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Mobile Ad Hoc Networks (MANETs) often face challenges such as frequent topology changes, 

limited resources, and security vulnerabilities, which affect their stability and performance. This 

study introduces DynaMANET, a framework designed to address these challenges by integrating 

routing, resource management, and address configuration. The framework employs a multi-

layered approach: the Data Collection Layer gathers network metrics, the Learning and Decision-

Making Layer uses Deep Q-Networks to adjust configurations, and the Context Awareness Layer 

applies Graph Neural Networks to detect network changes. The Feedback and Evaluation Layer 

utilizes Bayesian optimization to refine decisions, while the Execution and Control Layer ensures 

seamless implementation of configurations. Simulations were performed in a 100-node network 

environment modeled using the NS-3 simulator. Node mobility and varying traffic loads were 

considered to evaluate throughput, latency, packet delivery ratio, energy consumption, and 

intrusion detection rates. The framework demonstrated better throughput, reduced delays, and 

higher packet delivery ratios compared to E-OLSR and MARL models. Detection rates for 

security threats such as black hole and DDoS attacks were slightly higher. Scalability tests 

showed minimal throughput drop as the network size increased. In failure scenarios, the 

framework maintained stable communication and data delivery. These results suggest that 

DynaMANET addresses interconnected challenges in MANETs by combining adaptive decision-

making with efficient resource management. The methods proposed provide a structured 

approach for improving MANET reliability under dynamic conditions. 

Keywords: MANET, adaptive routing, resource optimization, Deep Q-Networks, Graph Neural 

Networks, Bayesian optimization, scalability, security. 

 

INTRODUCTION 

Mobile Ad Hoc Networks (MANETs) are self-organizing wireless networks that operate without fixed infrastructure. 

They are used in applications such as disaster recovery, military communication, and remote sensing. Their dynamic 

nature and lack of centralized control, however, introduce several challenges in maintaining performance, managing 

resources, and ensuring seamless operation under varying conditions. 

MANETs face significant challenges due to their infrastructure-less and dynamic nature. Frequent topology changes 

caused by node mobility create the need for adaptive routing protocols to maintain connectivity. Protocols like AODV 

and STORM address this by offering loop-free routes and mechanisms for efficient recovery when links fail. However, 

such protocols often increase message overhead and delays during rapid topology changes, reducing overall network 

efficiency [1], [2]. 

Resource constraints are another pressing issue. Limited energy and bandwidth in MANETs demand efficient 

management to prevent node failures and network degradation. Without optimization strategies, excessive energy 

consumption or bandwidth congestion can significantly impact network performance. Mechanisms that enhance 

energy and bandwidth utilization remain critical for improving the reliability of MANETs [3]. 

Address configuration also presents difficulties in MANETs. In the absence of centralized control, assigning unique 

addresses to nodes becomes a complex task. Dynamic and hierarchical approaches aim to resolve conflicts and 

prevent collisions, but these methods often face scalability issues as network size increases. The need for a more 

scalable and efficient address configuration method is evident [4]. 
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Current solutions often focus on specific challenges but lack integration. Centralized approaches, for instance, 

provide a clear and comprehensive view of the network, but their reliance on single points of control makes them 

vulnerable to failures. Fully distributed systems, while resilient to individual node failures, face difficulties in 

managing resources efficiently and scaling effectively in large networks [4]. There is a lack of unified frameworks that 

integrate routing, resource optimization, and address configuration to address the interconnected challenges of 

MANETs. 

The use of multi-agent systems has enhanced self-organization and auto-configuration in MANETs, allowing nodes 

to collaborate and adapt to changing conditions. However, the combination of multi-agent systems with resource-

constrained environments, routing, and address configuration has been minimally explored. A hybrid approach 

combining centralized and distributed methods offers potential but requires further research [5]. 

This study focuses on designing a dynamic framework for MANETs that integrates routing, resource management, 

and address configuration in a cohesive manner. The primary objective is to address the interconnected challenges 

of maintaining connectivity, optimizing resource usage, and reducing address conflicts. The framework aims to 

provide mechanisms that adapt to topology changes, minimize delays, and balance centralized and distributed 

methods to enhance scalability and performance. 

The proposed framework incorporates adaptive routing protocols, efficient cluster management mechanisms, and 

multi-agent systems to address key issues in MANETs. It combines centralized and distributed approaches to reduce 

the risks associated with single points of failure while improving scalability and resource efficiency. The hybrid 

address configuration method aims to minimize address conflicts and ensure seamless operation even in larger 

networks [5], [6]. 

The framework contributes by improving performance metrics such as energy consumption, packet delivery ratio, 

and delay while offering practical solutions for dynamic and resource-constrained environments. It also evaluates 

trade-offs between centralized and distributed techniques, providing insights into their advantages and limitations 

for different network conditions. 

The paper begins by reviewing related work, focusing on existing approaches and their limitations. The framework's 

design and components are then described in detail. This is followed by simulation results and a discussion of the 

findings. The paper concludes with a summary of contributions and potential directions for future research. This 

structure provides a logical flow for understanding the motivations, methods, and outcomes of the study. 

RELATED WORK 

Ivoghlian et al. [7] proposed a multi-agent deep learning framework to manage wireless networks under changing 

conditions. The system adjusted configurations based on parameters such as bandwidth, energy, and connectivity, 

which helped improve latency and data throughput. However, the framework’s applicability in large or diverse 

networks was not extensively explored. Adriaensen et al. [8] introduced a method for dynamic algorithm 

configuration, enabling self-tuning mechanisms to reduce manual intervention. The study improved performance 

metrics like latency and resource usage, but trade-offs between computational costs and long-term energy savings 

were not discussed. Lopatka et al. [9] developed a radio environment model to enhance spectrum efficiency and 

reduce interference. The model provided detailed insights through simulations, but its practical application faced 

limitations, such as hardware constraints. 

Khare et al. [10] worked on a peer-to-peer resource allocation framework for mobile ad hoc networks (MANETs). The 

system used time and location-aware algorithms to improve resource availability and reduce message overhead. 

Challenges arose when accurate location data was unavailable, impacting its reliability. Zhang et al. [11] introduced 

RoNet, a neural-assisted framework designed to predict connectivity changes in mobile networks. While RoNet 

reduced disruptions in high-mobility environments, its computational demands limited its use in energy-constrained 

settings. Ramya et al. [12] proposed a dynamic partitioning algorithm for secure data routing. The approach reduced 

routing overhead and enhanced data security but lacked clarity on computational overhead introduced by security 

mechanisms. 

Prashanth et al. [13] implemented a reinforcement learning-based channel assignment system to optimize spectrum 

usage in wireless networks. Results showed reduced delays and better channel reliability, though real-time training 

challenges were not addressed. Janani et al. [14] designed a distributed secured broadcast strategy to improve 

communication reliability in MANETs. Cryptographic measures enhanced data integrity, but detailed simulations 

were missing to validate its performance in dense networks. Yan et al. [15] employed Bayesian optimization to refine 

network configurations, improving response time and energy efficiency. However, its dependence on prior knowledge 
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limited adaptability in unfamiliar conditions. He et al. [16] presented PAD-Net, a neural network-based dynamic 

adaptation framework. It enhanced resource use and performance but required high computational power, making 

it unsuitable for resource-limited setups. 

Zhang et al. [17] created a hybrid routing framework integrating proactive and reactive protocols to optimize resource 

usage in MANETs. While it improved energy efficiency and connectivity, its complexity introduced scalability 

challenges in large networks. Nikolaidis et al. [18] reviewed advancements in MANET management, highlighting the 

importance of adaptive protocols but offering no experimental validation or specific methodologies. Ahmed et al. [19] 

explored blockchain for trust management in MANETs, improving trust accuracy and reducing vulnerabilities. 

Energy and computational costs associated with blockchain remained key challenges. Anakath et al. [20] proposed a 

topology management strategy that reduced reconfiguration delays using predictive models. However, its reliance on 

accurate mobility predictions posed limitations in unpredictable environments. 

Wang et al. [21] introduced AgileCtrl, a self-adaptive configuration framework that adjusted to workload changes and 

improved resource utilization. Computational complexity, however, posed challenges in constrained environments. 

Saudi et al. [22] presented a protocol for managing routing, resource allocation, and security in MANETs. It enhanced 

throughput and reduced delays but introduced trade-offs in communication overhead due to its modular design. 

Each article addressed specific issues, yet scalability, computational demands, and practical deployments were 

common concerns across the reviewed works. 

The literature review discusses different approaches to solving challenges in mobile ad hoc networks (MANETs), 

focusing on dynamic management, resource optimization, security, and adaptive configurations. Each study offers 

valuable insights, but certain recurring challenges and limitations are evident. Solutions for managing dynamic 

topologies and resources vary in focus and method. Ivoghlian et al. [7] and Zhang et al. [17] introduced frameworks 

that combine learning-based mechanisms and hybrid routing protocols. These approaches demonstrated 

improvements in resource usage and connectivity during changing network conditions. However, scalability remains 

a concern, particularly in large and diverse environments. Anakath et al. [20] suggested predictive topology 

adjustments to maintain stability and reduce delays. While it addressed reconfiguration efficiency, the reliance on 

precise mobility predictions makes its use less reliable in unpredictable setups. 

Security-focused studies highlighted methods to ensure data integrity and protect against attacks. Ahmed et al. [19] 

employed blockchain to manage trust relationships among network nodes, combining cryptographic techniques with 

distributed validation. While this approach strengthened trust accuracy, its energy-intensive requirements posed 

challenges for resource-constrained settings. Janani et al. [14] proposed a broadcast strategy that used cryptographic 

measures to improve reliability. Although this system reduced dependency on centralized nodes, detailed simulations 

were lacking, leaving its scalability in dense networks uncertain. Adaptive frameworks for real-time network 

adjustments featured prominently. Adriaensen et al. [8] presented self-tuning mechanisms to enhance resource 

efficiency and reduce latency. Similarly, Wang et al. [21] offered AgileCtrl, which dynamically adjusted configurations 

based on workload. While these systems improved operational efficiency, their computational demands raised 

concerns about applicability in low-power environments. Neural-assisted methods, such as RoNet by Zhang et al. 

[11] and PAD-Net by He et al. [16], introduced predictive features for better connectivity. Despite showing promise 

in managing high mobility, their reliance on resource-heavy neural networks limited their practicality in constrained 

networks. Studies addressing spectrum optimization introduced unique approaches but faced challenges in 

adaptability. Lopatka et al. [9] used simulation-based spectrum modeling to improve efficiency and reduce 

interference. However, the absence of real-world implementation limited its broader relevance. Yan et al. [15] applied 

Bayesian optimization to refine network configurations. While this method reduced response times and energy usage, 

its dependency on prior knowledge restricted its use in environments with limited data.  

Across the literature, recurring gaps are evident. Many studies relied on controlled simulations and theoretical 

models without addressing real-world deployment challenges. The balance between computational efficiency and 

resource constraints remains a significant obstacle. While individual studies focused on specific issues, few explored 

how to integrate solutions into a single cohesive framework. Addressing scalability, adaptability, and practical 

deployment challenges in a unified way is essential for advancing solutions in MANETs. The review suggests that 

future research should prioritize methods that align theoretical models with real-world conditions, focusing on the 

combined challenges of dynamic environments and limited resources. 
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METHODS AND MATERIALS 

This section explains the framework's structure and the techniques used to manage Mobile Ad Hoc Networks 

(MANETs). It organizes the framework into layers, each with a specific role, such as gathering network data, selecting 

configurations, and applying adjustments. The layers work together to address challenges like managing dynamic 

topologies, optimizing resource usage, and detecting anomalies. Each part of the framework is tailored to ensure 

efficient operation under changing conditions while maintaining scalability and adaptability. The following sections 

describe how these components function and interact. 

 

Figure 1: System Architecture of DynaMANET Framework 

  The diagram shows figure 1 the layered structure of the DynaMANET framework, designed for configuring and 

managing Mobile Ad Hoc Networks (MANETs). It includes five layers working together to address network 

challenges. The Data Collection Layer gathers real-time information, such as energy usage and connectivity, through 

Distributed Monitoring Agents (DMAs) and regional controllers. The Learning and Decision-Making Layer uses Deep 

Q-Networks (DQN) to analyze this data and adjust configurations like routing and energy settings based on network 

conditions. The Context Awareness Layer applies Graph Neural Networks (GNNs) to study node relationships, detect 

anomalies, and highlight unusual patterns such as packet drops. The Feedback and Evaluation Layer refines decisions 

using Bayesian Optimization by evaluating metrics such as throughput, latency, and packet delivery rates. The 

Execution and Control Layer enforces these decisions across the network using Software-Defined Networking (SDN) 

controllers while handling node or controller failures to maintain functionality. Arrows in the diagram show the flow 

of data, decisions, and feedback among the layers, emphasizing their interdependence and adaptability under 

dynamic conditions. 

Data Collection Layer 

The data collection layer gathers important network information from all nodes. It monitors changes in topology, 

tracks energy usage, and observes network performance. These metrics help in making adjustments to improve how 

the network operates under different conditions. 

Purpose: This layer observes and collects data continuously. It tracks metrics such as node connectivity, signal 

strength, and the delivery of packets between devices. These metrics are essential for analyzing network behavior and 

detecting potential issues. The information serves as input for decision-making processes in the system. 
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Distributed Monitoring Agents: Distributed Monitoring Agents (DMAs) are lightweight programs installed on 

network nodes. They work by collecting data periodically and sending it to a regional controller. Each DMA collects 

multiple metrics at regular intervals, denoted by Di(t), where: Eq 1 

𝐷𝑖(𝑡) = {𝑀1(𝑡),𝑀2(𝑡), … ,𝑀𝑘(𝑡)} ....(Eq  1) 

In this equation, Mk(t) represents a specific metric such as bandwidth or energy level measured at time t. To avoid 

overwhelming the network with frequent data transmissions, DMAs follow a staggered schedule: Eq 2 

𝑇𝑖 = 𝑇 ⋅ (1 +
𝑁𝑜𝑑𝑒𝐼𝐷𝑖

𝑁
) ....(Eq  2) 

Here, T is the base interval, NodeIDi is the unique identifier for the node, and N is the total number of nodes in the 

network. This schedule ensures that data from different nodes does not overlap, reducing congestion. 

Robustness: When a node cannot send data directly to the controller due to connectivity problems, neighboring 

nodes help forward the information. If i is the node needing assistance and j is a neighboring node, the relay condition 

can be expressed as: Eq 3 

𝑅𝑖𝑗(𝑡) = {
1, 𝑖𝑓𝑡ℎ𝑒𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑜𝑑𝑒𝑖𝑎𝑛𝑑𝑡ℎ𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑖𝑠𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ....(Eq  3) 

This approach ensures that data continues to flow even if certain connections are temporarily unavailable. Relay 

mechanisms provide stability to the network’s monitoring system. 

Scalability: The system distributes monitoring responsibilities across multiple regions, each managed by a regional 

controller. This design prevents any single controller from handling too much data. For a region r with nodes 𝒩r, the 

load on its controller, L(Cr), is calculated as: Eq 4 

𝐿(𝐶𝑟) = ∑𝑖∈𝒩𝑟
|𝐷𝑖(𝑡)| ....(Eq  4) 

The system ensures that this load does not exceed a defined limit, Lmax. This balance allows the network to scale 

efficiently as more nodes are added, avoiding performance bottlenecks. 

The data collection layer uses Distributed Monitoring Agents to gather real-time metrics. These agents 

transmit data using a structured schedule to minimize network congestion. Relay mechanisms ensure uninterrupted 

monitoring, even during connectivity issues. The distributed design of this layer enables it to scale without 

overwhelming individual components. These features make it suitable for managing dynamic networks.  

Learning and Decision-Making Layer 

The learning and decision-making layer identifies the best configurations for the network based on current 

conditions. It adapts to changes in node behavior, resource availability, and security concerns using reinforcement 

learning. By analyzing various metrics, it selects actions that align with predefined goals. 

This layer uses reinforcement learning to adjust network settings in real time. It analyzes the current state of 

the network, evaluates potential actions, and selects configurations to improve performance and address security 

issues. 

Deep Q-Networks (DQN): Deep Q-Networks (DQN) connect the state of the network to possible actions, 

estimating the impact of each decision. The value of taking an action a in a state s, represented as Q(s, a), is calculated 

based on the immediate reward and future outcomes: Eq 5 

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′) ....(Eq  5) 

Here, r is the reward for the action, γ is a discount factor that prioritizes current rewards over distant ones, and 

Q(s′, a′) is the value of the next state and action. A neural network approximates Q(s, a), enabling the model to handle 

complex relationships between states and actions. 

State Space: The state space captures the network’s current conditions. It includes metrics such as 

throughput (T), latency (L), mobility and density of nodes (N), and security events (S). These variables define a state 

s as: Eq 6 

𝑠 = {𝑇, 𝐿, 𝑁, 𝑆} ....(Eq  6) 

Each metric provides specific information, such as how fast data is moving, delays in communication, changes in 

node positions, and recent security alerts. 
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Action Space: The action space consists of all possible changes to the network’s configuration. Each action 

a involves one or more adjustments, such as updating routing tables (R), switching communication protocols (P), or 

modifying energy-saving settings (E): Eq 7 

 𝑎 = {𝑅, 𝑃, 𝐸} ....(Eq  7) 

The DQN evaluates all available actions and picks the one that provides the most benefit based on current conditions. 

Reward Function: The reward function assigns a value to each action based on its results. It balances 

performance goals, like improving throughput or reducing latency, with security needs, such as preventing attacks. 

The reward r for an action a in state s is defined as: Eq 8 

𝑟 = 𝑤𝑝 ⋅ 𝑃(𝑠, 𝑎) + 𝑤𝑠 ⋅ 𝑆(𝑠, 𝑎) ....(Eq  8) 

Here, P(s, a) measures performance outcomes, S(s, a) reflects security improvements, and wp and ws are weights that 

adjust the priority between performance and security. 

Robustness: The DQN handles a wide range of conditions by learning from past experiences stored in a 

memory buffer. It uses techniques like replaying these experiences to refine decision-making and updating its 

estimates gradually to avoid sudden changes. 

Scalability: The system divides the network into regions, each managed by a local DQN agent. These 

regional agents learn configurations for their specific areas. A global coordinator combines their outputs to maintain 

consistency across the entire network. The regional setup keeps the computational load manageable and ensures that 

decisions can be made quickly. 

The learning and decision-making layer uses Deep Q-Networks to evaluate network conditions and select 

configurations. It processes metrics like throughput and node mobility, considers multiple actions, and balances 

rewards to align with network goals. A distributed design ensures scalability, allowing the system to handle larger 

networks while maintaining efficiency. 

Context Awareness Layer 

The context awareness layer observes the network to understand its condition and recognize any unusual patterns or 

threats. It studies relationships between devices and their connections to detect changes in the network and predict 

how it might behave under different circumstances. 

The layer continuously analyzes the network to gather insights about its structure and behavior. It identifies 

disruptions in communication or abnormal activities, such as a node dropping all packets. By doing so, it helps adjust 

the network’s configuration to prevent potential problems. 

Graph Neural Networks (GNNs): Graph Neural Networks (GNNs) are used to process the network as a 

graph. Each node in the graph represents a device, and the edges between nodes represent communication links. A 

graph G = (V, E) is defined, where V is the set of nodes, and E is the set of edges. Each node vi ∈ V has features xi, such 

as energy level or traffic data, while each edge eij ∈ E may include attributes like transmission delay or signal strength. 

The GNN updates the representation of each node by combining its own features with information from its 

neighbors. The updated node representation hi
(t)

 at step t is calculated as: Eq 9 

ℎ𝑖
(𝑡)

= 𝜎(𝑊(𝑡) ⋅ 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸({ℎ𝑗
(𝑡−1)

, 𝑤𝑖𝑗|𝑗 ∈ 𝒩(𝑖)}) + 𝑏(𝑡)) ....(Eq  9) 

Here:   

• 𝒩(i) refers to the neighbors of node i,  

• W(t) and b(t) are learnable parameters for this step,  

• σ(⋅) is an activation function, such as ReLU,  

• AGGREGATE(⋅) combines information from neighboring nodes, often using simple operations like 

averaging or summing.  

The final representation hi
(T)

 summarizes the role of the node in the graph after T iterations. This information 

helps identify patterns and detect anomalies such as black hole attacks. 

Robustness: The GNN can handle changes in the network, such as adding or removing nodes or links. 

When a part of the network changes, only that portion needs to be updated, avoiding the need to retrain the entire 

model. This saves time and resources while keeping the network analysis consistent. 
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Scalability: To analyze large networks, the GNN works with smaller pieces of the graph, called subgraphs. 

A subgraph Gr = (Vr, Er), where Vr ⊂ V and Er ⊂ E, includes only a part of the network. The GNN processes these 

smaller graphs separately, which reduces computational effort. Later, the results from these subgraphs are combined 

to form a broader view of the entire network. 

The context awareness layer uses GNNs to study the network’s structure and behavior by treating it as a 

graph. It detects anomalies like packet-dropping nodes by analyzing relationships between devices and their 

communication links. This layer handles changes in the network efficiently and can process large networks by 

dividing them into smaller parts. Its purpose is to provide timely information about the network’s condition, enabling 

better control and adjustments. 

Feedback and Evaluation Layer 

The feedback and evaluation layer observes how the network performs after applying new configurations. It uses this 

information to guide future decisions and improve how the system handles changes in conditions. This layer focuses 

on identifying what works well and what needs adjustment by analyzing results from recent actions. 

The goal of this layer is to continuously check the performance of the network. Metrics such as data transfer 

speed (throughput), packet delivery rate, communication delays, and detection of security threats are tracked. Based 

on these observations, the system refines its strategies to better align with the network’s needs. 

Bayesian Optimization-Based Feedback: Bayesian optimization is used to understand the relationship 

between configuration settings and their outcomes. It models the performance of the network as a function f(x), 

where x represents the configuration parameters. Since the exact relationship between x and f(x) is often unknown, 

Bayesian optimization builds an approximation f̂(x) based on observed data: Eq 10 

𝑓(𝑥) = 𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑥|𝒟) ....(Eq  10) 

The data 𝒟 includes pairs of past configurations and their results, {xi, f(xi)}. Using this surrogate model, Bayesian 

optimization selects the next configuration x∗ by maximizing an acquisition function a(x), which predicts which 

configurations are worth exploring: Eq 11 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

𝑎(𝑥) ....(Eq  11) 

This method balances exploring new possibilities and refining known ones to gradually improve decisions. For 

example, if a configuration reduces delays but lowers packet delivery, Bayesian optimization adjusts to find a balance 

that satisfies both objectives. 

Robustness: Bayesian optimization accounts for uncertainties in how network configurations perform. It 

uses probability to predict the impact of changes, providing confidence that the chosen actions will work across 

different scenarios. By learning from variations in network conditions, the method helps reduce errors and ensures 

stable performance over time. 

Scalability: The layer is designed to handle large networks by focusing on smaller groups, or clusters, within 

the system. Each cluster evaluates its configurations independently, allowing feedback loops to work faster and use 

fewer resources. For a cluster 𝒞r, the feedback process updates the model f̂r(x) using the cluster’s performance data 

ℳr: Eq 12 

𝑓𝑟(𝑥) ← 𝑈𝑝𝑑𝑎𝑡𝑒(𝑓𝑟(𝑥),ℳ𝑟) ....(Eq  12) 

This localized approach minimizes delays, as clusters do not need to wait for the entire network to report its 

performance. Insights from these smaller groups are then combined to ensure consistency across the system. 

The feedback and evaluation layer uses Bayesian optimization to assess how configurations impact network 

performance. It continuously tracks key metrics, evaluates outcomes, and adjusts future actions to address changing 

conditions. By focusing on localized evaluations, it efficiently handles large networks while ensuring accurate updates 

to the learning process. This layer plays a central role in maintaining the network’s adaptability and stability. 

Execution and Control Layer 

The execution and control layer applies the configurations decided by the system. It ensures the network operates 

according to the recommended changes and enforces security rules to maintain proper functioning. This layer serves 

as the final point where decisions are turned into actions. 
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The primary task of this layer is to distribute configuration changes across the network. It manages tasks 

such as updating node settings, adjusting communication paths, and applying security protocols. This layer also 

ensures that security measures are activated where needed, preventing unauthorized activity and maintaining the 

network’s stability. 

Software-Defined Networking (SDN) Controllers: Software-Defined Networking (SDN) controllers 

are used to manage and apply the configurations. Each SDN controller oversees a specific part of the network, 

ensuring that the nodes in its region follow the given instructions. The controller sends commands to nodes and 

monitors their responses to ensure the configurations are implemented correctly. 

Consider a region r managed by an SDN controller Cr, which sends a set of actions 𝒜r to the nodes 𝒩r in that 

area: Eq 13 

𝒜𝑟 = {𝑎𝑖|𝑖 ∈ 𝒩𝑟} ....(Eq  13) 

Here, ai represents the action applied to a specific node i, such as updating its routing protocol or adjusting its power 

level. After applying the action, the node sends feedback fi back to the controller: Eq 14 

ℱ𝑟 = {𝑓𝑖|𝑖 ∈ 𝒩𝑟} ....(Eq  14) 

This feedback helps confirm that the configuration has been implemented successfully. If any issues arise, the 

controller can resend instructions or adjust the commands as needed. 

Robustness: The layer is designed to handle disruptions in the network. If a controller cannot communicate 

with certain nodes due to a failure, nearby controllers take over to ensure those nodes still receive instructions. For 

example, if Cr fails to deliver 𝒜r, the neighboring controller Cs will temporarily manage the affected nodes. This 

approach ensures that configuration changes continue to reach all parts of the network, even during unexpected 

failures. 

Scalability: The network is divided into regions, each managed by a dedicated SDN controller. This setup 

reduces the workload on individual controllers and avoids bottlenecks. Instead of a single controller handling the 

entire network, smaller regions are managed independently. Each region’s controller operates locally, sending 

instructions only to nodes within its area. The total workload for each controller is proportional to the number of 

nodes in its region: Eq 15 

𝐿(𝐶𝑟) = ∑𝑖∈𝒩𝑟
|𝑎𝑖| ....(Eq  15) 

By keeping L(Cr) below a defined limit, the system ensures that no controller is overloaded. This division of 

responsibilities allows the network to handle more nodes without delays or resource constraints. 

The execution and control layer uses SDN controllers to apply the recommended configurations and enforce 

security measures. It communicates directly with nodes, ensuring that changes are implemented and monitored. By 

dividing the network into regions and allowing controllers to manage smaller areas, this layer remains efficient and 

responsive even in large or dynamic networks. Through redundancy and localized management, it ensures 

continuous operation despite potential failures. 

Workflow of the Framework 

The framework operates through a series of steps to monitor, analyze, adapt, and optimize the network. 

Data Collection: Distributed Monitoring Agents (DMAs) gather metrics like bandwidth, energy levels, and 

topology. The collected data, Di(t), is sent to regional controllers, providing a snapshot of the network state. 

State Analysis: Graph Neural Networks (GNNs) represent the network as a graph G = (V, E), where nodes 

V and edges E have features. GNNs process these features iteratively to detect anomalies or changes, outputting 

updated node representations hi
(T)

. 

Decision-Making: Deep Q-Networks (DQN) use the analyzed state to determine optimal actions a∗, 

maximizing the Q-value: Eq 16 

𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄(𝑠, 𝑎) ....(Eq  16) 

Actions include protocol updates, power adjustments, or security enhancements. 

Configuration Execution: Software-Defined Networking (SDN) controllers apply the selected actions 𝒜r 

to nodes in their regions. Nodes execute the configurations and send feedback ℱr to confirm deployment. 
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Feedback Loop: Bayesian optimization evaluates the performance of configurations and updates the 

reinforcement learning model. The surrogate model f̂(x) predicts outcomes and selects the next configuration x∗ to 

improve efficiency: Eq 17 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

𝑎(𝑥) ....(Eq  17) 

This workflow ensures continuous monitoring, informed decision-making, timely execution, and iterative 

improvement, keeping the network adaptable and efficient. 

 

 

Figure 2: Workflow for Dynamic Network Management Framework 

The workflow diagram shows figure 2 the structure of a system designed to manage networks dynamically through 

five distinct layers. The Data Collection Layer gathers real-time information like bandwidth usage, energy levels, and 

topology changes using Distributed Monitoring Agents, which relay this data to regional controllers. The State 

Analysis Layer processes this information with Graph Neural Networks, examining connections between devices to 

detect unusual patterns and changing conditions. Based on these findings, the Decision-Making Layer uses Deep Q-

Networks to select actions, such as updating communication protocols or adjusting power levels, that are most suited 

to the current network state. These selected actions are implemented in the Configuration Execution Layer, where 

Software-Defined Networking controllers distribute commands to nodes while monitoring their responses for 

confirmation. Finally, the Feedback Loop Layer evaluates how these configurations perform using Bayesian 

optimization, refining the system’s ability to make better decisions in future cycles. Each layer communicates with 

the next, ensuring a continuous flow of data, decisions, and updates for seamless network management. 

EXPERIMENTAL STUDY 

The experimental study examines how the framework handles various challenges in Mobile Ad Hoc Networks 

(MANETs). It focuses on understanding how well the framework adapts to changes in network conditions, ensures 

uninterrupted data flow, and addresses security threats in a decentralized and dynamic environment. The 

experiments are designed to evaluate performance by analyzing metrics like throughput, latency, and packet delivery 

ratio. These metrics show how efficiently the framework processes data and maintains communication. Scalability is 

tested by increasing the number of nodes and monitoring the framework’s ability to handle more complex topologies. 

The study also examines robustness by introducing scenarios such as node failures, communication disruptions, and 

simulated attacks to measure the framework’s capacity to maintain functionality. The testing environment simulates 

real-world MANET conditions, including dynamic node mobility and varying communication loads. Network 
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simulators provide the platform for implementation, while reinforcement learning libraries and graph analysis tools 

help manage decision-making and anomaly detection. Data collection focuses on key metrics, including energy 

consumption and intrusion detection rates, to provide insights into how the framework performs under different 

conditions. This approach ensures a detailed understanding of its behavior and reliability across multiple scenarios. 

Experimental Setup 

Network Environment: The experiments utilized the NS-3 simulator to model a Mobile Ad Hoc Network 

(MANET) with 100 nodes spread over a 1000m x 1000m area. Node mobility followed the Random Waypoint 

Mobility Model, with nodes moving at speeds between 1 m/s and 10 m/s, pausing for 2 seconds between movements. 

Three different network topologies were used: random, grid, and clustered. Communication relied on the AODV 

routing protocol, and traffic was generated using constant bit rate (CBR) flows, transmitting 512-byte packets at a 

rate of 4 packets per second. Background traffic introduced additional flows to simulate congestion and evaluate the 

framework's performance under varying network loads. 

Evaluation Metrics: The performance and behavior of the framework were assessed using the following metrics: 

1. Throughput: Throughput measures the total data successfully delivered to the destination per second. It is 

expressed in kilobits per second (kbps) and highlights how efficiently the framework handles data 

transmission. 

2. Latency: Latency calculates the average time it takes for packets to travel from the source to the destination. 

It is measured in milliseconds and provides insights into delays introduced during communication. 

3. Packet Delivery Ratio (PDR): PDR represents the percentage of data packets successfully delivered 

compared to those sent. It indicates the reliability of data transmission across the network. 

4. Energy Consumption: Energy consumption measures the average energy used by the network nodes 

during the simulation. This metric is essential for evaluating how the framework manages power in resource-

constrained environments. 

5. Intrusion Detection Rate (IDR): IDR assesses the framework's ability to detect security threats, 

representing the percentage of identified threats out of the total threats introduced into the network. It 

evaluates the security mechanisms built into the framework. 

Experimental Results 

The experiments measured throughput, latency, and packet delivery ratio (PDR) under different network conditions, 

including variations in mobility and traffic load. Results showed that DynaMANET consistently handled data 

transmission better than enhanced optimized link state routing (E-OLSR) [19] and Multi-Agent Reinforcement 

Learning (MARL) [7], with minimal differences between DynaMANET and E-OLSR. 

Table 1 throughput values remained higher for DynaMANET in all mobility scenarios. Low mobility conditions 

resulted in higher throughput for all models, while high mobility led to slight reductions. The consistency of 

throughput in DynaMANET indicates its capacity to adapt to changes in the network. 

Table 1: Throughput (kbps) 

Model Low Mobility Medium Mobility High Mobility 

DynaMANET 980 960 920 

E-OLSR 970 950 910 

MARL 940 920 880 

The radar chart figure 3 visualizes throughput values, highlighting how DynaMANET maintains slightly better 

performance than E-OLSR across mobility scenarios. MARL shows lower throughput, especially at higher mobility 

levels. 
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Figure 3: Throughput comparisons 

The figure 3 Throughput comparisons emphasize the minor differences between DynaMANET and E-OLSR, with 

MARL trailing significantly. 

Latency analysis showed table 2 that DynaMANET incurred slightly lower delays than E-OLSR across all traffic levels. 

MARL exhibited noticeably higher delays, particularly under high traffic. 

Table 2: Latency (ms) 

Model Low Traffic Load Medium Traffic Load High Traffic Load 

DynaMANET 45 60 80 

E-OLSR 50 65 85 

MARL 60 75 95 

The figure 4 provides an overview of latency distributions, showing tighter ranges for DynaMANET compared to E-

OLSR. MARL has the widest delay distribution, indicating inconsistencies in communication. 

 

Figure 4: Latency Distributions Across Traffic Loads 

Figure 4 latency distributions reflect how DynaMANET maintains steadier delays under different traffic conditions. 

Table 3 Packet delivery ratio (PDR) values were slightly higher for DynaMANET compared to E-OLSR, with both 

models delivering significantly more packets than MARL. Increased traffic lowered the PDR for all models, but the 

trend remained consistent. 



325  

 
 

K. Purnima et al. / J INFORM SYSTEMS ENG, 10(3s) 

Table 3: PDR (%) 

Model Low Traffic Medium Traffic High Traffic 

DynaMANET 96.5 94.2 91.8 

E-OLSR 95.8 93.5 90.5 

MARL 92.0 89.5 85.3 

The figure 5 shows PDR trends across traffic loads, with DynaMANET maintaining consistent packet delivery 

reliability. 

 

Figure 5: Packet Delivery Ratio 

The figure 5 PDR values show DynaMANET delivering packets slightly more reliably than E-OLSR, with MARL falling 

behind at higher traffic levels. 

Security Evaluation: The models were tested for their ability to detect and mitigate anomalies such as black hole 

and DDoS attacks shown in table 4. Detection rates were higher for DynaMANET and E-OLSR, with a small margin 

favoring DynaMANET. MARL performed noticeably worse in both scenarios. 

Table 4: Intrusion Detection Rate (%) 

Model Black Hole Attack DDoS Attack 

DynaMANET 97.2 96.5 

E-OLSR 96.8 96.0 

MARL 92.0 91.0 

The heatmap figure 6 visually shows detection rates, with lighter colors indicating better detection performance. 

DynaMANET’s slightly higher detection rates are noticeable. 
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Figure 6: Intrusion Detection Rates 

Figure 6 Intrusion detection rates are compared, showing DynaMANET performing marginally better than E-OLSR 

in detecting anomalies. 

False positives were also evaluated. DynaMANET produced fewer incorrect detections compared to E-OLSR, while 

MARL showed the highest rate of false positives. False positive rates for all models illustrate how DynaMANET 

minimizes incorrect threat detections compared to the other methods. 

Scalability Testing: The ability to scale with increasing network size was tested by varying the number of nodes 

from 50 to 200. The table 5 throughput drop remained minimal for DynaMANET, with E-OLSR close behind. MARL 

showed larger reductions as the network grew. 

Table 5: Throughput Drop (%) 

Model 50 Nodes 100 Nodes 200 Nodes 

DynaMANET 2.5 3.8 5.5 

E-OLSR 3.0 4.5 6.5 

MARL 5.0 6.5 9.0 

The figure 7 visualizes throughput drop densities, showing DynaMANET adapting well as the network scales. 

 

Figure 7: Throughput drop distributions Across Network Sizes 

Figure 7 Throughput drop distributions reveal how DynaMANET handles scaling better than the other models. 

Robustness to Failures: The table 6 models were tested for their performance under simulated node and 

controller failures. DynaMANET maintained packet delivery better than E-OLSR, with both models significantly 

outperforming MARL. 
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Table 6: PDR Under Node Failures (%) 

Model 10% Node Failure 20% Node Failure 

DynaMANET 90.2 85.5 

E-OLSR 89.5 84.0 

MARL 84.0 78.5 

 

Figure 8: PDR Under Node Failures 

PDR during failures shows DynaMANET performing slightly better than E-OLSR, with MARL showing figure 8 

significant drops. 

Packet delay variability figure 9 was evaluated under failure scenarios. DynaMANET showed smoother 

communication with fewer spikes in delay compared to E-OLSR and MARL. 

 

Figure 9: Packet Dealy Variability 

Figure 9 performs slightly better than E-OLSR in most metrics while significantly outperforming MARL. The 

differences between DynaMANET and E-OLSR were small but consistent, indicating incremental improvements 

across performance, security, scalability, and robustness. 

CONCLUSION 

The study focused on addressing challenges in Mobile Ad Hoc Networks (MANETs) by introducing DynaMANET, a 

framework designed to integrate adaptive routing, resource management, and address configuration. The 

experiments demonstrated how DynaMANET maintained consistent throughput, minimized delays, and ensured 

higher packet delivery ratios compared to E-OLSR and MARL models. Detection rates for black hole and DDoS 

attacks were also slightly better, showing the framework’s ability to adapt to dynamic conditions while managing 

resources efficiently. The findings suggest that combining centralized and distributed methods can address 
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interconnected challenges in MANETs. The layered approach allowed the framework to balance computational loads 

and maintain stable operations even during network failures. These results indicate that the proposed methods are 

suitable for improving reliability and scalability in resource-constrained, dynamic networks. The reliance on 

simulated environments is a limitation, as real-world conditions often introduce additional complexities. High 

computational requirements for certain techniques, like neural networks, may restrict applicability in low-power 

environments. Future research could explore lightweight algorithms, real-world testing, and the integration of 

advanced security mechanisms to enhance applicability and performance. DynaMANET provides a practical method 

for managing MANETs under changing conditions. The framework offers insights into combining adaptive methods 

to improve performance and security, making it a relevant solution for dynamic and resource-limited environments. 

REFERENCES 

[1] Giordano, Silvia. "Mobile ad hoc networks." Handbook of wireless networks and mobile computing (2002): 

325-346. 

[2] Balaji, K. "A frame work for integrated routing, scheduling and Traffic Management in MANET." 

International Research Journal of Engineering and Technology 2, no. 9 (2015): 2337-2344. 

[3] Dr. Gomathi. U. "The Distributed Multi Constrained Channel Access Mechanism By Using Framework For 

Mobile Adhoc Network". International Journal for Multidisciplinary Research (IJFMR),  Volume 6, Issue 3, 

May-June 2024. 

[4] Wang, Xiaonan, and Huanyan Qian. "Dynamic and hierarchical IPv6 address configuration for a mobile ad 

hoc network." International Journal of Communication Systems 28, no. 1 (2015): 127-146. 

[5] Korichi, Afaf, and Youcef Zafoune. "MAAC Protocol: Mobile Agents based Address Auto-Configuration 

Protocol for MANET." In 2018 International Conference on Smart Communications in Network 

Technologies (SaCoNeT), pp. 194-199. IEEE, 2018. 

[6] Dalasaniya, Krishna, and Nitul Dutta. "An efficient cluster management mechanism for manets." In 2014 

IEEE International Conference on Computational Intelligence and Computing Research, pp. 1-6. IEEE, 2014. 

[7] Ivoghlian, Ameer, Zoran Salcic, and Kevin I-Kai Wang. "Adaptive wireless network management with multi-

agent reinforcement learning." Sensors 22, no. 3 (2022): 1019. 

[8] Adriaensen, Steven, André Biedenkapp, Gresa Shala, Noor Awad, Theresa Eimer, Marius Lindauer, and 

Frank Hutter. "Automated dynamic algorithm configuration." Journal of Artificial Intelligence Research 75 

(2022): 1633-1699. 

[9] Lopatka, Jerzy, Anna Kaszuba-Checinska, and Radoslaw Checinski. "Radio Environment Model for High-

Fidelity Simulator of Mobile Ad Hoc Networks with Dynamic Spectrum Management." In 2023 16th 

International Conference on Signal Processing and Communication System (ICSPCS), pp. 1-7. IEEE, 2023. 

[10] Khare, Akhil, G. Madhu, and Pallavi Khare. "Location and Time Aware Resource Seeking Framework for 

Mobile P2P and Ad Hoc Networks." In 2022 9th International Conference on Computing for Sustainable 

Global Development (INDIACom), pp. 776-780. IEEE, 2022. 

[11] Zhang, Yuru, Yongjie Xue, Qiang Liu, Nakjung Choi, and Tao Han. "RoNet: Toward Robust Neural Assisted 

Mobile Network Configuration." In ICC 2023-IEEE International Conference on Communications, pp. 3878-

3883. IEEE, 2023. 

[12] Ramya, V., N. Kousika, P. Rajasekaran, and J. JaganPradeep. "Secure and Efficient Modified Dynamic 

Partition Routing Algorithm for Mobile Ad Hoc Networks." In 2022 International Conference on Advanced 

Computing Technologies and Applications (ICACTA), pp. 1-5. IEEE, 2022. 

[13] Prashanth, Suhaas Krishna, and S. Senthil. "Stochastic-reinforcement learning assisted dynamic power 

management model for zone-routing protocol in mobile ad hoc networks." Wireless Personal 

Communications 120, no. 1 (2021): 203-230. 

[14] Janani, V. S., and M. Devaraju. "An efficient distributed secured broadcast stateless group key management 

scheme for mobile Ad Hoc networks." In 2022 International Conference on Advances in Computing, 

Communication and Applied Informatics (ACCAI), pp. 1-5. IEEE, 2022. 

[15] Yan, Jia, Qin Lu, and Georgios B. Giannakis. "Bayesian optimization for online management in dynamic 

mobile edge computing." IEEE Transactions on Wireless Communications (2023). 



329  

 
 

K. Purnima et al. / J INFORM SYSTEMS ENG, 10(3s) 

[16] He, Shwai, Liang Ding, Daize Dong, Boan Liu, Fuqiang Yu, and Dacheng Tao. "PAD-net: An efficient 

framework for dynamic networks." arXiv preprint arXiv:2211.05528 (2022). 

[17] Zhang, Yupeng, Shunkang Hu, and Zenghua Zhao. "A Unified Routing Framework for Resource-Constrained 

Mobile Ad Hoc Networks." In 2024 27th International Conference on Computer Supported Cooperative 

Work in Design (CSCWD), pp. 1358-1363. IEEE, 2024. 

[18] Nikolaidis, Ioanis, and Kui Wu, eds. Ad-Hoc, Mobile and Wireless Networks: 9th International Conference, 

ADHOC-NOW 2010, Edmonton, AB, Canada, August 20-22, 2010, Proceedings. Vol. 6288. Springer, 2010. 

[19] Ahmed, Huda A., and Hamid Ali Abed Al-Asadi. "A Blockchain-Enabled Trust Management Framework for 

Energy-Efficient and Secure Routing in Mobile Ad-Hoc Networks." TEM Journal 13, no. 2 (2024). 

[20] Anakath, A. S., R. Kannadasan, G. Simi Margarat, and A. Pasumpon Pandian. "Dynamic Topology 

Management in Ad-Hoc Networks for Improved Performance." In 2024 Second International Conference on 

Advances in Information Technology (ICAIT), vol. 1, pp. 1-5. IEEE, 2024. 

[21] Wang, Shu, Henry Hoffmann, and Shan Lu. "AgileCtrl: a self-adaptive framework for configuration tuning." 

In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the 

Foundations of Software Engineering, pp. 459-471. 2022. 

[22] Saudi, Nur Amirah Mohd, Mohamad Asrol Arshad, Alya Geogiana Buja, Ahmad Firdaus Ahmad Fadzil, and 

Raihana Md Saidi. "Mobile ad-hoc network (MANET) routing protocols: A performance assessment." In 

Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) 

Transcending Boundaries, Embracing Multidisciplinary Diversities, pp. 53-59. Springer Singapore, 2019. 


