detection models, Faster R-CNN has emerged as a highly effective 

approach due to its integration of a Region Proposal Network (RPN), which eliminates the need for 

external region proposal mechanisms. This architecture allows for an end-to-end trainable system, 

optimizing both speed and accuracy [14]. Faster R-CNN has been widely adopted in drone-based 

applications, where detecting small and high-altitude objects presents significant challenges such as 

scale variation and background noise [15]. In particular, it has shown strong adaptability in aerial 

surveillance tasks, outperforming traditional methods in complex urban and rural landscapes [16]. 

Recent studies have further enhanced Faster R-CNN by incorporating advanced feature extractors 

like ResNet-50, which utilizes deep residual learning to maintain high detection accuracy without 

excessive computational overhead [17]. Residual learning allows deep networks to mitigate the 

vanishing gradient problem, enabling better feature propagation and model convergence [18]. This 

combination has demonstrated superior performance in drone detection tasks, where robust feature 

extraction is crucial due to variations in background, lighting, and object orientation [19]. Moreover, 

techniques such as feature pyramid networks (FPN) and attention-based mechanisms have been 

integrated into Faster R-CNN to enhance the detection of small and distant objects, further improving 

performance in UAV applications [20]. 

The growing use of drones in environmental monitoring, security, and defense has highlighted the 

need for highly accurate UAV detection models capable of performing effectively in diverse and dynamic 

conditions [6]. Research on domain adaptation and transfer learning has enabled Faster R-CNN to 

generalize across different datasets, making it more suitable for real-world UAV detection scenarios [7]. 

Additionally, hybrid models that combine Faster R-CNN with reinforcement learning or generative 

adversarial networks (GANs) have shown promise in improving detection efficiency under varying 

weather conditions [8]. 

As drone applications expand across industries, improving detection reliability remains a crucial 

research focus. This study aims to develop a drone detection model based on the Faster R-CNN 

architecture with a ResNet-50 backbone. The research focuses on enhancing detection efficiency and 

robustness in complex aerial environments. By leveraging the latest advancements in deep learning-

based object detection, this study seeks to contribute to the ongoing progress in UAV surveillance and 

automation technologies [9]. 
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PROBLEM STATEMENT 

The rapid increase in the use of unmanned aerial vehicles (UAVs), commonly known as drones, across 

various industries such as surveillance, logistics, and environmental monitoring has led to growing 

concerns regarding privacy, security, and airspace safety. However, existing drone detection systems 

face significant challenges in maintaining accuracy, especially in complex environments with dynamic 

backgrounds or multiple objects. Current solutions often struggle to detect small or fast-moving drones 

in aerial imagery, resulting in unreliable performance. This research addresses these challenges by 

proposing a robust drone detection system using the Faster R-CNN model with the ResNet-50 

backbone. 

METHODOLOGY 

A. Introduction 

The methodology for developing the drone object detection model using Faster R-CNN with a 

ResNet50 backbone follows a systematic flow, starting with setting up the environment and progressing 

through data preparation, training, and validation phases. The workflow ensures a structured approach 

to fine-tuning the model for optimal performance. 

Each step of this process is summarized in the flow diagram below, providing an easy-to-follow visual 

representation of the entire methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Flow Diagram 
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B. Model Architecture Overview 

The model's architecture is built upon two main components: the feature extraction backbone, 

which utilizes ResNet50, and the Region Proposal Network (RPN) integrated within the Faster R-

CNN framework. The ResNet50 backbone is responsible for extracting detailed and hierarchical 

features from drone imagery, leveraging its residual learning capabilities to efficiently handle complex 

patterns and small objects. Meanwhile, the RPN, as part of the Faster R-CNN, generates precise region 

proposals, focusing on areas of the image that are likely to contain objects. These components work 

synergistically to provide a robust and accurate object detection framework, tailored for the challenges 

of drone-based imagery. 

C. Incorporating Mosaic and Cutout Augmentation 

Mosaic and Cutout are advanced data augmentation techniques designed to enhance the robustness 

and generalization of object detection models, particularly in drone imagery. Mosaic Augmentation 

combines four different images into one during training, enabling the model to learn diverse object 

contexts and improve its detection accuracy for small and overlapping objects. This technique is 

particularly effective in scenarios where objects appear small or blend into complex backgrounds, as 

commonly seen in drone imagery. Additionally, Mosaic Augmentation reduces overfitting by providing 

the model with varied and complex training samples, enriching its learning process and improving its 

ability to generalize across different environments.  

On the other hand, Cutout Augmentation involves masking random square regions of input 

images to simulate occlusions or missing data. This method trains the model to recognize objects even 

when parts of them are obscured, enhancing its resilience in real-world scenarios. By focusing on 

incomplete objects, Cutout helps the model generalize better and improves its robustness against 

occlusions, making it more effective for challenging detection tasks in aerial imagery. 

The combination of these two augmentations provides a diverse dataset for training, which improves 

the model's ability to handle varying scales, occlusions, and background clutter often encountered in 

drone surveillance and monitoring tasks. These augmented datasets are used to fine-tune the ResNet-

50 backbone and train the Faster R-CNN network, resulting in a more robust and accurate detection 

system. 

D. Training Strategy 

The training strategy remains largely consistent with the original model, with the inclusion of Mosaic 

Augmentation to enhance performance. The process begins with pretraining the ResNet50 

backbone on a large-scale dataset, such as ImageNet, to learn general image features. This pretrained 

model is then fine-tuned on the augmented drone dataset, which includes diverse and enriched samples 

created through Mosaic Augmentation. 

Following this, the model undergoes joint training where the Region Proposal Network (RPN) and 

the detection network are trained simultaneously using the augmented dataset. This approach allows 
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the model to learn from a wider variety of challenging examples, improving its ability to generalize and 

perform effectively in complex drone imagery scenarios. 

EXPECTED RESULT 

The expected outcomes include improved mean average precision (mAP), heightened generalization 

across varied environments, and effective handling of occlusions. These advancements provide a 

scalable and accurate solution for drone detection in real-world applications, contributing to better 

surveillance, airspace management, and environmental monitoring systems. 

CONCLUSION 

In this research, a drone object detection model based on the Faster R-CNN framework with a ResNet50 

backbone has been proposed to address the unique challenges posed by drone imagery. By leveraging 

deep residual learning, combined with advanced data augmentation techniques such as Mosaic and 

Cutout, the model is designed to effectively detect drones in complex aerial environments. The 

integration of these methods is expected to enhance the model’s robustness, particularly in detecting 

small, occluded, or hard-to-identify objects, while maintaining high accuracy. 
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