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Hyperspectral Imaging (HSI) is a powerful technology for capturing high-dimensional spectral 

information across a wide range of applications, including remote sensing, medical diagnostics, 

and material analysis. However, extracting meaningful insights from HSI data presents unique 

challenges due to its complex nature and high dimensionality. This study explores innovative 

machine learning-based strategies aimed at enhancing the functionality of HSI in various 

applications. One key approach investigated in this research is the implementation of Deep 

Learning-based frameworks, with a particular focus on Generative Adversarial Networks 

(GANs). GANs, equipped with Convolutional Neural Networks (CNNs) as generators, which are 

utilized to create data points that are not only statistically accurate but also semantically 

meaningful in relation to the underlying distribution. Through an adversarial objective function, 

the generator is trained to predict the distribution, while the discriminator network distinguishes 

between real and generated data. This adversarial game between the discriminator and generator 

has shown promise in improving HSI classification efficiency. Furthermore, the proposed GAN 

framework incorporates a classifier component capable of categorizing HSI samples based on 

their spectral characteristics, using a novel algorithm called the Generative Model-based Hybrid 

Approach (GMHA-HSIC). This approach adds a valuable dimension to HSI data analysis by 

enabling accurate classification based on spectral features. 

Keywords:  Generative Adversarial Networks (GANs), Convolutional Neural Networks (CNNs), 

Hyperspectral Imaging (HSI), Generative Model-based Hybrid Approach (GMHA-HSIC) 

 

INTRODUCTION 

Hyperspectral imaging (HSI) analyzes a broad light spectrum instead of just three primary colours (red, green, blue) 

where each pixel produces different spectral bands, providing more detailed information about the object or material 

under investigation [1]. Because of their high sensitivity to detail, these images have many applications in various 

diverse fields like medicine, mining, defence, and environmental protection [2]. For example, hyperspectral imaging 

can be used in environmental research to enhance our understanding of changes in water quality and pollution levels, 

which parallels other studies in environmental sciences such as those exploring critical thinking in environmental 

education [35]. 

The imaging spectrum was first defined in the early 1980s [3]. Infrared, near-infrared, visible, and ultraviolet 

electromagnetic radiation can all be captured using this technique. Each pixel in the imaging spectrometer may 

collect a totally reflected or emitted spectrum at the chosen wavelength. Each individual pixel that makes up a 

hyperspectral (HS) image can be sorted out with the help of a process known as HSI categorization [4]. The goal is to 

determine the spectrum of each pixel to identify materials, detect processes, and find objects. Each hyperspectral 

image (HSI) has its own unique electromagnetic spectrum that sets it apart from others of its kind [5-7]. HSI has 

found use in agricultural research as well, where it can assist in the identification of sources of resistance in crops, 

such as groundnut genotypes resistant to leaf spot disease [32, 33]. 

There are various factors that must be taken into account while classifying HSI: 

• Lack of training samples, known as the dimensionality curse or Hughes’ Phenomenon. 
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• Managing a large number of land-cover classifications. 

• Classes of data that are distributed in a non-linear fashion. 

The right classifier has to be used to overcome these obstacles. For classifiers to perform at a high level of accuracy, 

it is necessary to cherry-pick the most important aspects of the gathered features and feed them to the system. The 

term "feature selection" describes this procedure. 

Spectral classification and spatial classification are the two main forms of hyperspectral classification [8]. The 

classification of wavelengths in the spectrum is based on the reflectance values of the pixels. Essential spectral 

properties including variance, standard deviation, minimum reflectance, maximum reflectance, and mean 

reflectance may be estimated and used for classification [4, 9]. Textural characteristics, attribute values, and pixel 

placement and context are all detected by spatial categorization. 

Image pre-processing [10], selecting training samples, evaluating classification accuracy, selecting appropriate 

classification algorithms, and feature extraction are all essential parts of the image classification process. Images can 

be categorized using a variety of classifiers, including contextual, knowledge-based, per-field, sub-pixel, and per-pixel 

classifiers. The classification process can be broadly divided into unsupervised, supervised, or semi-supervised 

approaches, depending on the utilization of training examples [11]. Unsupervised classification involves the discovery 

of patterns and clusters in data without relying on predefined classes. Supervised classification entails assigning 

meaningful classes to unclassified pixels using samples with known identities. Semi-supervised algorithms, on the 

other hand, combine a limited set of labeled data with a substantial amount of unlabeled data during the training 

phase. Studies in areas like artificial intelligence in the banking sector demonstrate the significant power that 

machine learning algorithms can bring to these classification systems [33, 36]. 

Nevertheless, the considerable complexity and voluminous nature of data generated by HSI instruments introduce 

numerous challenges. Extracting valuable insights from this data necessitates the application of advanced techniques 

that surpass the capabilities of conventional analytical methods. In recent years, machine learning has emerged as a 

powerful toolkit to understand the complexities of HSI data and to overcome key challenges, including high-

dimensional data, noise, and the need for automated feature extraction and classification [12]. Machine learning's 

ability to handle such complexities mirrors its application in fields such as electronic health records to improve 

decision support systems [34]. 

HSI was primarily used for laboratory research and remote sensing applications, with limited computational 

capabilities. In the 1990s, HSI gained prominence in remote sensing and agriculture. Machine learning algorithms 

were employed to process and analyzed vast amounts of spectral data, allowing more precise monitoring of land use, 

crop health, and environmental changes [13-16]. For instance, the classification and identification of minerals based 

on their spectral signatures greatly improved in terms of accuracy and efficiency, benefiting resource discovery [17-

18]. In agriculture, HSI aids in the detection of vegetation health and environmental monitoring, much like how 

remote sensing tools in environmental protection help in pollution control and ecosystem assessments [19-21]. 

In healthcare, HSI integrated with machine learning has been utilized for tasks such as cancer diagnosis, tissue 

characterization, and disease detection [22-23]. Due to its great resolving power for environmental, fine spectra, 

mining, and medical sectors, hyperspectral pictures have several military applications. Imaging spectrometers at 

different locations capture hyperspectral pictures. Most hyperspectral remote sensing image processing methods 

include noise reduction, dimensionality reduction, image correction, classification, and transformation [24]. 

Hyperspectral photographs, unlike conventional photos, include extensive spectral information, which helps 

categorize objects of interest by showing their chemical composition and physical structure. 

The most active field of hyperspectral research is image classification [25]. The digital categorization of RS (Remote 

Sensing) images detects and extracts feature data by analyzing earth surface and environmental data. RS images are 

specialized by using automated pattern recognition and remote sensing computer classification. With the increase in 

features and data volume, advanced hyperspectral remote sensing technologies have increased the threshold for 

observation technology in various fields such as agriculture and soil salinity [26-28]. Additionally, small spectrum 

changes in HSI images make them useful for various applications, such as mineral mapping and soil assessment, just 

as Titanium coagulants have been valuable in water treatment processes. 
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The present study investigates the integration of advanced machine learning paradigms, such as convolutional neural 

networks (CNNs), which have demonstrated remarkable potential in addressing the specific intricacies of HSI data. 

This research endeavors to unveil the transformative synergy between machine learning and HSI, illuminating the 

path toward novel insights and innovative applications. 

GAN Architectures 

For the basic GAN structure for games, two competing neural networks are shown in Figure 1. Multi-network 

management is a high-payoff game. The goal of any neural network is to maximise its reward. Generator and 

Discriminator are two neural networks used in the architecture. The discriminator and the generator are broken 

down into more specific sections. 

Figure 1.  Generative Adversarial Network 

Generator 

Our key model of interest is the generator G. It's a way to produce test data that closely mimics the training data in 

terms of statistical significance. Differentiability of the generating function allows for gradient descent to be used to 

learn its parameters. Even while a deep convolutional neural network is often used to illustrate this concept, any 

model that has the vibrational characteristic might be used [29]. These are theoretical representations of electrical 

power generation systems; 

x = G(z; θ(G)) ………………… (1) 

The unknown quantity z in Equation 1 is transformed into the measurable output x. All of x is contingent on z, and 

likewise. Having x > z is also crucial. These safeguards against the generator being forced into erecting a 2-

dimensional or 3-dimensional surface in the x-area. 

Architecture of Deep Auto-encoder (DAE) 

An unsupervised method that trains to recreate the input is a typical auto-encoder (Figure 2) DL methods are 

suited to knowing different hierarchical nonlinear characteristics, which are recognized as superior presentations 

for authentic data in a variety of areas, including computer vision and speech recognition [10, 30]. The decoder 

layer, encoder layer and hidden layer are the general structure of auto-encoder. The encoder layer’s output is the 

hidden layer’s input, and the hidden layer’s output is the decoder layer’s input. 

The encoder and decoder with symmetrical architecture form the auto-encoder’s function to map information 

Rd → Rd. With x input sequence and output sequence, the encode layer parameterized by θ = {W, b} is: 

y = fθ(x) = σ(W×x+b) ………………… (2) 

While σ(x) = max (0, x) is the activation function, Relu, of the encode layer. When differentiating to Sigmoid, in 

general, Relu may reduce the requirement for pre-training and speed up the process. Deep learning algorithms 

are converging toward more discriminative outcomes despite maintaining the network sparse. The decode layers 

and hidden layer reconstructed function is as follows: 

z = fθ′(y) = σ(WJ×y+bJ) ………………… (3) 

 

 

 
Variable z 
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or 

Fake 
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PROPOSED ALGORITHM 

Regular synthesis and labeling of spectra are crucial to accurate classification in DALF. Synthetic samples created via 

an iterative approach and confirmed using a discriminator may provide relevant spectra. It is possible that the 

framework's classification accuracy may be improved by combining GAN training with deep learning models. 

A CNN model is used by the discriminator to decode and produce synthetic spectrum data from noise occurrences 

based on the input class labels. The discriminator compares a given spectrum sample against a large database of both 

real and false spectra, none of which are labeled. The discriminator uses a Convolutional Neural Network (CNN) 

model to do this. Because of this, in an adversarial situation, a Generative Adversarial Network's discriminator 

provides input to the generator. The feedback increases the discriminator's capacity to generate convincing false 

samples. Each repetition involves calculating Ls and Lc to enhance G and D's functionality. In order to achieve 

classification performance with both synthetic examples and labeled actual spectra, classifier such as support vector 

machines (SVMs) and neural networks (NNs) are utilized. 

NN and SVM Parameter Tuning 

Training Parameters The Scikit-Learn Python module employs a custom-tailored C and kernel for SVM on real data; 

they are referred to as svm kernel and svm C. The hyperparameter C provides a second opportunity to mislabeled 

samples. The decision boundary may be influenced by C, which may have an impact on classification accuracy. In the 

presence of a high C, the classifier will work to reduce the number of mislabeled examples. 

We discovered that C = 1000 produced the most consistent outcomes after testing with C = 0.1, 1, 10,100, and 1000. 

As a result, we utilise the "linear" kernel approach, which has been demonstrated to be quicker, and set C to 1000. A 

Pipeline object with many settings is constructed and used for simulated support vector machine (SVM) training. 

Data generated with the default parameters are shown to be generally acceptable in Table 1. Multi-Layer Perceptron 

(MLP) Classifier is used to realise the NN. The values and descriptions of its parameters are shown in Table 2. 

Table 1. Pipeline object's stages property SVM parameters 

Parameter Value 

Shrinking True 

gamma auto 

Cache size 300 

degree 3 

probability False 

 

Table 2. The NN classifier's settings are detailed below. 

Parameter Value 

maxiter 200 

Learning rate constant 

alpha 0.0001 

Early stopping False 

activation ReLu 

Learning rate init 0.001 

Hidden layer sizes 100 

 

The suggested DALF architecture generator's output is shown in Table 3 for nine different instances. The table 

illustrates the F1-score, recall, and precision for various real-world and synthetic spectra data from the HIS 

classification with SVM. Table 4 displays the recall, F1-score, and accuracy of the HSI categorization on many real-

world spectra data instances, and presents the results of HSI classification using NN for various samples of enhanced 

spectra.  
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Table 3. The SVM classifier's performance on actual and synthetic spectra 

Samples 
SVM Performance (Real Data) SVM Performance (Synthetic Data) 

Precision Recall F1-Score Precision Recall F1-Score 

1 0.82 0.92 0.90 0.91 0.97 0.96 

2 0.95 0.93 0.95 0.98 0.96 0.99 

3 0.74 0.72 0.78 0.92 0.92 0.98 

4 0.98 0.95 0.95 0.99 0.95 0.99 

5 0.99 1.00 1.00 0.97 1.00 0.97 

6 0.89 0.86 0.89 0.94 0.95 0.96 

7 0.92 0.55 0.72 0.91 0.82 0.86 

8 0.86 0.89 0.92 0.99 0.96 0.90 

9 1.00 1.00 1.00 1.00 0.95 0.98 

 

Table 4. The NN classification performance on real and synthetic spectra 

Samples 
NN Performance (Real Data) NN Performance (Synthetic Data) 

Precision Recall F1-Score Precision Recall F1-Score 

1 0.9480 0.9396 0.9373 0.9407 0.9483 0.9445 

2 0.9677 0.9741 0.9709 0.9679 0.9771 0.9725 

3 0.8540 0.7753 0.8127 0.8349 0.7912 0.8125 

4 0.9524 0.9429 0.9476 0.9688 0.9433 0.9558 

5 0.9976 0.9843 0.9909 0.9953 0.9961 0.9957 

6 0.9126 0.9101 0.9114 0.9204 0.9137 0.9170 

7 0.8450 0.8437 0.8443 0.8902 0.8594 0.8745 

8 0.8567 0.8815 0.8689 0.8625 0.8743 0.8684 

9 0.9989 0.9944 0.9966 0.9989 0.9888 0.9938 

 

CONCLUSION 

This study introduces a Deep Learning-based framework called DALF, where a Generative Adversarial Network 

(GAN) is employed. Specifically, a Convolutional Neural Network (CNN) serves as the generator to create data points 

that are meaningfully connected to the underlying distribution. The generator is trained to predict the distribution 

by competing with a discriminator network through an adversarial objective function. The discriminator's role is to 

distinguish between real and generated data. By setting up this competition between the discriminator and generator, 

the framework aims to improve the efficiency of hyperspectral image (HSI) classification. Additionally, this proposed 

GAN framework includes a classifier component that can categorize HSI samples based on the spectral information 

used during training. To classify HSIs, the technique utilizes a sophisticated algorithm called the Generative Model-

based Hybrid Approach (GMHA-HSIC). 
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