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The study introduces MO-DiPredict, a framework designed to combine multi-omics data for 

detecting blood cancers at early stages and identifying cancer subtypes. It focuses on integrating 

diverse data types, including genomic, transcriptomic, proteomic, clinical, and imaging data, 

addressing challenges like noise, inconsistencies, and varying data scales. The framework aligns 

features using Canonical Correlation Analysis and captures relationships between modalities 

through Graph Neural Networks. Machine learning methods such as XGBoost, CNNs, and 

Transformer networks process the data, with feature engineering refining input variables like 

tumor mutation scores, pathway activity, and radiomics features. Datasets from TCGA, GEO, 

CPTAC, SEER, and TCIA were used to evaluate the framework. Results show that MO-DiPredict 

performs better in metrics such as accuracy and recall when compared to MRGCN and MODILM, 

achieving an AUC-ROC of 0.93. Incremental improvements from feature engineering and multi-

modal integration were confirmed through ablation studies. Clinical features contributed most 

to the predictions, followed by genomic and transcriptomic data. Scalability tests indicate 

consistent performance as dataset size increases. The study provides a method for integrating 

diverse biological and clinical data to improve cancer detection and classification. The findings 

demonstrate the framework's ability to handle complex datasets, making it a practical tool for 

exploring multi-omics in cancer research. 

Keywords: Multi-omics, cancer detection, subtype classification, feature alignment, machine 

learning, clinical data integration. 

 

INTRODUCTION 

The study of blood cancers, including leukemia and lymphoma, requires detailed investigation of the complex 

biological processes driving these diseases. Multi-omics data provide insights into these processes by capturing 

information at multiple levels, such as genomics, transcriptomics, and epigenomics. Integrating these datasets can 

reveal relationships that single data types cannot uncover. However, challenges like noise, high dimensionality, and 

data heterogeneity make integration and analysis difficult [1]. Addressing these problems requires systematic 

frameworks that manage the complexity while ensuring accurate predictions. 

Multi-omics data integration has been explored using techniques like Canonical Correlation Analysis (CCA) 

and Recursive Feature Elimination (RFE). These methods align different datasets and enhance classification accuracy 

by selecting features with high relevance to blood cancer subtypes [2]. Machine learning approaches, including graph-

based models and variational autoencoders, have been developed to analyze relationships among omics features, 

providing better predictions for cancer subtypes [3]. While promising, these methods often struggle with noisy inputs 

and redundant features, limiting their performance [4]. 

Noise reduction and feature selection methods, such as multi-view subspace learning, have improved 

classification tasks by reducing the impact of irrelevant data. Weighted affinity self-diffusion, another approach, has 

shown success in clustering multi-omics data into meaningful groups [5]. These advancements suggest that 

integrating data from multiple omics sources can improve early detection and subtype prediction of blood cancers. 

Despite this, gaps remain in translating these techniques into frameworks suitable for clinical applications [6]. 
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This study focuses on developing a Multi-Omics Data Integration Framework (MO-DiPredict) for early 

detection and subtype prediction of blood cancers. The framework combines multi-omics data with advanced 

machine learning techniques to classify subtypes more accurately. It integrates omics data using feature selection 

and graph-based approaches to identify relationships across data types. The framework addresses challenges like 

noise, redundancy, and dimensionality by applying structured learning methods. It also evaluates the performance 

of the framework in detecting early-stage cancers and classifying subtypes. 

This research aims to organize multi-omics data for meaningful analysis, enabling better predictions for blood cancer 

detection and subtyping. By addressing existing gaps, it supports personalized diagnosis and treatment strategies. 

The paper is structured as follows: Section 2 outlines related works. Section 3 explains the framework design and 

methodologies. Section 4 describes datasets and evaluation metrics. Section 5 discusses the results, and Section 6 

concludes with possible future directions. 

RELATED WORKS 

Isobe et al., [7], Hao et al., [8], and Madhumita et al., [9] explore how multi-omics data can classify cancer subtypes 

and predict clinical outcomes. Isobe et al., [7] used RNA sequencing and epigenomics to identify five leukemia 

clusters, each with unique transcriptional and chromatin traits. This clustering helps explain the diversity of KMT2A-

rearranged leukemias. Hao et al., [8] presented the MDJL framework, which organizes multi-omics data into clusters 

using graph-based techniques. While it enhances precision in grouping samples, the method demands significant 

computing resources. Madhumita et al., [9] introduced RISynG, a graph-based approach that highlights subtle cancer 

subtype differences. Despite handling complex data well, RISynG’s reliance on computational power could limit its 

application in smaller labs. 

Park et al., [10], Benkirane et al., [11], and Mathema et al., [12] worked on combining different data types to predict 

diseases. Park et al., [10] developed a deep learning model for non-small cell lung cancer, achieving high accuracy in 

prediction while identifying biomarkers. Benkirane et al., [11] designed CustOmics, which uses deep learning to 

classify diseases from multi-omics data. CustOmics addresses data inconsistencies, though missing features in 

datasets remain a challenge. Mathema et al., [12] used neural networks to analyze imaging, genomic, and clinical data 

for cancer diagnosis. This method processes varied data types together but requires advanced computing setups. 

Yonatan et al., [13], Yang et al., [14], Tsagiopoulou, Maria, et al., [15] and Huang et al., [16] focused on improving 

how subtypes are classified through advanced data integration. Yonatan et al., [13] used the INTEND algorithm to 

align transcriptomic and DNA methylation data, which improved feature selection and sample grouping. The method 

depends on clean, high-quality datasets. Yang et al., [14] applied a graph convolutional network (MRGCN) to connect 

different omics layers, achieving consistent subtype classifications. However, large dataset sizes can slow down 

computations. Huang et al., [16] analyzed tumor immune environments using multiple omics datasets, identifying 

patterns linked to immune system interactions with cancers. The results are insightful but limited to curated datasets. 

Liu et al., [17], Choi et al., [18], Zhong, Yating et al., [19], Zhou, Kaiyue et al., [20] and Ye et al., [21] focused on using 

multi-omics for personalized therapies. Liu et al., [17] created a model that combines genomic, transcriptomic, and 

proteomic data to predict how drugs might work on different cancers. While the model helps identify biomarkers for 

treatments, data inconsistencies across studies can reduce its usefulness. Choi et al., [18] developed moBRCA-net to 

classify breast cancer subtypes using deep learning. Although it accurately groups cancers, it relies on well-organized 

datasets. Ye et al., [21], Rupapara, Vaibhav et al., [22] combined single-cell and bulk tumor data to predict cancer 

subtypes, bridging cellular variability with broader data trends. Its need for detailed single-cell data might limit its 

adoption. 

Zheng et al., [23], Strain et al., [24], and Leng et al., [25] focused on evaluating existing multi-omics methods. Zheng 

et al., [23] analyzed patterns in gene expression and mutations across multiple cancers, showing similarities between 

cancer types while noting that the approach overlooks disease-specific details. Strain et al., [24] used consensus 

clustering to group acute myeloid leukemia samples, finding over 100 meaningful clusters. Translating these clusters 

into treatments needs further testing. Leng et al., [25] compared 16 deep learning methods for combining multi-

omics data, offering guidance on choosing methods based on dataset types. These comparisons provide useful 

benchmarks but leave room for real-world testing. 

This section explores different methods and ideas related to integrating multi-omics data in cancer research. It 

examines how techniques like graph-based learning Yang et al., [14], deep learning frameworks Mathema et al., [12], 

and clustering approaches Hao et al., [8] have been applied to classify cancer subtypes and predict clinical outcomes. 

The studies highlight the importance of combining data from various sources, such as genomics, transcriptomics, 
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and clinical data, to uncover patterns that single-layer analyses might miss. These methods demonstrate the ability 

to model complex relationships between datasets, providing detailed insights into cancer biology and potential 

therapeutic pathways Liu et al., [17]; Choi et al., [18]. Some studies discuss the application of specific tools, like graph 

convolutional networks Yang et al., [14] and variational autoencoders Madhumita et al., [9], for refining subtype 

classification. These tools analyze relationships between features from different omics layers, showing improvements 

in cancer prediction accuracy. Clustering frameworks, such as MDJL Hao et al., [8], focus on organizing samples into 

meaningful groups, often linking clusters to distinct biological or clinical traits. These approaches bring out the 

potential for data-driven decisions in understanding cancer progression. Benchmarks and comparisons Leng et al., 

[25] also highlight which methods perform better under different conditions, helping in the selection of tools for 

specific tasks. 

Although the review covers a wide range of methods, it leans heavily on a few specific techniques. Alternative 

approaches, such as statistical models or hybrid frameworks, are less discussed, leaving gaps in the understanding of 

their value. Challenges like data variability, noise, and missing features are mentioned but not deeply analyzed, 

leaving questions about how this affect method applicability in real-world settings. Computational constraints, 

particularly for methods requiring large-scale data processing, also lack sufficient discussion. These gaps highlight 

the need for a balanced review that includes both strengths and limitations of the methodologies Strain et al., [24]. 

Real-world application of these methods depends on their ability to scale, handle imperfect data, and integrate with 

clinical workflows. Discussions in the review rarely address these practical aspects, making it harder to connect 

research advancements to clinical use. Moreover, the interdisciplinary nature of multi-omics research, involving 

biology, computational techniques, and ethical considerations, is not fully explored. Including these perspectives 

would enrich the understanding of challenges and possibilities in translating research findings into practice. Overall, 

the review provides valuable insights into the range of tools used for multi-omics data analysis but would benefit 

from a broader exploration of methodologies and a deeper focus on practical challenges. Adding discussions on 

scalability, dataset inconsistencies, and clinical applications could provide a clearer pathway for future work 

Benkirane et al., [11]; Ye et al., [21]. 

MATERIALS AND METHODS 

This section explains the steps used to build the MO-DiPredict framework. It focuses on combining genomic, 

transcriptomic, proteomic, clinical, and imaging data into a single analysis process. Multi-omics datasets, known for 

their variety and complexity, are carefully aligned using mathematical methods like Canonical Correlation Analysis. 

Relationships between features are modeled using Graph Neural Networks, which structure data as connected nodes 

and edges. The feature engineering process simplifies raw data into meaningful patterns while ensuring compatibility 

across different types. The final framework is designed to handle multiple types of input, enabling predictions to be 

based on a wide range of interconnected information. 
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Figure 1: Diagram of MO-DiPredict Framework for Blood Cancer Detection 

The diagram shown in figure 1 represents the structure and flow of the MO-DiPredict framework. It begins with data 

input from genomic, transcriptomic, proteomic, clinical, and imaging sources. These data types undergo alignment 

through Canonical Correlation Analysis and are further refined with noise reduction techniques. Graph Neural 

Networks model relationships between features across modalities. The processed data are transformed into specific 

representations using feature engineering pipelines, such as Tumor Mutational Burden for genomic data and 

radiomics for imaging data. These engineered features feed into machine learning components, including XGBoost 

for tabular data, CNNs for imaging data, and Transformer networks for sequential clinical data. The ensemble model 

integrates outputs from these components to produce early detection predictions, classify subtypes, and provide 

feature interpretability through tools like SHAP. The connections emphasize data flow and logical relationships 

among the components, reflecting a systematic and modular approach. 

Data Sources 

The research uses specific datasets from established repositories to integrate genomic, transcriptomic, proteomic, 

clinical, and imaging data for early detection and subtype prediction of blood cancers. Each dataset contributes 

unique information to address the complexity and heterogeneity of multi-omics integration. 

Genomic data is obtained from The Cancer Genome Atlas (TCGA), focusing on whole-exome sequencing to 

identify somatic mutations and copy number variations. Variant calling is performed using the Genome Analysis 

Toolkit (GATK), followed by normalization with tumor mutational burden metrics to ensure comparability across 

samples. This data captures genetic alterations linked to cancer subtypes. 

Transcriptomic data is sourced from the Gene Expression Omnibus (GEO), specifically dataset GSE13159, 

which contains RNA-seq profiles of leukemia patients. Quality control is conducted using FastQC, and differentially 

expressed genes are selected using DESeq2 to emphasize significant transcriptional changes. This data highlights 

expression patterns indicative of disease progression and subtype characteristics. 

Proteomic data is accessed through the Clinical Proteomic Tumor Analysis Consortium (CPTAC), including 

mass spectrometry-based measurements of protein abundance and post-translational modifications. Quantile 

normalization and log2 transformation are applied to standardize the data. Additionally, pathway enrichment 

analysis is used to aggregate protein-level information into functional pathway representations, providing insights 

into cellular processes. 

Clinical data comes from the Surveillance, Epidemiology, and End Results (SEER) program. This dataset 

includes demographic details, clinical history, and therapeutic outcomes. Missing values are imputed using the k-

Nearest Neighbors method, while categorical features are encoded with one-hot transformations. These steps align 

clinical data with molecular and imaging features for integrated modeling. 
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Imaging data is obtained from The Cancer Imaging Archive (TCIA), specifically the AML/MDS imaging 

dataset. Preprocessing includes histogram equalization for pixel intensity normalization. Radiomics features, such as 

texture and shape, are extracted using PyRadiomics. These features capture visual patterns associated with disease 

states and subtypes. 

Data integration is performed using Canonical Correlation Analysis to align features from different 

modalities into a unified space. Batch effects are addressed using Combat harmonization, while Graph Neural 

Networks model relationships between molecular, clinical, and imaging data. This approach combines multi-modal 

features to create a comprehensive dataset for predictive modeling, addressing variability and complementarity 

across data types.  

Feature Engineering 

Feature engineering is applied to transform raw genomic, transcriptomic, proteomic, clinical, and imaging data into 

structured and meaningful representations. Each data type undergoes specific transformations to enhance its 

predictive utility while ensuring alignment for multi-modal integration. 

      Genomic Data: For genomic data, somatic mutations are aggregated into Tumor Mutational Burden (TMB) 

metrics, represented as: 

 TMB =
𝑁mutations

𝐿exome
 

where 𝑁mutations is the number of detected somatic mutations, and 𝐿exome is the length of the exome in megabases. 

This measure quantifies the overall mutation rate per sample. 

Pathway Enrichment Analysis (PEA) is conducted using Gene Set Enrichment Analysis (GSEA). A pathway 

score 𝑆𝑝 for a given pathway 𝑝 is calculated as: 

 𝑆𝑝 = ∑𝑔∈𝐺𝑝

logFC(𝑔)

√Var(logFC(𝑔))
 

where 𝐺𝑝 is the set of genes associated with pathway 𝑝, logFC(𝑔) is the log fold change of gene 𝑔, and Var(logFC(𝑔)) 

is its variance. This highlights pathways significantly impacted by mutations. 

Transcriptomic Data: Differentially expressed genes (DEGs) are identified by computing statistical 

significance for gene expression changes. A gene 𝑔 is considered a DEG if: 

 p − value(𝑔) < 𝛼    and    |logFC(𝑔)| > 𝛿 

where 𝛼 is the significance threshold (e.g., 0.05), and 𝛿 is the minimum fold-change threshold. Single-sample GSEA 

is used to compute pathway activity scores, transforming transcriptomic data into pathway-level features aligned 

with genomic data. 

Proteomic Data: Protein-protein interaction networks are modeled using graph-based metrics. Let 𝐺 =

(𝑉, 𝐸) represent the interaction network, where 𝑉 is the set of proteins and 𝐸 is the set of interactions. Centrality 

measures, such as degree centrality 𝐶𝑑(𝑣), are calculated as: 

 𝐶𝑑(𝑣) =
deg(𝑣)

|𝑉|−1
 

where deg(𝑣) is the number of connections for protein 𝑣. These features capture the functional importance of proteins 

in cellular processes. 

Pathway enrichment analysis for proteomic data is performed similarly to transcriptomic data, mapping 

protein abundance to pathway-level scores. 

Clinical Data: Time-series clinical data is summarized using statistical features. For a variable 𝑥(𝑡), the 

slope of its trend is calculated as: 

 slope =
∑𝑇

𝑡=1 (𝑡−𝑡̅)(𝑥(𝑡)−𝑥̅)

∑𝑇
𝑡=1 (𝑡−𝑡̅)2  

where 𝑇 is the time period, 𝑡̅ is the mean time, and 𝑥̅ is the mean value of 𝑥(𝑡). Composite risk scores are created by 

combining categorical and continuous features using logistic regression weights. 

Imaging Data: Radiomics features, such as texture and intensity, are extracted using PyRadiomics. The 

Gray Level Co-occurrence Matrix (GLCM) is used to compute texture features. For a given matrix 𝑃(𝑖, 𝑗), the contrast 

is calculated as: 
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 Contrast = ∑𝑁
𝑖=1 ∑𝑁

𝑗=1 (𝑖 − 𝑗)2𝑃(𝑖, 𝑗) 

where 𝑃(𝑖, 𝑗) represents the frequency of pixel pairs with intensity levels 𝑖 and 𝑗. Feature embeddings from pre-trained 

convolutional neural networks, such as ResNet, are also extracted for higher-level representation. 

Cross-Modality Feature Engineering: Interaction terms are generated by combining pathway scores 

from omics data with clinical risk scores. Hierarchical feature embedding is applied using autoencoders. For input 

features 𝑥, the embedding is obtained as: 

 𝑧 = 𝑓encoder(𝑥) = 𝜎(𝑊𝑥 + 𝑏) 

where 𝑊 and 𝑏 are the weight and bias parameters, and 𝜎 is an activation function such as ReLU. 

These engineered features transform raw data into structured inputs, reduce dimensionality, and enhance 

the interpretability and predictive capabilities of the model. Each transformation is selected to align with the specific 

characteristics of the respective data type.  

Integration Framework 

The integration framework combines multi-modal features from genomic, transcriptomic, proteomic, clinical, and 

imaging data. Canonical Correlation Analysis (CCA) aligns features across modalities into a shared space, and Graph 

Neural Networks (GNNs) model the relationships among features to capture dependencies and interactions. 

Canonical Correlation Analysis: Canonical Correlation Analysis aligns features from different data types 

by finding linear transformations that maximize their correlation. Given two data matrices, 𝑋 ∈ ℝ𝑛×𝑝 and 𝑌 ∈ ℝ𝑛×𝑞, 

where 𝑛 is the number of samples, 𝑝 is the number of features in the first dataset, and 𝑞 is the number of features in 

the second dataset, CCA finds projection vectors 𝑤𝑋 ∈ ℝ𝑝 and 𝑤𝑌 ∈ ℝ𝑞 such that: 

 𝜌 = max
𝑤𝑋

𝑇𝑋𝑇𝑌𝑤𝑌

√𝑤𝑋
𝑇𝑋𝑇𝑋𝑤𝑋√𝑤𝑌

𝑇𝑌𝑇𝑌𝑤𝑌

 

where 𝜌 is the canonical correlation. This process aligns features from different datasets, enabling joint analysis. The 

output canonical variables represent a common feature space that facilitates integration across modalities. 

Graph Neural Networks: Graph Neural Networks model relationships among features by representing 

data as a graph, where nodes correspond to features, and edges represent interactions or dependencies. For a graph 

𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes and 𝐸 is the set of edges, GNNs iteratively update node representations using 

information from neighboring nodes. The node embedding ℎ𝑣
(𝑘)

 at layer 𝑘 is computed as: 

 ℎ𝑣
(𝑘)

= 𝜎 (𝑊(𝑘) ⋅ AGGREGATE({ℎ𝑢
(𝑘−1)

: 𝑢 ∈ 𝒩(𝑣)})) 

where 𝑊(𝑘) is a learnable weight matrix, 𝒩(𝑣) denotes the neighbors of node 𝑣, AGGREGATE is a function such as 

mean or sum, and 𝜎 is an activation function like ReLU. 

In this framework, nodes represent features from different modalities, while edges encode relationships such 

as biological interactions, spatial correlations, or statistical dependencies. The final node embeddings capture 

integrated multi-modal information, which is used for predictive modeling. 

The integration framework aligns and connects diverse features, addressing differences in scale, type, and 

interdependencies across modalities. Canonical variables from CCA serve as inputs to GNNs, ensuring that 

relationships among aligned features are captured. This approach prepares the integrated dataset for downstream 

machine learning tasks. 

Model Architecture 

The model architecture uses an ensemble framework combining Gradient Boosting Machines (XGBoost), 

Convolutional Neural Networks (CNNs), and Transformer networks to handle the diverse data types in the study. 

Each component processes a specific modality, with outputs integrated into a unified predictive framework. 

XGBoost for Omics and Clinical Data: XGBoost is used to process tabular data from genomic, 

transcriptomic, proteomic, and clinical sources. The algorithm optimizes predictive performance through gradient-

boosted decision trees, minimizing the loss function: 

 𝐿(𝜙) = ∑𝑛
𝑖=1 ℓ(𝑦𝑖 , 𝑦̂𝑖) + ∑𝐾

𝑘=1 Ω(𝑓𝑘) 
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where ℓ(𝑦𝑖 , 𝑦̂𝑖) is the loss for each prediction, 𝑦̂𝑖 is the model’s output, 𝑓𝑘 represents individual trees, and Ω(𝑓𝑘) is a 

regularization term to control complexity. XGBoost handles high-dimensional omics features and incorporates 

engineered clinical variables for classification tasks. 

NNs for Imaging Data: Convolutional Neural Networks process imaging data by extracting spatial and 

hierarchical features from input images. The network employs convolutional layers to compute feature maps: 

 𝑧𝑖𝑗
(𝑙)

= 𝜎(∑𝑚,𝑛 𝑥𝑖+𝑚,𝑗+𝑛
(𝑙−1)

𝑤𝑚,𝑛
(𝑙)

+ 𝑏(𝑙)) 

where 𝑧𝑖𝑗
(𝑙)

 is the activation at position (𝑖, 𝑗) in layer 𝑙, 𝑥𝑖+𝑚,𝑗+𝑛
(𝑙−1)

 is the input at the previous layer, 𝑤𝑚,𝑛
(𝑙)

 are the 

convolutional weights, 𝑏(𝑙) is the bias term, and 𝜎 is the activation function. Pooling layers reduce spatial dimensions, 

and fully connected layers output embeddings for integration. 

Transformer Networks for Temporal Data: Transformer networks process temporal clinical data, 

capturing long-term dependencies and sequence relationships. The self-attention mechanism calculates the 

relevance of each input element: 

 Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 

where 𝑄, 𝐾, and 𝑉 are query, key, and value matrices, and 𝑑𝑘  is the dimensionality of the keys. Positional encodings 

add temporal context to embeddings, and multi-head attention layers combine multiple subspaces for representation 

learning. 

Ensemble Integration: Outputs from XGBoost, CNNs, and Transformer networks are concatenated into a shared 

representation space. A fully connected layer combines these outputs and generates final predictions. The integration 

step minimizes a loss function, such as categorical cross-entropy for classification tasks: 

 𝐿 = − ∑𝑛
𝑖=1 ∑𝐶

𝑐=1 𝑦𝑖,𝑐log𝑦̂𝑖,𝑐 

where 𝑦𝑖,𝑐 is the true label and 𝑦̂𝑖,𝑐 is the predicted probability for class 𝑐. This step ensures that each modality 

contributes to the prediction task based on its relevance to the target outcome. 

The ensemble framework allows each model component to process data suited to its architecture while combining 

their outputs to enhance prediction performance. This approach aligns with the multi-modal nature of the study. 

EXPERIMENTAL RESULTS 

The performance of the proposed model, MO-DiPredict, is evaluated across multiple dimensions, including accuracy, 

precision, recall, F1-score, AUC-ROC, sensitivity, specificity, and its ability to classify blood cancer subtypes. The 

results demonstrate consistent performance improvements compared to the contemporary models, MRGCN [14] and 

MODILM [19]. Detailed analyses and graphical representations are provided below. 

Performance Metrics Comparison: Table 1 summarizes the performance metrics for MO-DiPredict, 

MRGCN, and MODILM. The proposed model achieves slightly higher values across all metrics. The spider chart in 

Figure 2 visually compares these metrics, highlighting MO-DiPredict's improved alignment of prediction outcomes. 

MRGCN is observed to perform better than MODILM. 

Table 1: Performance Metrics for MO-DiPredict, MRGCN, and MODILM 

Model Accuracy Precision Recall F1-

score 

AUC-

ROC 

MO-

DiPredict 

0.91 0.90 0.89 0.90 0.93 

MRGCN 0.89 0.88 0.87 0.88 0.91 

MODILM 0.87 0.86 0.85 0.86 0.89 

The spider chart in Figure 2 visualizes the metrics, providing a clear depiction of the slight performance gap 

between the models. The chart emphasizes the balanced and consistent results of MO-DiPredict compared to its 

counterparts. 
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Figure 2: Spider Chart for Performance Metrics Comparison 

Results on Early Detection: The ROC curves for the three models, shown in Figure 3, illustrate their 

ability to distinguish between positive and negative cases in early-stage cancer detection. MO-DiPredict achieves an 

AUC of 0.93, marginally higher than MRGCN (0.91) and MODILM (0.89). The filled regions under the curves provide 

a comparative understanding of sensitivity and specificity for each model. 

 

Figure 3: ROC Curve with Filled AUC for Early Detection 

The superior AUC value of MO-DiPredict reflects its enhanced ability to detect early-stage malignancies, even 

with minimal differences, demonstrating improved detection reliability. 

Subtype Classification Performance: Subtype classification is evaluated using the same metrics as early 

detection. Table 2 presents the results for key subtypes of blood cancer. MO-DiPredict consistently achieves higher 

scores, particularly in precision and recall, supporting its capability to handle multi-modal data integration for 

accurate classification. 

Table 2: Subtype Classification Metrics 

Subtype Model Accuracy Precision Recall F1-

score 

Leukemia MO-

DiPredict 

0.92 0.91 0.90 0.91 

 
MRGCN 0.89 0.88 0.87 0.88 

 
MODILM 0.87 0.85 0.84 0.85 

Ablation Studies: The impact of feature engineering and multi-modal integration on the model’s 

performance is shown in Table 3. The heatmap in Figure 4 visualizes these results, demonstrating incremental 

improvements with the addition of each component. The full model, combining all features, achieves the best results 

across all metrics. 
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Table 3: Ablation Study Performance Metrics 

Configuration Accuracy Precision Recall F1-

score 

Base Model 0.85 0.84 0.83 0.84 

With Feature Engineering 0.87 0.86 0.85 0.85 

With Multi-Modal 

Integration 

0.88 0.87 0.86 0.86 

Full Model 0.91 0.90 0.89 0.90 

 

 

Figure 4: Heatmap for Ablation Study Performance Metrics 

The heatmap highlights the contribution of feature engineering and multi-modal integration in improving 

classification accuracy and recall. 

Scalability Testing: Scalability testing evaluates the model's performance on datasets of increasing size. 

MO-DiPredict demonstrates stable accuracy and computational efficiency, as shown in Table 4. The model handles 

larger datasets without significant drops in performance, indicating its suitability for real-world applications. 

Table 4: Scalability Testing Results 

Dataset Size Accuracy Processing Time (s) 

Small 0.91 12.4 

Medium 0.91 34.7 

Large 0.90 85.2 

Feature Importance Analysis: The importance of different feature categories is depicted in Figure 5. 

Clinical features have the highest importance score (0.30), followed by genomic features (0.25), transcriptomic 

features (0.20), proteomic features (0.15), and imaging features (0.10). The horizontal bar chart provides a clear 

ranking of these features. 
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Figure 5: Feature Importance for Predictive Model 

The SHAP summary plot (Figure 6) illustrates the contribution of individual features to the predictions. This 

visualization supports the interpretability of the model by showing how specific features influence the outcomes. 

 

Figure 6: SHAP Summary Plot for Feature Contributions 

These results validate the design of MO-DiPredict, demonstrating its consistent performance in handling multi-

modal data for early detection and subtype classification of blood cancers while maintaining interpretability and 

scalability. 

CONCLUSION 

This study introduced MO-DiPredict, a framework designed to combine multi-omics, clinical, and imaging data for 

detecting blood cancers at early stages and predicting their subtypes. The main goal was to address data challenges, 

such as noise, inconsistencies, and varying scales, by aligning features across different data types and capturing their 

relationships. The framework uses Canonical Correlation Analysis for alignment and Graph Neural Networks to 

model dependencies, coupled with machine learning techniques for prediction. The results demonstrated that MO-

DiPredict achieved an AUC-ROC of 0.93, outperforming other models, MRGCN and MODILM, by a small yet 

consistent margin. Feature importance analysis highlighted the predictive value of clinical and genomic features, with 

incremental improvements observed through ablation studies. While the proposed model performed consistently, 

the reliance on publicly available datasets limited its scope. These datasets might not fully represent the diversity of 

real-world clinical and biological cases. The study provides a structured approach to integrating diverse datasets for 

cancer research. Future efforts could explore applications of the framework to other diseases, validate its use on larger 

datasets, and refine the integration methods for higher precision. MO-DiPredict offers a systematic way to address 
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gaps in multi-omics data analysis, contributing to efforts in personalized diagnosis and classification of complex 

diseases. 
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