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The rapid expansion of e-commerce in India has brought about a fundamental shift in 

consumer purchasing patterns, with a notable impact on the computer hardware industry. The 

increased access and choice have also led to a rise in product returns, as customers may not 

always be satisfied with their purchases or their expectations may not be fully met, posing a 

significant challenge for companies in the sector. The increasing prevalence of e-commerce in 

India has amplified product return rates, making return policies a crucial factor in shaping 

consumer purchase and return behavior. This study examines the return frequency of 

computer products in India and its relationship with return policies. Using data collected from 

224 consumers in Bengaluru through a primary questionnaire, this research applies machine 

learning techniques—including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), 

Random Forest, Decision Tree, Logistic Regression, and Naïve Bayes to predict return 

frequency based on various independent variables. 

The study identifies the best-performing model for understanding return policy factors and 

assesses the impact of return policies on consumer purchase and return decisions. This 

research contributes to the growing literature on consumer return behavior in India’s 

electronics market, offering practical insights for retailers, policymakers, and manufacturers to 

optimize return policies. The findings reveal that policy flexibility, return window duration, 

refund processing time, restocking fees, and ease of return procedures speed, and associated 

costs significantly influence consumer return behavior. A well-structured return policy can 

enhance consumer trust and satisfaction while minimizing unnecessary returns, thus 

benefiting both businesses and consumers. 

Keywords: Return Policy, Consumer Behavior, Return Frequency, Machine Learning, 

Computer Products, India. 

 

INTRODUCTION 

The Indian electronics industry has faced substantial hurdles in forecasting and managing product returns for 

recycling, as studies have highlighted the stochastic and uncertain nature of these returns. The management of 

product returns has become a crucial aspect of inventory management, particularly in the Indian electronics 

industry. Studies have highlighted the stochastic and uncertain nature of these returns, posing challenges for 

forecasting and effective management.(Ambilkar et al., 2021; Blackburn et al., 2004; Griffis et al., 2012;) While 

consumers may return products for a variety of reasons, such as poor functionality, damage during shipment, or 

regret over impulsive purchases, retailers often provide lenient return policies to signal high quality and act as risk 

relievers for purchasing decisions (Ülkü & Gürler, 2018). Computers have become integral to modern life, serving 
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as versatile tools that facilitate a wide range of activities, from professional tasks and productivity applications to 

educational purposes and online entertainment.  

The unpredictable nature of product returns has posed significant obstacles for the various reverse supply chain 

management activities, such as repair, refurbishing, and remanufacturing, that have been examined in the context 

of the Indian consumer electronics industry. (Mayo et al., 2006).  Researchers have attempted to categorize 

returned goods based on factors such as recency, usability, and residual value, and have analyzed the contribution 

of different return streams to the overall reverse supply chain operations. The ubiquity of computers in various 

facets of daily life underscores the importance of understanding the factors that shape consumer return behavior 

for these products, as this knowledge can inform more effective inventory management strategies and enhance 

operational efficiency to better meet the evolving needs and preferences of consumers in the Indian market. (Das & 

Chaudhari, 2015) 

The existing literature provides valuable insights into the management of product returns in the Indian context. 

Existing research has explored the design of value recovery networks for various categories of post-consumer 

product returns in India, finding that while these activities are generally profitable, the economic viability of 

remanufacturing has not yet been established as a viable proposition (Shaharudin et al., 2015; Ülkü & Gürler, 

2018). The impact of abusing return policies has also been investigated, with research highlighting the importance 

of understanding consumer return behavior in the context of single-period inventory models. (Ülkü & Gürler, 2018) 

Given the significance of computers in Indian consumers' lives, a deeper examination of the factors that influence 

return behavior for these products could yield crucial insights to assist retailers and manufacturers in developing 

more responsive and effective inventory management strategies, ultimately enhancing their ability to cater to the 

evolving needs and preferences of the Indian market. While there is limited research on the specific influence of 

return policies on consumer purchase decisions for computer products in India, this is an area that warrants further 

investigation. (Ariffin et al., 2018; Chen & Ma, 2020; Fan et al., 2013; Jatav & Gupta, 2020; Pei et al., 2014; 

Rokonuzzaman et al., 2020; Xu et al., 2014) 

A study on the management of product returns highlighted the growing importance of reverse logistics in the era of 

e-commerce, where product returns have become a common occurrence. According to the authors, as the e-

commerce sector continues to grow in India, understanding the relationship between the purpose of computer 

usage and product returns is crucial for optimizing reverse logistics processes. (2006) (Das et al., 2020; Frei et al., 

2020; Jatav & Gupta, 2020; Ren et al., 2020; Wang et al., 2021) 

The widespread adoption of computers in various aspects of life, from professional tasks to educational activities, 

has further emphasized the need to understand the factors that drive consumer purchase decisions. Moreover, the 

availability of a wide range of computer products, coupled with increasingly flexible return policies, has contributed 

to a rise in impulse purchases, which are closely linked to higher rates of product returns. (Iyer et al., 2019; Kumar 

& Kaur, 2018; Ülkü et al., 2013) Existing research has also revealed that dissatisfaction due to unmet expectations 

is a primary reason for product returns, particularly in industries where visual representations play a significant 

role in the purchasing process, such as electronics (Mayo et al., 2006) The present literature review aims to provide 

an in-depth understanding of consumer return patterns for computer products in India, with a particular focus on 

the role of return policies in purchase decisions.  

To address the research objectives, this study employed a quantitative research approach, wherein primary data 

was collected through a structured questionnaire distributed to 223 customers in Bengaluru, India. The data was 

then analyzed using various statistical and Machine Learning techniques, including Random Forest, K-nearest 

Neighbors, Logistic Regression, and Support Vector Machines were assessed to identify the best-performing model 

for predicting purchase decision factors and computer hardware product returns by consumers.  

The following objectives were considered in the study namely: 

1. Predicting "Return Frequency" based on a variety of independent variables  

2. To identify the best-performing model for return policy factors. 

3. To examine the impact of return policies on consumer purchase and return decisions for computer 

products in the Indian market. 
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Thus, the hypothesis of the study was to come up with a classification model which would help in prediction of best 

models obtained in return policies. Thus, we tested the following hypothesis: 

Null Hypothesis (H0): The independent variables do not have a significant impact on Return Frequency and  

Alternative Hypothesis (H1): At least one independent variable has a significant impact on Return Frequency 

RESEARCH SCOPE AND IMPLICATION 

Businesses can utilize the insights from this model to identify key drivers of product returns and address them 

strategically. For instance, improving return policies, customer support, or product specifications could potentially 

reduce return rates. The study helps in optimizing return policies to reduce return rates while maintaining 

customer satisfaction. Retailers can refining post-purchase support, warranty services, and exchange policies to 

reduce unnecessary returns. The study Provides insights into consumer return behavior, enabling better inventory 

and logistics management. The study further helps to assists in developing strategies and insights into patterns of 

returns to minimize fraudulent or unnecessary returns.  

For computer product manufacturers the study offers data-driven insights into product defects, usability concerns, 

and customer dissatisfaction factors leading to returns. Also Encourages improvements in product design, quality 

control, and after-sales support to reduce return frequency and highlights the need for clear product specifications, 

description, feature disclosures, and enhanced customer education to manage expectations.  

For policymakers and regulators the study Supports the development of uniform return frameworks across online 

and offline retailers to protect both businesses and consumers. Helps policymakers design awareness campaigns on 

responsible return practices to reduce unnecessary product returns. Provides empirical evidence to guide the 

formulation of consumer protection laws and establishment of standardized return policies in India's electronics 

market. And for the consumers the study encourages responsible purchasing behavior, minimizing waste and 

environmental impact associated with frequent returns, helps consumers make more informed decisions while 

purchasing computer products online or offline and encourages ethical return behavior to ensure sustainability and 

fairness in the retail ecosystem. 

RESULT ANALYSIS AND INTERPRETATION 

The study on "Return Frequency and Its Relationship with Return Policies in the Indian Computer Hardware 

Sector" provides critical insights into consumer behavior in the burgeoning e-commerce environment. Utilizing 

data from 224 respondents in Bengaluru, India, the research systematically investigates the impact of various 

independent variables on return frequency, employing machine learning models for predictive analysis. Here, we 

delve deeply into the key findings of the study, emphasizing the practical implications for businesses, policymakers, 

and consumers. The findings of this study underscore the relevance of independent variables such as demographic 

factors (age, gender), job type, income levels, and product-specific variables like computer usage and customer 

perceptions in shaping return behaviors. These variables serve as important predictors of whether a consumer is 

likely to return a product. Among these, factors like ease of return policies, perceived product quality, and refund 

processing times emerge as especially influential. This insight emphasizes that understanding and catering to these 

factors is essential for businesses aiming to reduce return rates while maintaining customer satisfaction. 

The study's hypothesis testing confirmed the significance of these variables, rejecting the null hypothesis (H0) and 

supporting the alternative hypothesis (H1). This conclusion highlights the intricacies of consumer decision-making 

processes, driven by policy structures and individual expectations.  

 The research rigorously evaluated six machine learning models to identify the best approach for predicting return 

frequency. These models included Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), 

Naïve Bayes, Random Forest, and Logistic Regression. Each model was assessed based on its accuracy.  

The results provide a clear performance comparison of six machine learning models used to predict the Return 

Frequency of computer products. These accuracy scores (or possibly another evaluation metric) offer valuable 

insights into the predictive power and usability of each model. 
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Variable SVM Decision 

Tree 

KNN Naïve 

Bayes 

Random 

Forest 

Logistics 

Regression 

Best 

Model 

Return 

Frequency 

0.64444 0.6667 0.57777 0.64444 0.64444 0.62222 Decision 

Tree 

1. Decision Tree: With a score of 0.6667, the Decision Tree model outperformed the other models, making it 

the most suitable tool for this study. Its superior performance can be attributed to its ability to capture non-

linear relationships and handle categorical and continuous data effectively. Additionally, Decision Trees are 

interpretable, allowing businesses to identify the key drivers influencing return behavior. 

2. Support Vector Machine (SVM) and Random Forest: Both models achieved scores of 0.644444, 

which is commendable. SVM is known for its robustness in handling high-dimensional datasets and defining 

clear decision boundaries, whereas Random Forest, as an ensemble method, combines multiple decision trees 

to improve predictive accuracy. These models are reliable but slightly less effective compared to the Decision 

Tree in this context. 

3. Naïve Bayes: The Naïve Bayes model also achieved a score of 0.644444, demonstrating its efficiency in 

probabilistic classification. However, its assumption of feature independence may have limited its ability to 

model complex interactions between variables in this dataset. 

4. Logistic Regression: With a score of 0.622222, Logistic Regression performed adequately but fell short of 

more complex models like Decision Tree or Random Forest. As a linear model, its predictive power might be 

constrained when dealing with non-linear relationships in the data. 

5. K-Nearest Neighbors (KNN): KNN was the least effective model, achieving a score of 0.577778. While 

simple and intuitive, KNN's sensitivity to noisy data and its computational cost likely contributed to its 

comparatively lower performance. 

The performance of the Decision Tree model surpasses that of others, such as SVM (0.6444), Random Forest 

(0.6444), and Logistic Regression (0.6222). This highlights the importance of model selection in analyzing return 

policies and predicting consumer behavior. The Decision Tree model, with its interpretable structure and focus on 

feature importance, proved to be particularly well-suited for this study's objectives. 

 One of the most insightful aspects of the study lies in the identification of key drivers affecting return frequency. 

Factors such as return window duration, refund processing time, restocking fees, and associated costs were found 

to be pivotal. Consumers tend to favor policies that offer flexibility and transparency, and any bottlenecks in these 

areas often lead to dissatisfaction and increased returns. On the other hand, brands with well-designed return 

policies, prioritizing customer convenience and minimizing return-related costs, tend to experience reduced return 

rates and higher customer loyalty. 

The research findings offer valuable implications for businesses operating in the e-commerce and computer 

hardware sectors. Firstly, the insights derived from the Decision Tree model can guide companies in shaping their 

return policies. For example, simplifying the return process by offering longer return windows or quicker refund 

processing times can address key pain points for consumers. Additionally, reducing restocking fees or ensuring a 

transparent communication channel with consumers can help build trust and mitigate unnecessary returns. 

Retailers can also employ predictive tools, like the Decision Tree model, to anticipate return frequency for certain 

products or categories. This would enable targeted interventions, such as improved product descriptions, enhanced 

customer education, or quality checks for high-return items. By leveraging these predictive insights, businesses can 

strike a balance between minimizing operational costs and maximizing customer satisfaction. The study highlights 

how critical consumer-centric return policies are in influencing purchase decisions. Modern consumers value 

convenience and trust in their interactions with brands. Factors such as ease of initiating returns, perceived fairness 

in policy enforcement, and overall product quality play a substantial role in shaping consumer behavior. Retailers 

must recognize that these preferences go beyond mere transactional experiences; they contribute to long-term 

brand loyalty and positive word-of-mouth promotion. 
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Additionally, the study underscores that consumers may view returns as a safety net, allowing them to make 

confident purchasing decisions in an online marketplace. Companies that foster this sense of security are more 

likely to thrive in the competitive e-commerce landscape, as they address the inherent uncertainties associated with 

online shopping. 

CONCLUSIONS 

Overall, this study provides valuable insights into the factors that influence consumer purchase decisions for 

computer products and their impact on product returns in Bengaluru, India. The findings highlight the importance 

of considering the intended purpose of computer usage when developing marketing strategies and product 

offerings, as this factor has a significant influence on the likelihood of product returns. The application of advanced 

statistical and machine learning techniques, such as the random forest model, has enabled the identification of the 

most significant factors driving consumer behavior and the development of predictive models for computer 

hardware product returns. These insights can help businesses in the computer industry improve their operations, 

reduce costs, and enhance the overall customer experience, ultimately contributing to the long-term sustainability 

of the industry.  

Broader Implications for Policymakers 

Beyond individual businesses, the findings have implications for industry stakeholders and policymakers. The high 

rate of product returns in the e-commerce sector not only impacts business profitability but also has environmental 

consequences due to increased logistical demands. Policymakers can encourage the adoption of sustainable 

practices by incentivizing businesses to optimize their return policies. For instance, promoting the use of eco-

friendly packaging or offering repair and refurbishment options can help minimize the environmental impact of 

returns. Furthermore, policymakers can facilitate consumer education initiatives to raise awareness about the cost 

implications of returns for both businesses and the environment. By fostering a more informed consumer base, 

such initiatives can contribute to more mindful purchasing behaviors. 

Future Research  

1. Future studies can explore return behavior across other consumer industries, such as mobile phones, 

televisions, fashion, home appliances and accessories, to compare return trends and adopt best practices in 

return policy formulation. 

2. A time-series study tracking changes in consumer return behavior over time can provide deeper insights into 

evolving e-commerce policies and consumer habits. 

3. Investigating how emotions, cognitive biases, and post-purchase dissonance influence consumer return 

decisions. 

4. Examining how return behavior differs between India and other global markets with varying return policies 

and consumer protection laws. 

5. Provides a foundation for predictive modeling of return behaviors, allowing businesses to implement AI-driven 

return management systems. 
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