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The Discrete Wavelet Transform (DWT) is a widely adopted technique in medical image 

compression for its ability to capture spatial and frequency characteristics. Clinical diagnosis 

may be impacted by distortions and the loss of important details caused by DWT's inability to 

preserve phase information, which is crucial for keeping the alignment of edges and textures in 

images. By incorporating a trained Autoencoder to learn and preserve essential image features 

for improved reconstruction, this limitation is addressed effectively. The Autoencoder comprises 

an encoder with convolutional layers using non-separable filters to enforce orthogonality, and a 

decoder with trans-posed convolutions for image reconstruction. JPEG2000 was employed as 

the compression technique, with the proposed method achieving a similar compression ratio to 

traditional DWT, indicating no compromise in efficiency. The results show that the enhanced 

DWT with autoencoder significantly out-performs the traditional DWT method, achieving up to 

61.90% improvement in Peak Signal-to-Noise Ratio (PSNR), thereby reducing distortions and 

preserving critical image details more effectively. This improvement is crucial for maintaining 

the integrity and diagnostic quality of medical images, ensuring that essential features are 

accurately represented. 

Keywords: Autoencoder, Discrete Wavelet Transform, Image Compression, Medical Images, 

Wavelets. 

 

INTRODUCTION 

The advancement of digital imaging technology has significantly increased the demand for efficient image 

compression methods, as digitized images, videos, and audios have led to a substantial rise in data storage 

requirements. With the rapid advancement of digital image processing technologies and the widespread adoption of 

the Internet, digital images are now utilized in numerous applications, including medical imaging. [1]. Representing 

even one digital image often requires a large number of bits, and as sensor and digital technology advances, this 

requirement increases with each new product generation. Furthermore, the number of digital images created each 

day increases as more applications are developed. To efficiently utilize digital images, specialized techniques are 

required to minimize the number of bits needed for their representation. The branch of digital image processing that 

deals with this problem is called image compression.  

Among the various techniques, wavelet transform has emerged as a highly effective method for image compression 

because it enables the representation of data at different levels of detail. The wavelet transform (WT) relies on 

wavelets to decompose a signal (or image) into various frequency components across multiple resolution scales, 

enabling the simultaneous analysis of the image's spatial and frequency characteristics. 
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Discrete wavelet transform algorithms have become widely used in discrete-time signal and image processing across 

various research fields and industries [2]. It transforms data into different frequency components, allowing each 

component to be analyzed with a resolution that matches its scale. It is widely used in image compression techniques, 

such as JPEG2000. JPEG2000 utilizes DWT to achieve superior compression ratios compared to its predecessor, 

JPEG, while maintaining high image quality. Despite its advantages, DWT presents certain drawbacks when utilized 

in image compression. DWT lacks phase information, which is crucial for accurately representing fine details and 

textures in images. The absence of phase information in DWT means that while it effectively captures the magnitude 

of signal components, it fails to preserve the relative alignment and orientation of features within an image. This can 

lead to distortions and misalignment in reconstructed images, particularly affecting areas with fine textures or 

intricate details. 

Medical Imaging 

One industry that produces enormous amounts of digital images every day is the medical industry. According to [3], 

medical imaging encompasses various techniques used to visualize the human body for diagnosing, treating, and 

monitoring medical conditions. Medical imaging has a critical role in contemporary clinical diagnosis, as previous 

research has linked imaging technology to longer life expectancy, declines in mortality and hospital admissions, as 

well as shorter hospital stays [4]. Hospitals and clinics utilize advanced medical imaging technologies, such as 

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and traditional radiography—conducted through 

computed radiography (CR) and digital radiography (DR)—to capture digital images of the human body for medical 

diagnostics and services. These images are typically very large in size, and it leads to an increasingly heavy burden 

for data storage and transmission via the Internet. Considering the substantial volume of data produced by imaging 

systems, implementing effective compression techniques becomes essential, and would greatly reduce the data 

storage and transmission requirements. In medical imaging where any loss in data may lead to incorrect prediction 

or diagnosis, lossless compression methods are used. 

Every image contains redundancy, meaning there is a repetition of data within the image [5]. This could involve 

recurring pixels or patterns that appear frequently throughout the image. Image compression algorithms exploit 

these redundancies to compress images, and they usually have two main parts, the encoding and decoding process. 

As mentioned in [6], the encoding process transforms the source image data file into a compressed format and is 

structured into three fundamental steps: transformation, quantization, and entropy coding. Conversely, the decoding 

process reconstructs the compressed image data back into its original form, essentially reversing the steps of the 

encoding process.  

Wavelet-based compression 

Wavelet-based compression is extensively utilized in medical imaging due to its capacity to manage large image sizes 

while preserving essential diagnostic details. It is stated in [7] that modern compression techniques utilizing wavelet 

transforms have the potential to revolutionize the medical field. Furthermore, [8] highlights that lossless wavelet-

based image compression enhances accuracy and lowers bit rates, thereby improving compression efficiency for 

storing and transmitting medical images. This approach ensures that the image quality remains suitable for 

diagnostic use. 

One widely used wavelet-based compression technique in medical imaging is JPEG2000, due to its superior 

compression efficiency and flexibility. The adoption of JPEG2000 in the Digital Imaging and Communications in 

Medicine (DICOM) standard underscores its significance in healthcare. DICOM incorporated JPEG2000 as an 

encapsulation format in 2002, facilitating efficient storage and transmission of medical images. This integration 

allows for seamless interoperability among medical imaging devices and systems, enhancing the efficiency of medical 

data management [6]. JPEG2000 employs discrete wavelet transform, enabling both lossless and lossy compression. 

This dual capability ensures that critical diagnostic details are preserved, which is essential for accurate medical 

analysis. 

Discrete Wavelet Transform 

Discrete wavelet transform algorithms have emerged as essential tools in various research and industrial applications 

for processing discrete-time signals and images [2]. It transforms data into various frequency components, enabling 

each component to be examined with a resolution appropriate to its scale. It is a step-by-step computational 
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procedure used to transform a signal from the time (or spatial) domain into the wavelet domain. DWT is an 

outstanding tool for multi-resolution analysis, allowing signals to be decomposed into various sub bands that contain 

both time and frequency information [9].  

The standard 1D DWT operates by analyzing the signal at multiple levels of detail, enabling efficient representation 

of both high and low-frequency components. The process begins with the input signal being passed through a series 

of filters to separate the signal into two distinct parts: low-frequency (approximation) components and high-

frequency (detail) components. Figure 1 illustrates the process of 1D Discrete Wavelet Transform [10]. 

 

Figure 1. 1D Discrete Wavelet Transform. (a) Decomposition. (b) Reconstruction. 

In the decomposition stage, Figure 1 (a), the input signal X is filtered into low-frequency (approximation) and high-

frequency (detail) components using low-pass and high-pass filters, respectively. These components are then down 

sampled by a factor of 2 to reduce data size. Approximation coefficients capture the signal's general structure, while 

detail coefficients highlight fine features. In the reconstruction stage, Figure 1 (b), the original signal is reconstructed 

by up sampling and filtering these components using synthesis filters. 

Images are considered two-dimensional signals, varying both horizontally and vertically. As a result, 2D wavelet 

transform is necessary for processing images. The JPEG2000 standard and other image coding techniques make use 

of the separable 2D DWT, which is only an extension of the 1D DWT applied independently to an image's rows and 

columns. 

According to [10], the method for applying 2D Discrete Wavelet Transform (DWT) on images is to first apply DWT 

in the row direction, then another DWT in the column direction. This is illustrated in Figure 2. 

 

Figure 2. Two-dimensional row and column computation of DWT 

 

Figure 3. The two-dimensional DWT analysis filter bank 

Figure 3 illustrates the process of two-dimensional row and column computation using the Discrete Wavelet 

Transform (DWT). The LL subband in the figure provides a simplified version of the original image, containing low-

frequency approximation details. Meanwhile, the LH, HL, and HH subbands capture high-frequency components, 

representing the image's detailed information [10]. According to [11], the 2D DWT can be expressed mathematically 

by 

𝑎𝑗(𝑛) = ∑ 𝑙(𝑖) ∗ 𝑎𝑗−1(2𝑛 − 𝑖)𝐿−1
𝑖=0 , 0 ≤ 𝑛 < 𝑁𝑗               (1) 

𝑑𝑗(𝑛) = ∑ ℎ(𝑖) ∗ 𝑑𝑗−1(2𝑛 − 𝑖)𝐿−1
𝑖=0 , 0 ≤ 𝑛 < 𝑁𝑗               (2) 
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The approximation and detailed components of the signal at decomposition level j are denoted by the coefficients 

𝑎𝑗(𝑛) and 𝑑𝑗(𝑛). The coefficients 𝑙(𝑖) and ℎ(𝑖) represent the coefficients of low-pass and high-pass filters, respectively. 

Phase Information 

Phase information (PI) in images refers to the relative alignment and orientation of features, which is essential for 

accurately representing textures, edges, and fine details. As stated in [12], PI can provide not only phase angles but 

also frequency as well as ridge and skeleton curves, offering a comprehensive understanding of an image's structural 

characteristics. In image processing, PI is crucial because it preserves the structural integrity of visual data, ensuring 

that features such as edges and textures are accurately represented. This preservation is vital for tasks like edge 

detection and image segmentation, where precise delineation of structures is required. 

In medical imaging, the importance of PI is further amplified. Accurate representation of anatomical structures is 

essential for diagnosis and treatment planning. For instance, phase-contrast X-ray imaging leverages PI to enhance 

the visibility of soft tissues, which are often difficult to distinguish using traditional absorption-based X-ray 

techniques. This method provides higher contrast and spatial resolution, allowing for better visualization of fine 

anatomical details without the need for contrast agents [13]. 

Autoencoder 

Autoencoders have emerged as a powerful tool for anomaly detection in various domains, including medical imaging, 

fault detection and traffic system control. These neural network architectures are particularly well-suited for 

unsupervised learning tasks, where labeled data is scarce. The idea behind autoencoders is to learn a compressed 

representation of the input data and use this representation to reconstruct the original input. By training the 

autoencoder on normal data, it learns to capture the underlying patterns and structures of data, allowing for an 

accurate reconstruction of normal instances. However, when presented with anomalous data, the autoencoder may 

struggle to reconstruct it accurately, resulting in higher reconstruction errors. This discrepancy in reconstruction 

error can be used to identify anomalies [14]. 

In the context of DWT for image compression, autoencoders enable the design of data-independent wavelets, 

ensuring desirable properties like orthogonality, smoothness, compact support, and vanishing moments through 

architectural constraints and regularization [15]. This allows for improved directionality and phase preservation, 

addressing some of the limitations of conventional DWT in applications like medical image compression. By learning 

wavelet filters from Gaussian training data, the method ensures near-perfect reconstruction, making it suitable for 

adaptive and efficient image compression algorithms like JPEG2000.   

PROPOSED FRAMEWORK 

 

Figure 4. Proposed Architecture 

Figure 4 shows the proposed framework which uses a novel approach to medical image compression by enhancing 

the Discrete Wavelet Transform (DWT) with a trained autoencoder and adaptive thresholding. This combination 
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addresses the limitations of DWT in preserving image details [15]. By incorporating Cayley transform into DWT 

filters, the framework ensures orthogonality and symmetry, thereby improving the retention of phase information 

which is critical for maintaining the alignment of edges and textures in images. This enhancement directly tackles a 

key weakness of standard DWT, where the loss of phase information can lead to distortions and loss of fine details, 

potentially affecting clinical diagnosis. 

The use of a trained autoencoder further strengthens the framework's ability to preserve essential image features. 

The autoencoder, with its encoder-decoder structure, learns to efficiently compress and reconstruct the image data, 

specifically the LL sub-band which contains the most crucial low-frequency information. This learning process allows 

the autoencoder to identify and retain key features, leading to improved reconstruction quality. Additionally, the 

application of adaptive thresholding to the wavelet coefficients reduces redundancy and further enhances the 

compression efficiency. 

Data Collection 

The first step involves obtaining medical image datasets from public available sources which includes modalities such 

as MRI, CT scans, and X-rays. X-ray images are retrieved from [16]. To ensure comprehensive analysis and 

applicability, the framework considers diverse medical imaging modalities. The collected images are then 

preprocessed by converting them to grayscale or the YCbCr color space to reduce color redundancy. Subsequently, to 

ensure computational consistency, all photos are then downsized to a consistent 256x256 pixel size. Pixel values are 

standardized to a range of [0,1] to boost the model’s learning capabilities and efficiency during the compression 

procedure. 

Let I(x, y) represent the image intensity at pixel (x, y). The preprocessing steps can be expressed as: 

Conversion to grayscale or YCbCr color space: 

𝐼𝑔𝑟𝑒𝑦𝑠𝑐𝑎𝑙𝑒  (x, y) = 0.2989 ∗ 𝑅 + 0.5870 ∗ 𝐺 + 0.1140 ∗ 𝐵 

Resizing images to M x N:  

 𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑(x, y) = Rescale {I(x, y), M, N)                    (3) 

Normalization: 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  (x, y) = 𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑
(x,y)

255
                         (4) 

Discrete Wavelet Transform (DWT) Enhancement 

The preprocessed images undergo a multi-level Discrete Wavelet Transform (DWT) to decompose them into sub-

bands: LL, LH, HL, HH. This decomposition is expressed as: 

𝐿𝐿(𝑥, 𝑦) = ∑ ∑ 𝐼 (𝑥 + 𝑖, 𝑦 +  𝑗) ∗ ℎ(𝑖) ∗ ℎ(𝑗)𝑁
𝑗=1

𝑀
𝑖=1             (5) 

𝐿𝐻(𝑥, 𝑦) = ∑ ∑ 𝐼 (𝑥 + 𝑖, 𝑦 +  𝑗) ∗ ℎ(𝑖) ∗ 𝑔(𝑗)𝑁
𝑗=1

𝑀
𝑖=1            (6) 

𝐻𝐿(𝑥, 𝑦) = ∑ ∑ 𝐼 (𝑥 + 𝑖, 𝑦 +  𝑗) ∗ 𝑔(𝑖) ∗ ℎ(𝑗)𝑁
𝑗=1

𝑀
𝑖=1            (7) 

𝐻𝐻(𝑥, 𝑦) = ∑ ∑ 𝐼 (𝑥 + 𝑖, 𝑦 +  𝑗) ∗ 𝑔(𝑖) ∗ 𝑔(𝑗)𝑁
𝑗=1

𝑀
𝑖=1           (8) 

Where ℎ(𝑖) and 𝑔(𝑖) represent the low-pass and high-pass filters, respectively. 

The proposed enhancement improves the DWT filters using the Cayley Transform for orthogonality and symmetry, 

addressing phase information issues [17]. The enhanced wavelet filter is expressed as: 

𝑊𝑒𝑛ℎ = (𝐼 − 𝐴)(1 + 𝐴)−1                                   (9) 

Where 𝐴 is the matrix of initial filter coefficients and 𝐼 is the identity matrix. 

To reduce redundancy, adaptive thresholding is applied to wavelet coefficients using: 

𝑇 =  𝛼 ∗  𝜎 +  µ                                             (10) 
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Autoencoder-Based Compression 

The enhanced DWT sub-band LL is passed as input to the autoencoder, which compresses and reconstructs the 

image. The encoder compresses the input into a latent representation Z, defined as: 

𝑍 = 𝐸(𝐿𝐿) = 𝜎(𝑊𝑒 ∗ 𝐿𝐿 + 𝑏𝑒)                           (11) 

The decoder reconstructs the sub-band as: 

𝐿𝐿 = 𝐷(𝑍) =  𝜎(𝑊𝑑  ∗  𝑍 + 𝑏𝑑)                        (12) 

Here, We and Wd are weight matrices, be and bd are biases, and σ is the activation function. 

The reconstructed image is obtained by applying the inverse DWT: 

 𝐼(𝑥, 𝑦) = 𝐼𝐷𝑊𝑇 (𝐿𝐿, 𝐿𝐻, 𝐻𝐿, 𝐻𝐻)                      (13) 

The loss function for training the autoencoder is the Mean Squared Error (MSE): 

ℒ =
1

𝑀𝑁
= ∑ ∑ {𝐼(𝑥, 𝑦)  − 𝐼(𝑥, 𝑦)}

2𝑁
𝑦=1

𝑀
𝑥=1                (14) 

Evaluation Metrics 

The suggested system was assessed using three important parameters to ensure improved image quality and the 

retention of critical qualities. Peak Signal-to-Noise Ratio (PSNR) was used to assess the quality of reconstructed 

images, revealing the framework's capacity to reduce distortions while maintaining clarity. Heatmap Detection 

provided a visual study of differences between original and reconstructed images, with a focus on preserving 

structural details and reducing phase distortions. Furthermore, the Mean Reconstruction Error (Mean Difference) 

measured reconstruction accuracy, emphasizing the retention of important image information. These metrics 

collectively demonstrate the framework's capacity to improve image compression and fidelity for medical 

applications. 

RESULTS AND DISCUSSION 

This section evaluates the performance of the enhanced Discrete Wavelet Transform (DWT) framework with an 

integrated autoencoder, specifically addressing the preservation of phase information and improvement in medical 

image compression. Results are presented using metrics such as mean reconstruction error (mean difference), Peak 

Signal-to-Noise Ratio (PSNR), and comparative improvement percentages over the traditional DWT method. These 

findings demonstrate the proposed framework's potential for reducing distortions and improving image quality. 

Quantitative Results 

1. Mean Difference Analysis 

The mean difference quantifies the reconstruction error, where lower values indicate better image detail preservation. 

Table 1 illustrates the comparative results between the traditional DWT-only method and the enhanced DWT with 

Autoencoder across five test images. 

Table 1: Mean Difference Analysis Result 

Test Image 
DWT with 

Autoencoder 
DWT Only 

Percentage 

Improvement 

1 0.2075 0.3378 38.59% 

2 0.2765 0.3220 14.13% 

3 0.2512 0.2942 14.61% 

4 0.3494 0.3571 2.15% 

5 0.2890 0.3598 19.68% 

The results shown in Table 1 indicate that the enhanced DWT framework consistently outperforms the traditional 

method, achieving up to 38.59% reduction in reconstruction error for Test Image 1. This demonstrates the 

framework's capability to address phase distortion and retain critical image details. 
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2. Peak Signal-to-Noise Ratio (PSNR) Analysis 

PSNR measures the quality of reconstructed images, with higher values reflecting reduced distortions and improved 

clarity. Table 2 summarizes the PSNR comparison. 

Table 2: PSNR Analysis Result 

Test Image 
DWT with 

Autoencoder 
DWT Only 

Percentage 

Improvement 

1 10.29 6.65 54.74% 

2 9.68 6.99 35.48% 

3 10.03 6.29 59.46% 

4 10.41 6.43 61.90% 

5 10.93 10.65 2.63% 

Table 2 shows that the enhanced DWT with Autoencoder achieves significant improvements in PSNR, with a 

maximum percentage improvement of 61.90% for Test Image 4. Even the lowest improvement of 2.63% for Test 

Image 5 highlights the robustness of the proposed method across diverse image sets. 

Visual Comparisons 

Visual comparisons between the original, DWT-only, and enhanced DWT-autoencoder reconstructed images, as 

depicted in Figure 5, reveal noticeable improvements in structural detail preservation and reduction of phase 

distortions. Artifacts and edge misalignments in DWT-only reconstructions are mitigated in the proposed method, 

emphasizing its effectiveness for medical imaging applications. 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Comparison of the Proposed and Current Framework. (a) Original Image. (b) Proposed Framework. (c) 

DWT Reconstrructed 
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To further analyze the differences, heatmaps were generated to visualize discrepancies between the original image 

and the reconstructed outputs. Figure 6 shows the heatmaps which highlight areas with significant changes in wavelet 

coefficients, emphasizing the differences in reconstruction fidelity. Comparisons between the original image and the 

traditional DWT-only reconstruction reveal pronounced artifacts, particularly along edges and regions with high-

frequency details. Conversely, heatmaps comparing the original image with the enhanced DWT-autoencoder 

reconstruction show substantially lower intensity differences, indicating superior preservation of structural features 

and reduced phase distortions. 

 

(a) 

 

(b) 

Figure 6. Heatmap Comparison. (a) Original vs. Proposed Framework. (b) Original vs. DWT Reconstructed 

CONCLUSION 

The proposed enhancement of the Discrete Wavelet Transform (DWT) algorithm addresses its critical limitation in 

preserving phase information, which is essential for maintaining the alignment of edges and textures in images. By 

integrating a trained Autoencoder, the method effectively learns and retains essential image features, ensuring 

improved reconstruction quality. The results show that the enhanced DWT with Autoencoder significantly 

outperforms the traditional DWT method, achieving up to 61.90% improvement in Peak Signal-to-Noise Ratio 

(PSNR), thereby reducing distortions and preserving critical image details more effectively. This advancement is 

particularly vital in medical image compression, where maintaining the diagnostic integrity of images is paramount. 

The integration of the enhanced DWT with the JPEG2000 compression framework achieves a balance between 

compression efficiency and image quality, providing a robust solution for modern medical imaging needs. These 

findings highlight the potential for further applications and refinements in the use of wavelet-based algorithms in 

critical domains.  

Recommendations 

Future research could optimize the Autoencoder to reduce complexity and improve speed for resource-limited 

hardware. Incorporating multi-scale phase preservation and adaptive wavelet bases tailored to specific medical 

modalities, such as MRI or CT, could enhance performance. Testing on real-world datasets and clinical evaluations 

would validate its practical applicability and diagnostic impact. 
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