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Due to industrialization, deforestation and many other anthropogenic activities, carbon emission 

is increasing at a rate of approximately at a rate of 1% in past few years. Now, reduction of 

atmospheric carbon dioxide (CO2) has become a significant concern and challenge for every 

country across the globe. This paper is a sincere effort to study, analyse and further optimize, 

amine based post-combustion carbon (PCC) capture. Monoethanolamine (MEA) in rotating 

packed beds (RPB) has been extensively studied for CO2 chemical absorption. Enhancing CO2 

capturer efficiency necessitates a thorough comprehension of the complex interrelationships 

within the key parameters. This study focuses on modelling and optimisation of CO2 absorption 

efficiency in MEA by artificial intelligence and genetic algorithms (GA). Machine learning (ML) 

and Artificial Neural Networks (ANN) are versatile instruments employed to model and forecast 

diverse complex and highly non-linear phenomena. The established process models have been 

established by published steady-state experimental data. Subsequently, SHAP analysis has been 

applied that reveals the input factors such as solvent concentration, flow rate, and rotational 

speed are the primary determinants of CO2 absorption in RPB. To assess the model's 

performance, the acquired results have been examined using statistical measures, including 

MSE, RMSE, and R2 value. The modelling results have been utilised to optimise CO2 absorption, 

employing GA under various operating conditions to ascertain the optimal values for the input 

variables that correlate to maximized CO2 capture. 
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INTRODUCTION 

Humans have known for a long time that the discharge of CO2, a important greenhouse gas (GHG), causes global 

warming and damage to the environment. In April, the global surface temperature was recorded at 1.32°C above the 

20th-century average of 13.7°C. This temperature is 0.18°C higher than the April 2020 record.  Global warming is a 

worldwide problem that has brought together 195 nations with the shared objective of decreasing global (GHG) 

emissions and achieving carbon neutrality by 2050. Despite extensive attempts to decrease CO2 emissions, its 

concentration has increased by 1.7% worldwide [1]. Carbon capture and storage (CCS) systems offer a way to decrease 

emissions from an operational fossil fuels power station.  Currently, the most economically viable and commercially 

efficient approach for absorbing CO2 from power plants is post-combustion carbon (PCC) capture using an amine-

based CO2 absorption technology. In chemical absorption processes, amine-based solvents, particularly 

monoethanolamine (MEA), are utilised to a great extent since they have proven effective at removing chemicals, do 

not require an excess of air pressure, and are economical [2], [3], [4]. Rotating Packed Bed (RPB), a intensified 

process tool, has garnered significant attention in recent years. A notable benefit of RPB is enhanced mass transfer 

resulting from intense blending at the gas-liquid interface [5], [6]. It has been utilised in various domains, including 

acid gas absorption, distillation, and nanomaterial synthesis [7], [8], [9]. The liquid is dispersed into minute liquid 

entities, such as threads, droplets, and films by high-velocity in an RPB, thereby creating a substantial gas-liquid 

contact area. All of these elements contribute to a significant improvement in mass transfer efficiency [10]. 
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The effectiveness of the experiment process in RPB has been evaluated using mathematical models [11], [12], [13]. 

However, studying the fundamental physics of the process necessitates significant time and profound experience in 

the area. To mitigate this concern, researchers have been employing machine learning (ML) and artificial neural 

network models (ANN), based on operational data from the process and simulated data for CO2 absorption in RPB 

[14], [15]. Artificial intelligence has been applied to validate CO2 absorption in packed column.  Fu et al. [16] employed 

ANN algorithms, Backpropagation Neural Network (BPNN) and Radial Basis Function Neural Network (RBFNN), to 

investigate mass transfer in MEA within a packed column. The results acquired from these models have been 

compared with numerical findings in the literature, revealing that the RBFNN exhibited good performance. 

Afkhamipour et al. [17] applied a multilayer perceptron neural network (MLPNN) to forecast CO2 capture in 4-

diethylamino-2-butanol (DEAB). The average absolute relative deviation (AARD) between the predicted and actual 

findings indicates that MLPNN model makes good prediction with an AARD of 5.47%. Wu et al. [18] examine CO2 

absorption through two modelling methodologies: statistical analysis and ANN modelling, employing data from the 

International Test Centre of CO2 Capture (ITC) in Regina, Saskatchewan, Canada. The results demonstrate that ANN 

performs significantly better at predicting CO2 absorption than statistical analysis. Ashraf et al. [19] employed 

support vector machine (SVM), and ANN to develop a model with comprehensive hyperparameter optimisation. 

Additionally, sensitivity analysis based on partial derivatives has been conducted to identify which input features 

significantly influence CO2 capture. It has been noted that ANN exhibits strong performance with the existing data.  

Further, these methodologies have been also adopted for CO2 absorption process in RPB. Zhao et al [20] employed 

LSSVR model to ascertain the mass transfer coefficient in NaOH solution. The findings indicated that the Mean 

Squared Error (MSE) for the testing set was 0.0012, lowest observed when compared to the ANN, showing higher 

predictive accuracy and generalisation capability of the model. Shalaby et al. [21] adopted three machine learning 

techniques based on Gaussian process regression and analysed the outcomes with an ANN model to predict the 

output of PCC unit. Results indicate that the ANN achieves superior accuracy above 95%. The results collected were 

utilised to optimise the CO2 capture mechanism and establish ideal operating parameters. Ardeshiri et al. [22] 

investigated microfluidic CO2 absorption by water-lean solvent. The data was utilised to forecast CO2 absorption 

efficiency using ANN. The result shows that ANN model performed best with RMSE 0.35, indicating that the ML 

technique predicts water-lean amine solution CO2 removal efficiency well.  

Reviewing the relevant studies suggests that ANN has been widely used in predictive task, although alternative 

machine learning algorithms are also applicable. Further, the output of the prediction made by the model can be 

applied to maximize CO2 absorption efficiency within a range of optimal conditions. This work employs GPR and a 

deep network model called BPNN to predict the CO2 absorption in MEA corresponding to experimental data taken 

from Nour et al [23]. Also, optimization has been performed to maximize the CO2 absorption with optimal conditions. 

METHODOLOGY 

Database information 

The CO2 absorption data in MEA has been gathered from the literature of Nouroddinvand et al. (2021). The 

experiment utilised a novel design of high-gravity Arc-blade RPB to investigate its impact on CO2 absorption 

efficiency with a MEA aqueous solution. The absorption tower is described in the work of Nouroddinvand et al [23]. 

The WebPlotDigitizer program is utilised to acquire data for the model's input-output variables. The input has been 

derived from the data acquired via the graph. The comprehensive dataset has 140 observations for input-output 

variables. The prediction of mole fraction of CO2 in gas outlet is based on following inputs: MEA concentration 

(mol/l), rotational speed (RPM), liquid and gas flow rate (l/min), and mole fraction of CO2 in gas inlet, as illustrated 

in Table 1. The entire dataset is partitioned in two subsets: training and testing dataset. 30% of entire data is set aside 

for testing, while 70%s is used for training.  

Table 1: Details of parameters and operational variables of experiment conducted in RPB 

Parameters and operational variables of RPB  

Axial height (m) 0.098 

Inner radius (m), outer radius 

(m) 
0.04, 0.14 
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Parameters and operational variables of RPB  

Specific surface area of packing 

(m-1) 
53.5 

Packing porosity 0.9882 

CO2 concentration in gas phase 

(ppm) 
5000-20000 

MEA concentration (mol/l) 0.5-2 

Flowrate of liquid (l/min) 0.3-0.6 

Rotational speed (rpm)  300-1200 

Different ML models 

Establishing an accurate and dependable analytical relationship to characterise nonlinear processes and connect 

independent and dependent variables is difficult. Artificial intelligence has gained significant attention in recent 

times owing to their effectiveness, versatility, accessibility, and the availability of numerous established training 

methodologies. By employing a suitable learning technique to train these networks, one can determine the relation 

between inputs-outputs in multivariate nonlinear systems. This paper describes two algorithms: GPR, and ANN. 

B.1 Gaussian Process Regression (GPR) 

GPR is an adaptable and efficient ML technique designed for regression issues. It is one of a kind because it not only 

makes predictions, but it also measures how uncertain those forecasts are. GPR is based on Gaussian distributions 

and Bayes' theorem, and it may adapt to data without requiring a fixed relationship (linear/polynomial) between 

input and output [24]. The kernel function (covariance function) determines the relationship between data points. It 

calculates how much effect one data point has on another based on their similarity. GPR employs Bayes' theorem to 

update its predictions with observed data becomes available. GPR can mathematically represented as Eqn. 1:  

Where m(X) - the expected value of the function being modelled, and k(X,X’)— the kernel function  

𝑦 = 𝑓(𝑚(𝑋), 𝑘(𝑋, 𝑋′))          (1) 

B.2 Artificial Neural Network (ANN) 

ANN employs multilayered architectures known as neural networks to replicate human behaviour through evaluation 

of data. It comprises numerous basic processing units known as neurones, interacting across various layers. The three 

layers of an ANN consist of the input, hidden, and output. Data is sent through the input layer, subsequently 

transmitted to the hidden layer, and finally to the output layer to generate predictions utilising an activation function 

[25], [26]. The output of each neurone is a function of weight and bias as described by Eqn 2. The output of the ANN 

model is more in line alongside the real data when the weights given to the neural pathways between the neurones 

are optimised. 

𝑌̂ = 𝑓(𝑋𝑊 + 𝐵)           (2) 

Where 𝑌̂ is predicted variable and X is input vector, 𝑓 is activation function, B is bias, and W is associated weights. 

C. SHAP analysis 

Analysing every input feature on the expected output is crucial. One approach to find the relevance of input features 

on the prediction is SHAP (SHapley Additive exPlanations) analysis. This approach investigates the significance and 

function of every value off features in the anticipated output by use of game theory and coalition game reward 

allocation. The greater the absolute SHAP value of a variable, greater its influence on model prediction [27]. 

D. Evaluating ML models 

Performing statistical analysis is important to predict which model behaves more appropriately. Here, the metrics 

used for assessment of the two models is Mean Absolute Error (MAE), root mean square error (RMSE), and R2 value 

and its mathematical equation is given by Eqn. (3-5). Further analysis have also been made using parity plot between 

the predicted output, and actual data.  
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Mean Absolute Error:           (3) 

∑

𝑛

𝑖=1

|𝛼𝑒𝑥𝑝 − 𝛼𝑝𝑟𝑒𝑑|

𝑛
 

Root Mean Square Error:          (4) 

√∑

𝑛

𝑖=1

(𝛼𝑒𝑥𝑝 − 𝛼𝑝𝑟𝑒𝑑)2

𝑛
 

R2:             (5) 

1 −
∑𝑛

𝑖=1 (𝛼𝑒𝑥𝑝 − 𝛼𝑝𝑟𝑒𝑑)2

∑𝑛
𝑖=1 (𝛼𝑒𝑥𝑝 − 𝛼)2

 𝑤ℎ𝑒𝑟𝑒 𝛼 =
∑𝑛

𝑖=1 𝛼𝑒𝑥𝑝

𝑛
 

Here, n is total number of observations, 𝜂𝑒𝑥𝑝 denotes the experimental values, and 𝜂𝑝𝑟𝑒𝑑  denotes the predicted values  

RESULTS AND DISCUSSION 

The analysis of the both the models have been performed using statistical analysis and graphical representation as 

discussed in Section 2.4. The results have been shown in Table 2. It can be observed that RMSE is least for GPR with 

R2 value 0.98 which is near to 1. Also, Fig.1 shows that the data is aligned very close to linear line and has least scatter 

points for GPR. So, it can be concluded that GPR performs better than ANN.  

Table 2: Statistical inferences of the models 

 GPR ANN 

MAE 0.02 0.06 

RMSE  0.03 0.078 

R- squared 

value 
0.98 0.94 

 

(a) 

 

(b) 

Fig. 1. Comparison plot of CO2 mole fraction in gas outlet (experiment) and CO2 mole fraction in gas outlet (model 

predicted) (a) GPR (b) ANN 
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Further SHAP analysis has been performed to know impact of each input on anticipated output using GPR model. It 

can be observed from Fig. 2 that among the four input features CO2 inlet mole fraction has the highest influence on 

the output as increase in mole fraction of CO2 enhances mass transfer and hence more absorption. MEA 

concentration and solvent flowrate also have good influence on the output as this also drives the increase in mass 

transfer and hence the efficiency. Lastly, we have rotational speed which is least among all but this input is very 

important operational parameter to be considered.  

 

Fig. 2. Impact of input variables on GPR predicted output through SHAP analysis 

For better performance, essential operational factors are optimized on the output predicted by the model to maximize 

CO2 absorption efficiency. It is essentially desirable to have a model that demonstrates an appropriate generalisation 

of the mechanism to access the input design space of operating factors and identify the optimum solution. CO2 

absorption efficiency is calculated using Eqn. 6 

𝜂𝐶𝑂2
= (

𝑦𝐶𝑂2,𝑖𝑛−𝑦𝐶𝑂2,𝑜𝑢𝑡

𝑦𝐶𝑂2,𝑖𝑛
)x100%         (6) 

Where, 𝜂 is the absorbption efficiency, 𝑦𝐶𝑂2 ,𝑖𝑛, 𝑦𝐶𝑂2,𝑜𝑢𝑡  CO2 mole fraction in gas inlet and outlet respectively. 

Rotor speed for absorber, Concentration of MEA, CO2 mole fraction (gas inlet), and solvent flowrate are considered 

as the decision variables of the optimization. The optimization has been performed on all these variables to maximize 

the CO2 absorption efficiency. The objective problem is formulated as below by Eqn. (7-11): 

𝜂𝐶𝑂2
            (7) 

600 ≤ 𝑅𝑃𝑀 ≤ 1300         (8) 

0.25 ≤ 𝐹𝑀𝐸𝐴 ≤ 0.65         (9) 

0.25 ≤ 𝑦𝐶𝑂2,𝑖𝑛 ≤ 0.3         (10) 

where, 𝐶𝑀𝐸𝐴 is MEA concentration, RPM is rotational speed, 𝐹𝑀𝐸𝐴 is solvent flowrate, and 𝑦𝐶𝑂2,𝑖𝑛 is mole fraction of 

CO2 in gas inlet. 

The optimisation has been performed using genetic algorithm. Outcomes exhibit that the maximum efficiency of CO2 

absorption is 90%, with ideal values for the decision variables presented in Table 3. Given the nonlinear interactions 

of input variables on CO2 absorption, the established operating values and their variations range can facilitate the 

attainment of maximum CO2 capture levels under varying flue gas operating conditions.  

Table 3: Optimization summary with optimal values of the variables obtained 

 𝜼𝑪𝑶𝟐
   

Decision variables Lower and Upper Range Optimal values 

𝐶𝑀𝐸𝐴 0.2, 2.2 2.2 

𝑅𝑃𝑀 600, 1300 1000 
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 𝜼𝑪𝑶𝟐
   

Decision variables Lower and Upper Range Optimal values 

𝐹𝑀𝐸𝐴 0.25, 0.65 0.56 

𝑦𝐶𝑂2,𝑖𝑛 0.25, 0.3 0.3 

CONCLUSION 

This work examines experimental data on CO2 absorption in MEA using RPB. The modelling has been conducted 

utilising two Artificial Intelligence methodologies: GPR and ANN. The best predicted model is further amalgamated 

with optimisation method to enhance CO2 absorption efficiency. Statistical analysis indicates that GPR outperforms 

ANN, with an RMSE of 0.03 and a R² of 0.98. Additionally, to ascertain the influence of inputs on the projected 

output, SHAP analysis was conducted, indicating that the CO2 mole fraction in gas inlet and concentration of solvent 

MEA are significant factors. The GPR model is combined with an optimisation problem to ascertain the optimal 

operating parameter for the variables being used that yield maximal CO2 capture. This work offers a model-driven 

optimisation system aimed to determine optimal conditions for maximising CO2 absorption. The findings serve as a 

valuable reference for the industrial sector in effective application of CO2 capture utilising MEA, ultimately 

supporting the goals of carbon neutrality. 
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