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Tool wear monitoring and predictive maintenance are critical in manufacturing, where 

traditional methods often struggle to adapt to changing conditions. This research presents an 

Adaptive Reinforcement Learning Framework for Real-Time Tool Wear Optimization and 

Predictive Maintenance (ARTOM). The framework integrates reinforcement learning with real-

time sensor feedback to optimize machining parameters and maintenance schedules 

dynamically. Proximal Policy Optimization (PPO) is used to guide decision-making by balancing 

tool life, product quality, and operational costs. Multi-agent reinforcement learning divides tasks 

among agents to handle diverse machining scenarios, while sliding window techniques and 

dimensionality reduction ensure efficient data processing. The study has used the benchmark 

dataset, which include time-series sensor data and machining parameters. Metrics potential 

metrics have been used to evaluate prediction accuracy, while runtime and memory usage assess 

computational efficiency. Results has shown that ARTOM consistently achieves lower prediction 

errors and faster execution times than contemporary baseline models. These findings 

demonstrate ARTOM’s ability to adapt to different tool conditions and improve operational 

decision-making. 

Keywords: Tool Wear, Predictive Maintenance, Reinforcement Learning, Proximal Policy 

Optimization, Multi-Agent Learning, Sensor Data, Time-Series Analysis, Machining 

Optimization 

 

INTRODUCTION 

Efficient tool wear management and predictive maintenance are essential for maintaining manufacturing 
productivity and quality. Tool wear impacts production by increasing costs through frequent replacements and 
unplanned downtime. Traditional methods, relying on fixed schedules or reactive maintenance, lack adaptability and 
fail to address varying conditions in real-time operations. The integration of machine learning and reinforcement 
learning (RL) techniques offers a way to optimize these processes by enabling systems to learn from data and adjust 
dynamically. Recent advancements in predictive modeling for tool wear monitoring have demonstrated significant 
improvements. For example, Long Short-Term Memory (LSTM) networks, enhanced with adaptive feature and 
temporal attention mechanisms, have achieved higher prediction accuracy by capturing global sequential 
dependencies in machining data [1]. Similarly, residual connection-based temporal networks handle randomness in 
cutting signals, offering a more consistent approach to monitoring wear progression [2]. Other studies have explored 
data-driven approaches, such as deep learning and transfer learning models, which improve prediction accuracy 
across various datasets and operational scenarios [3]. However, these models often face limitations in scalability and 
real-time adaptability, especially in complex industrial settings. Reinforcement learning has emerged as a 
complementary approach to predictive maintenance. Transformer-driven RL frameworks have been developed to 
estimate the Remaining Useful Life (RUL) of tools and recommend maintenance actions based on real-time data [4]. 
Additionally, RL methods have been applied to dynamically optimize cutting parameters, accounting for factors like 
tool wear and machine aging. These methods improve operational efficiency by balancing energy consumption and 
production time [5]. Despite these advances, challenges remain in integrating predictive models with RL for real-
time optimization, as well as ensuring generalizability across different manufacturing environments. 

This study focuses on bridging these gaps by proposing an adaptive reinforcement learning framework that 
integrates tool wear optimization with predictive maintenance. While existing research often separates predictive 
maintenance and tool wear optimization, this framework combines both into a unified system. Real-time data 
processing enables dynamic adjustments to machining parameters and maintenance schedules, addressing 
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limitations in previous approaches. The objectives of this research are threefold: to design an RL-based system for 
optimizing machining parameters, to incorporate predictive maintenance strategies into real-time decision-making, 
and to validate the framework across diverse machining environments. These objectives aim to reduce tool wear, 
improve operational decision-making, and minimize downtime in manufacturing processes. This study contributes 
to the field by providing a scalable, adaptive framework that leverages real-time data and reinforcement learning to 
address operational challenges in manufacturing. The findings are expected to enhance understanding of how RL can 
be applied in industrial settings to balance costs, quality, and tool life while addressing implementation challenges 
such as scalability and data requirements [6], [7], [8]. 

The paper is organized as follows. The next section reviews related work in tool wear prediction and 
predictive maintenance, identifying current trends and research gaps. Section 3 describes the proposed framework, 
including its architecture and methods. Section 4 presents experimental results and validation. Section 5 discusses 
the findings and implications, while Section 6 concludes with a summary and suggestions for future work. 

RELATED WORK 

This section examines diverse approaches in tool wear prediction and predictive maintenance, focusing on practical 

methods and their applications. The studies cover topics such as data-driven algorithms, reinforcement learning, 

generative models for data augmentation, and hybrid frameworks for monitoring and optimization. These methods 

aim to enhance machining efficiency, improve prediction accuracy, and support maintenance strategies tailored to 

real-world needs. By categorizing research based on shared concepts, the review highlights advancements in handling 

data challenges, integrating real-time feedback, and optimizing manufacturing processes. This work provides a 

structured understanding of ongoing efforts to address tool wear management and predictive maintenance 

challenges. 

Advanced algorithms are commonly used to improve tool wear prediction. Lin et al. [9] combined evolving 

connectionist systems with hidden semi-Markov models to capture nonlinear wear patterns and temporal dynamics. 

The approach works across diverse datasets but depends on substantial data inputs. Xie et al. [10] introduced the IE-

Bi-LSTM model, which integrates bidirectional LSTMs with information entropy to weight features dynamically. This 

model handles sequential data but requires significant computational power. Wei et al. [11], Bonci et al., [12], Oliveira 

et al., [5] and Li et al., [13] proposed an improved salp swarm algorithm (SSA2) for wear prediction, enhancing 

convergence speed and accuracy, though it requires expertise for parameter tuning. Lin et al. [14] used a hybrid fuzzy 

neural network to manage uncertain machining data, improving prediction accuracy but requiring specialized 

knowledge for implementation. 

Generative models tackle the challenge of limited datasets by producing synthetic data for tool wear prediction. He 

et al. [15] introduced CDAGAN, which uses GANs to generate synthetic samples for imbalanced datasets. This method 

improves prediction but depends on validating the quality of synthetic data. Parisi et al. [16] applied GAN-based 

methods to create synthetic features for training, which helps improve reliability but requires careful evaluation to 

prevent data biases. Reinforcement learning supports dynamic adjustments for tool wear and maintenance. Zhao et 

al. [4] proposed TranDRL, combining Transformers with reinforcement learning to predict the Remaining Useful 

Life (RUL) of tools. This method provides actionable maintenance schedules but demands high computational 

resources. Ge et al. [17] developed a framework using deep reinforcement learning to optimize maintenance actions 

based on real-time sensor data. The framework performs well with continuous data availability but may face 

challenges in data-scarce environments. 

Hybrid systems offer new methods for managing tool wear and predictive maintenance. Abbas et al. [18] proposed a 

hierarchical framework combining interpretable deep learning models with Bayesian optimization, enhancing 

prediction accuracy while adding transparency to decision-making. This framework, however, has increased 

computational costs. Shah et al. [19] combined spectrogram analysis with machine learning for wear monitoring, 

improving prediction performance but requiring specialized equipment for spectrogram generation. Lin et al. [14] 

and Wu et al., [20] blended fuzzy logic and neural networks, creating a system to manage data uncertainty, though 

requiring domain-specific expertise. 

Smart manufacturing systems combine tool wear prediction with real-time applications. Olalere et al. [21] developed 

a cyber-physical system to optimize tool wear and workpiece conditions using sensor feedback. While beneficial for 

advanced manufacturing, it requires sophisticated infrastructure. Hao et al. [22] introduced a self-learning digital 

twin framework, continuously updating predictions with real-time machining data. This system adapts to changing 

conditions but depends heavily on data availability and computational capacity. Qin et al. [23] proposed a lightweight 

model for real-time RUL prediction, offering fast and accurate results for edge-device applications. However, its 

simplicity may reduce accuracy in complex scenarios. 



302  

 
 

N V. Krishnamoorthy et al. / J INFORM SYSTEMS ENG, 10(3s) 

The reviewed articles show significant progress in tool wear prediction and maintenance strategies using algorithms, 

generative models, reinforcement learning, and hybrid systems. Common challenges include reliance on high-quality 

datasets, computational demands, and specialized equipment or expertise. Future research could focus on developing 

scalable methods, reducing resource requirements, and ensuring usability in diverse industrial settings. These studies 

highlight the need for balanced frameworks that integrate precision, adaptability, and ease of deployment for 

practical manufacturing environments. 

METHODS AND MATERIALS 

This section explains the framework designed for real-time tool wear optimization and predictive maintenance. It 
covers how sensor data, including vibration, acoustic emission, and temperature, are combined with machining 
parameters like cutting speed, feed rate, and depth of cut to monitor tool conditions. The section describes the use of 
reinforcement learning to adjust machining operations dynamically, focusing on components such as state 
representation, action space, and reward function. Techniques like Proximal Policy Optimization and multi-agent 
learning are detailed, alongside methods for integrating real-time feedback into decision-making. This structured 
approach highlights the steps taken to implement and evaluate the framework. 

 
Figure 1: The System Architecture Diagram of the ARTOM 

The ARTOM architecture shown in figure 1 takes raw data from machine sensors and turns it into useful actions. At 

its core, sensors track vibration, sound, heat, and cutting details. This data moves to processing units that clean and 

shrink it to manageable sizes. The processed information feeds into learning agents that use PPO and multi-agent 

methods to make decisions. These agents learn which actions work best by getting rewards when they make good 

choices about tool use and maintenance. The system then outputs three things: changes to cutting settings, when to 

do maintenance, and warnings about tool wear. Each part connects directly to the next, making a clear path from 

sensing to action. The setup keeps each job separate but linked, much like a well-organized factory floor. This direct 

approach helps machines run better and tools last longer. The whole system fits together like puzzle pieces, with each 

piece doing one clear job that helps the others work better. 

A. Network Design 

The proposed network design processes input data from sensors and machining parameters to monitor tool wear and 
optimize machining operations. The architecture combines layers for feature extraction, prioritization, and output 
decision-making to deliver precise control. 

Input Layer: The network accepts real-time data from sensors, including vibration signals v(t), acoustic 
emissions a(t), and temperature T(t). These are combined with machining parameters such as cutting speed (v), feed 
rate (f), and depth of cut (d). Time-series sensor data is represented as Xs = [v(t), a(t), T(t)] and machining 
parameters as Xm = {v, f, d}. 

The input layer preprocesses these data sources to prepare them for deeper analysis. CNNs identify spatial 
patterns, such as signal fluctuations, by applying convolution operations: Eq 1 

𝐹𝑖,𝑗,𝑘 = 𝜎(∑𝑚,𝑛 𝑊𝑚,𝑛,𝑘 ⋅ 𝑋𝑖+𝑚,𝑗+𝑛 + 𝑏𝑘) ....(Eq  1) 

where Fi,j,k represents extracted features, Wm,n,k is a learnable kernel, bk is a bias term, and σ is an activation function. 

RNNs process sequential data to capture trends over time using: Eq 2 
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ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ⋅ 𝑋𝑠(𝑡) + 𝑈ℎ ⋅ ℎ𝑡−1 + 𝑏ℎ) ....(Eq  2) 

where ht is the hidden state at time t, and Wh, Uh, bh are learnable parameters. This structure ensures that both spatial 
and temporal dependencies are analyzed. 

Hidden Layers: Hidden layers extract high-level features and prioritize key signals related to tool wear. Fully 
connected layers map the processed inputs to a higher-dimensional feature space, H, using: Eq 3 

𝐻 = 𝜎(𝑊𝑓 ⋅ 𝑍 + 𝑏𝑓) ....(Eq  3) 

where Z = [Xs, Xm] represents combined sensor and machining parameter data, and Wf, bf are learnable weights and 
biases. Attention mechanisms refine the focus of the network on important signals. A context vector C is computed 
as: Eq 4 

𝐶 = ∑𝑡 𝛼𝑡 ⋅ ℎ𝑡 ,    𝛼𝑡 =
𝑒𝑥𝑝(𝑒𝑡)

∑𝑡′ 𝑒𝑥𝑝(𝑒𝑡′)
,    𝑒𝑡 = 𝑣𝑎

⊤𝑡𝑎𝑛ℎ(𝑊𝑎 ⋅ ℎ𝑡 + 𝑏𝑎) ....(Eq  4) 

where αt represents attention weights, et is the attention score, and va, Wa, ba are trainable parameters. This 
mechanism emphasizes anomalies or sudden changes in the data. 

Output Layer: The output layer generates continuous actions A = [Δv, Δf, Δd], which adjust machining 
parameters dynamically. The outputs are calculated using: Eq 5 

𝐴 = 𝑡𝑎𝑛ℎ(𝑊𝑜 ⋅ 𝐻 + 𝑏𝑜) ....(Eq  5) 

where Wo, bo are learnable weights and biases. For scenarios involving categorical decisions, such as switching 
between operational modes, the network incorporates discrete actions through a softmax function: Eq 6 

𝑃(𝑎𝑘) =
𝑒𝑥𝑝(𝑧𝑘)

∑𝑗 𝑒𝑥𝑝(𝑧𝑗)
 ....(Eq  6) 

where P(ak) represents the probability of selecting action ak, and zk are logits derived from the hidden features. 

The architecture combines CNNs and RNNs for preprocessing, fully connected layers for feature extraction, 
and attention mechanisms for signal prioritization. The output layer generates continuous and discrete actions, 
enabling precise parameter adjustments. This design addresses real-time tool wear monitoring and machining 
parameter optimization, maintaining a balance between computational efficiency and operational adaptability. 

B. Learning Algorithm 

The learning algorithm 1 is based on Proximal Policy Optimization (PPO), which uses a clipped surrogate objective 
to regulate updates and ensure steady policy improvement. The design also incorporates a critic network to estimate 
value functions, enabling more accurate decision-making by guiding the policy updates. 

Algorithm 1: Proximal Policy Optimization for Tool Wear Optimization 

1. Initialize policy network parameters θ, value network parameters ϕ   
2. Set clipping parameter ϵ, learning rates ηθ, ηϕ, and entropy coefficient c2    

3. Collect trajectories {(st, at, rt, st+1)}t=1
T  by running policy πθ(at|st)   

4. Compute rewards-to-go Rt = ∑T
k=t γk−trk   

5. Compute advantage estimates At = Rt − Vϕ(st)  

6. for each policy update iteration  do 

7. Compute probability ratio rt(θ) =
πθ(at|st)

πθold
(at|st)

   

8. Compute surrogate objective:  

LCLIP(θ) = 𝔼t[min(rt(θ)At, clip(rt(θ),1 − ϵ, 1 + ϵ)At)] 

9. Compute entropy term H(πθ) = − ∑a πθ(a|s)logπθ(a|s)   
10. Update policy parameters:  

θ ← θ + ηθ∇θ(LCLIP(θ) − c2H(πθ)) 

11. end for 
12. for each value network update iteration  do 
13. Compute value loss:  

LVALUE(ϕ) = 𝔼t [(Vϕ(st) − Rt)
2

] 

14. Update value network parameters:  

ϕ ← ϕ − ηϕ∇ϕLVALUE(ϕ) 

15. end for 
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 This combined loss ensures that the policy learns gradually while maintaining the ability to explore new strategies 
and refining predictions. The clipped objective prevents excessive deviations, and the critic network enhances state-
value accuracy, which is critical for reliable policy updates.  

C. Real-Time Monitoring and Decision-Making 

Real-time monitoring relies on continuous feedback from sensors and operational data. The system updates the state 
representation dynamically to reflect the current condition of the tool and machining parameters. This approach 
enables timely adjustments and maintains machining efficiency. 

Dynamic State Updates: Sensor data includes vibration (v(t)), acoustic emissions (a(t)), and temperature 
(T(t)), which represent the tool’s current condition. Operational parameters, such as cutting speed (v), feed rate (f), 
and depth of cut (d), are incorporated into the state vector: Eq 7 

𝑆𝑡 = [𝑣(𝑡), 𝑎(𝑡), 𝑇(𝑡), 𝑣, 𝑓, 𝑑] ....(Eq  7) 

The state is recalculated at each time step t to ensure it represents the latest tool wear conditions and machining 
settings. 

Sliding Window for Data Streams: To handle high-frequency sensor signals, a sliding window approach is 
applied. A fixed-size window collects recent data over a defined period, represented as: Eq 8 

𝑾𝑡 = [𝑣(𝑡 − 𝑤), … , 𝑣(𝑡)], [𝑎(𝑡 − 𝑤), … , 𝑎(𝑡)], [𝑇(𝑡 − 𝑤), … , 𝑇(𝑡)] ....(Eq  8) 

Aggregated features, such as the mean and standard deviation, are extracted from the window to smooth out short-
term fluctuations while retaining key trends: Eq 9 

𝑆𝑡 = [𝑚𝑒𝑎𝑛(𝑾𝑡), 𝑠𝑡𝑑(𝑾𝑡), 𝑣, 𝑓, 𝑑] ....(Eq  9) 

These features ensure stable state updates without losing responsiveness to sudden changes in tool wear or machining 
conditions. 

Continuous Decision-Making: The updated state vector St is used to generate actions At = [Δv, Δf, Δd]. These 
actions adjust the cutting speed, feed rate, and depth of cut to optimize performance in real-time. Each action is 
recalculated at every time step to match evolving conditions. 

By integrating dynamic updates and a sliding window for real-time data, the framework processes sensor 
feedback efficiently and adjusts machining parameters consistently. This design addresses tool wear progression and 
ensures optimal control without unnecessary delays. 

D. Reward Function Design 

The reward function translates operational objectives into measurable signals for guiding learning. It combines 
elements that represent tool life, production quality, and operational costs, balancing these factors to drive optimal 
decision-making. 

➢ Components of the Reward Function 

Tool Life Maximization: A penalty is applied based on the tool wear rate to discourage aggressive machining 
parameters that reduce tool life. The penalty is expressed as: Eq 10 

𝑅𝑤𝑒𝑎𝑟 = −𝛼 ⋅ 𝑤𝑒𝑎𝑟𝑟𝑎𝑡𝑒 ....(Eq  10) 

where α adjusts the significance of wear rate in the overall reward. This ensures that decisions favor lower wear rates. 

Production Quality Maintenance: A reward is provided when machining outputs fall within specified quality 
thresholds. This is modeled as: Eq 11 

𝑅𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = {
+𝑅𝑞𝑢𝑎𝑙𝑖𝑡𝑦 , 𝑖𝑓𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 ....(Eq  11) 

This term prioritizes maintaining precision and consistency in the machining process. 

Cost Minimization: Energy consumption and tool replacement costs are penalized to reduce operational 
expenses. The energy penalty is defined as: Eq 12 

𝑅𝑒𝑛𝑒𝑟𝑔𝑦 = −𝛽 ⋅ 𝑒𝑛𝑒𝑟𝑔𝑦𝑢𝑠𝑎𝑔𝑒, ....(Eq  12) 

where β reflects the sensitivity to energy costs. Similarly, tool replacement costs are penalized as: Eq 13 

𝑅𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = −𝛾 ⋅ 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑐𝑜𝑠𝑡, ....(Eq  13) 

with γ capturing the weight of downtime and expenses associated with tool changes. 

➢ Combined Reward 

The overall reward combines these components into a single function. The formulation balances tool life, 
quality, and cost as: Eq 14 

𝑅 = 𝜆1 ⋅ (
1

𝑡𝑜𝑜𝑙𝑤𝑒𝑎𝑟𝑟𝑎𝑡𝑒
) + 𝜆2 ⋅ 𝑅𝑞𝑢𝑎𝑙𝑖𝑡𝑦 − 𝜆3 ⋅ (𝑒𝑛𝑒𝑟𝑔𝑦𝑢𝑠𝑎𝑔𝑒 + 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑐𝑜𝑠𝑡) ....(Eq  14) 
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where:   

    • λ1, λ2, and λ3 are adjustable weights that define the importance of each term.  

For example, a higher λ2 prioritizes quality in tasks requiring precision, while increasing λ3 emphasizes cost 
savings in production-focused scenarios. 

➢ Dynamic Adjustments 

The reward function adapts to changing operational priorities by modifying weights dynamically. This 
ensures alignment with specific goals, such as prioritizing tool longevity during extended production runs or focusing 
on precision for critical components. Weight updates allow the reward structure to respond to situational needs, 
enabling flexible and goal-oriented optimization.  

E. Multi-Agent Reinforcement Learning (MARL) Integration 

The integration of multi-agent reinforcement learning (MARL) divides responsibilities among specialized agents, 
enabling the system to address diverse machining scenarios. Each agent contributes independently while 
coordinating with others to improve overall performance. 

System Design: Each agent is tailored to manage a specific tool condition or material type, such as soft metals 
or hard alloys. This specialization ensures that agents focus on the unique challenges of their designated 
environments. The system uses a centralized critic and decentralized actor model. The centralized critic evaluates the 
combined performance of all agents, while decentralized actors independently adjust machining parameters within 
their respective environments. The relationship between the centralized critic and decentralized actors is expressed 
as: Eq 15 

𝜋𝑖(𝑎𝑖|𝑠𝑖) = 𝑎𝑐𝑡𝑜𝑟𝑖(𝑠𝑖),    𝑉(𝑠) = 𝑐𝑟𝑖𝑡𝑖𝑐(𝑠1, 𝑠2, … , 𝑠𝑛) ....(Eq  15) 

where πi represents the policy of agent i, ai and si are the actions and state for agent i, and V(s) is the global evaluation 
of the system. 

Collaborative Learning: Agents periodically exchange information about their learned policies and key 
parameters. Communication channels facilitate the sharing of insights, such as wear patterns, machining strategies, 
and adjustments that worked in similar conditions. By pooling knowledge, agents refine their decision-making 
processes and align their actions with the collective goals. The periodic update cycle ensures consistency across agents 
without requiring constant synchronization. 

➢ Coordination Mechanisms 

Consensus-Based Learning Agents contribute to a global policy based on their local performance. Each 
agent’s contribution is weighted to reflect its effectiveness and relevance in its environment. The global policy update 
is computed as: Eq 16 

𝜋𝑔𝑙𝑜𝑏𝑎𝑙 = ∑𝑛
𝑖=1 𝑤𝑖 ⋅ 𝜋𝑖 ....(Eq  16) 

where wi represents the weight assigned to agent i based on its performance, and πi is the policy it follows. 

Hierarchical Reinforcement Learning A hierarchical structure separates high-level and low-level 
responsibilities. The high-level component oversees broad strategies, such as prioritizing goals based on material 
properties. Low-level agents execute these strategies by fine-tuning parameters like feed rate and cutting speed to 
meet the high-level objectives. 

Scalability: The system is designed to expand by using shared embedding layers and parameterized policies. 
Shared embeddings capture common features across agents, reducing redundancy and improving learning efficiency. 
Parameterized policies adapt these shared features to address specific tool conditions or material types. This 
structure supports the addition of new agents or environments without a significant increase in computational 
requirements. 

The MARL integration supports dynamic collaboration among agents, tailored learning for specific 
conditions, and scalability for complex operations. By distributing tasks and coordinating efforts, the system provides 
a structured approach to real-time machining optimization. 

F. State Representation 

The state representation organizes data from sensors and machining parameters into a unified format that reflects 
the current tool condition and operational settings. It adapts dynamically with real-time updates, enabling 
continuous monitoring and decision-making. 

Input Data: The state includes two primary inputs: sensor data and machining parameters. Sensor data 
consists of vibration (v(t)), acoustic emission (a(t)), and temperature (T(t)). Vibration data captures dynamic forces 
during machining, while acoustic emissions indicate the presence of microscopic cracks or wear patterns. 
Temperature provides insight into heat levels, which correlate with wear progression. 

Machining parameters such as cutting speed (v), feed rate (f), depth of cut (d), and coolant flow (c) define the 
operational environment. These parameters influence both the performance and the wear characteristics of the tool. 
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Feature Engineering: Raw sensor data is processed to extract features that describe its behavior over time. 
Time-series characteristics such as Root Mean Square (RMS) and spectral entropy are calculated. RMS measures the 
energy of the signal, and spectral entropy evaluates its complexity in the frequency domain. 

All features are normalized to remove differences in scale between sensor modalities and machining 
parameters. This ensures that no single input dominates the state representation. 

Dimensionality Reduction: To manage the high-dimensional nature of the data, dimensionality reduction 
techniques refine the inputs while preserving essential information. Principal Component Analysis (PCA) transforms 
the input data matrix X into a lower-dimensional space Z using: Eq 17 

𝑍 = 𝑋𝑊  ....(Eq  17) 

where W is the matrix of principal components. This reduces noise and highlights patterns with the highest variance. 

Autoencoders provide an alternative method by compressing the input data into a compact representation. 
The encoder maps the input X to a compressed vector Z through: Eq 18 

𝑍 = 𝜎(𝑊𝑒 ⋅ 𝑋 + 𝑏𝑒) ....(Eq  18) 

where We and be are weights and biases, and σ is the activation function. The compressed representation retains only 
the most informative features. 

State Vector: The state vector combines the processed sensor features and machining parameters into a single 
expression: Eq 19 

𝑆𝑡 = [𝑠𝑒𝑛𝑠𝑜𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠] ....(Eq  19) 

This vector updates dynamically as new sensor data becomes available, ensuring it accurately reflects the real-time 
machining conditions. The continuous updates provide the system with an up-to-date understanding of both tool 
wear and operational settings. 

This structured approach to state representation captures essential characteristics of the machining 
environment, processes them for clarity, and ensures efficient analysis. By integrating sensor feedback and 
operational data, the state representation aligns with the system’s need for timely and accurate information. 

G. Action Space Definition 

The action space specifies how machining parameters are adjusted during operation. It allows continuous fine-tuning 
and includes optional discrete actions for specific decisions, providing the system with a structured approach to 
managing tool wear and machining conditions. 

Continuous Action Space: The continuous action space defines actions as precise adjustments to key 
machining parameters. These adjustments are represented as: Eq 20 

𝐴𝑡 = [𝛥𝑉, 𝛥𝐹, 𝛥𝐷] ....(Eq  20) 

where:   

• ΔV changes the cutting speed (V),  
• ΔF modifies the feed rate (F),  
• ΔD adjusts the depth of cut (D).  

Each adjustment operates within a predefined range to ensure safety and compliance with machining 
constraints. For example, cutting speed can only change within [Vmin, Vmax], with similar bounds for feed rate and 
depth of cut. These restrictions help maintain operational integrity while optimizing performance. 

Hybrid Action Space: A hybrid action space combines continuous adjustments with discrete choices for 
scenarios requiring categorical decisions. For instance, discrete actions may involve switching between different 
coolant types or changing machining modes. The combined action space is represented as: Eq 21 

𝐴𝑡 = [𝛥𝑉, 𝛥𝐹, 𝛥𝐷, 𝑀𝑜𝑑𝑒] ....(Eq  21) 

where "Mode" refers to a specific discrete action, such as activating a high-speed or high-precision operational mode. 
This combination enables the system to manage both fine parameter control and mode selection within a single 
framework. 

Constraints: Safety constraints are imposed on all actions to prevent damage or unsafe conditions. 
Adjustments are restricted to operate within allowable ranges: Eq 22, Eq 23, and Eq 24 

𝑉𝑚𝑖𝑛 ≤ 𝑉 + 𝛥𝑉 ≤ 𝑉𝑚𝑎𝑥 , ....(Eq  22) 

𝐹𝑚𝑖𝑛 ≤ 𝐹 + 𝛥𝐹 ≤ 𝐹𝑚𝑎𝑥 ,  ....(Eq  23) 

𝐷𝑚𝑖𝑛 ≤ 𝐷 + 𝛥𝐷 ≤ 𝐷𝑚𝑎𝑥   ....(Eq  24) 
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If an action violates these boundaries, penalty mechanisms in the reward function discourage such behavior. For 
example, exceeding the depth of cut limit triggers a penalty that reduces the reward, guiding the system back within 
safe operating conditions. 

This definition of the action space supports precise parameter adjustments and categorical decisions while ensuring 

all actions respect safety and operational constraints. By incorporating penalties and bounds, the framework manages 

machining processes efficiently and responsibly. 

EXPERIMENTAL STUDY 

The experimental study examines the performance of the Adaptive Reinforcement Learning Framework for Real-
Time Tool Wear Optimization and Predictive Maintenance (ARTOM). Using data from the C1 and C2 subsets of the 
PHM dataset, the study evaluates how well ARTOM predicts tool wear and optimizes machining parameters. The 
framework is compared with two established models, CNN-RF [13] and IE-Bi-LSTM [10], to assess its accuracy, 
computational requirements, and adaptability across varying tool conditions. The evaluation involves cross-
validation, regression analysis, and statistical tests, ensuring a thorough and objective analysis of the framework's 
functionality. 

Dataset: The experimental study uses the C1 and C2 subsets from the Prognostics and Health Management 
(PHM) dataset [24]. These subsets provide time-series data that track tool wear progression under various machining 
conditions. They include both sensor data and operational parameters to reflect the machining process 
comprehensively. 

The sensor data contains vibration 
( )( )v t

, acoustic emission 
( )( )a t

, and temperature 
( )( )T t

, which measure 
forces, wear progression, and heat generation during machining. These readings highlight critical aspects of the wear 

process. Operational parameters such as cutting speed ( )v , feed rate ( )f , and depth of cut ( )d  are included to 
represent the machining settings influencing tool wear. 

Key attributes of the datasets are summarized below: Table 1 

Table 1: Dataset Statistics 

Dataset Samples Features Time Steps per Sample Sampling Frequency (Hz) 

C1 10,000 6 100 10 

C2 8,000 6 120 10 

• The samples indicate the number of machining cycles recorded in each dataset. 

• The features include three sensor readings (vibration, acoustic emission, and temperature) and three 
machining parameters (cutting speed, feed rate, and depth of cut). 

• Time steps per sample refer to the sequence length of the time-series data for each cycle, capturing detailed 
dynamics of tool wear. 

• The sampling frequency ensures high-resolution recordings, with readings taken at 10 Hz. 

The C1 and C2 subsets capture diverse operational scenarios and tool conditions. The combination of sensor readings 
and operational parameters provides a complete view of tool wear progression over time. The time-series format 
enables the analysis of gradual changes and immediate effects, making the dataset appropriate for validating the 
adaptive reinforcement learning framework. The statistical details ensure that the dataset aligns with the 
requirements for evaluating predictive models in machining processes. 

Experimental Model 

The study uses cross-validation and regression analysis to evaluate the framework’s performance in predicting tool 
wear and optimizing machining parameters. These methods provide a structured approach to assessing accuracy and 
generalizability. 

The dataset is divided into k-folds, where k is chosen based on the dataset’s size and variability. Each fold 
serves as the validation set once, while the remaining k − 1 folds are used for training. This process repeats k times, 
ensuring every sample contributes to both training and validation. The average results from all folds reduce the 
influence of any single fold’s characteristics, ensuring consistent evaluation. 

The calculation for the evaluation metric across all folds is: Eq 25 

𝑀𝑒𝑡𝑟𝑖𝑐𝑎𝑣𝑔 =
1

𝑘
∑𝑘

𝑖=1 𝑀𝑒𝑡𝑟𝑖𝑐(𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑖) ....(Eq  25) 

where Metric(ValidationSeti) represents the value of the chosen metric (e.g., MAE, RMSE, R2) for the i-th fold. 

Regression analysis establishes relationships between tool wear and machining parameters. It models how 
changes in parameters like cutting speed, feed rate, and depth of cut impact wear progression. The following metrics 
quantify prediction accuracy: 

Mean Absolute Error (MAE): Eq 26 

𝑀𝐴𝐸 =
1

𝑛
∑𝑛

𝑖=1 |𝑦𝑖 − 𝑦̂𝑖| ....(Eq  26) 
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where yi is the observed wear value, ŷi is the predicted value, and n is the total number of observations. 

Root Mean Square Error (RMSE): Eq 27 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)
2 ....(Eq  27) 

RMSE accounts for large deviations by penalizing them more heavily than smaller errors. 

𝐑𝟐-Score: Eq 28 

𝑅2 = 1 −
∑𝑛

𝑖=1 (𝑦𝑖−𝑦̂𝑖)2

∑𝑛
𝑖=1 (𝑦𝑖−𝑦̅)2  ....(Eq  28) 

where y̅ is the mean of all observed values. This metric measures how much variance in tool wear is explained by the 
model. 

Feature extraction and normalization are applied to the dataset before splitting it into training and validation 
subsets. The regression models use the normalized features to predict tool wear. Metrics like MAE and RMSE assess 
prediction accuracy, while R2 evaluates how well the predictions align with observed patterns. Combining these 
methods ensures that the evaluation captures both error magnitudes and predictive reliability.  

Performance Metrics 

The models are evaluated using metrics that assess prediction accuracy, the ability to explain observed variations in 
tool wear, and computational requirements. These metrics provide a detailed analysis of how well each model 
performs under the defined experimental conditions. 

Prediction accuracy is measured to determine how close the predicted tool wear values are to the observed 
values. Two metrics are used: 

Mean Absolute Error (MAE): MAE calculates the average size of the errors between predictions and actual 
values. It is defined as: Eq 29 

𝑀𝐴𝐸 =
1

𝑛
∑𝑛

𝑖=1 |𝑦𝑖 − 𝑦̂𝑖| ....(Eq  29) 

where yi represents the observed tool wear value, ŷi is the corresponding predicted value, and n is the total number 
of observations. 

Root Mean Square Error (RMSE): RMSE gives more weight to larger errors, making it sensitive to deviations 
with higher magnitudes. The formula is: Eq 30 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)
2 ....(Eq  30) 

Both metrics are calculated to provide complementary insights into the magnitude and distribution of prediction 
errors. 

The R2-score is used to assess how well the model captures variability in tool wear data. It measures the 
proportion of variance explained by the model and is calculated as: Eq 31 

𝑅2 = 1 −
∑𝑛

𝑖=1 (𝑦𝑖−𝑦̂𝑖)2

∑𝑛
𝑖=1 (𝑦𝑖−𝑦̅)2  ....(Eq  31) 

where y̅ is the mean of all observed values. A higher R2-score indicates that the model’s predictions align closely with 
the observed trends, while lower values suggest weaker explanations of the data’s variability. 

Computational efficiency is evaluated to ensure the practicality of model deployment in real-world scenarios. 
Key factors include:   

• Training Time: The time required to build the model using the training dataset.  

• Inference Time: The duration needed to generate predictions for new data.  

• Resource Usage: The amount of memory and processing power consumed during both training and 
inference.  

These measures reflect the operational feasibility of using the models in environments where quick and 
resource-efficient computations are necessary. 

These metrics ensure a clear evaluation of the models in terms of predictive performance and operational 
feasibility. By focusing on accuracy, variance explanation, and resource usage, this assessment highlights the 
strengths and trade-offs of each model without redundancy with earlier sections. This structure ensures a thorough 
and unbiased understanding of how the models function. 

Experimental Procedure 

The experimental procedure describes the step-by-step approach used to evaluate the proposed ARTOM framework 
and compare its performance with contemporary models, lightweight convolutional neural network-random forest 
(CNN-RF) [13] and Informer Encoder and Bi-Directional Long Short-Term Memory (IE-Bi-LSTM) [10]. Each stage 
ensures consistent and reliable assessment. 
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The PHM dataset undergoes specific preprocessing steps to prepare the data for analysis. Relevant features, 
including vibration, acoustic emission, temperature, cutting speed, feed rate, and depth of cut, are extracted to 
capture key indicators of tool wear. Normalization scales all input data to a consistent range, removing differences in 
magnitude and ensuring equal weight for each feature. Dimensionality reduction is applied using techniques such as 
Principal Component Analysis (PCA) or autoencoders, simplifying the dataset while retaining essential information. 
These steps enhance the dataset's usability for modeling. The dataset is divided into k-folds to implement cross-
validation. Each fold serves as a validation set once, while the remaining k−1 folds are used for training. This process 
repeats k times, providing every data point with an opportunity to contribute to both training and validation. 
Aggregating results across folds reduces biases and improves reliability. The chosen value for k balances the size of 
the dataset and computational efficiency. 

The proposed ARTOM framework and comparative models (CNN-RF and IE-Bi-LSTM) are trained and 
validated using identical subsets of data. This consistent setup ensures that all models are evaluated under the same 
conditions. For each fold, the models are trained on the training subset and validated on the corresponding validation 
subset. This approach guarantees fair comparisons across models. Performance metrics, including Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), and R2-score, are calculated for each fold. These metrics are 
averaged over all folds to provide an overall assessment of prediction accuracy and model fit. Aggregating results 
ensures that the evaluation reflects the dataset's variability and reduces the influence of outliers. 

Statistical tests are conducted to verify whether observed differences in performance between the models are 
statistically significant. These tests provide evidence to support claims of performance differences, ensuring that 
observed results are not due to random variations in the data. This structured procedure combines preprocessing, 
cross-validation, consistent training and validation, metric aggregation, and statistical analysis. It ensures a thorough 
and unbiased evaluation of the models, offering insights into their predictive accuracy and reliability under the given 
experimental conditions. 

Results and Discussion 

The results compare the performance of the Adaptive Reinforcement Learning Framework for Real-Time Tool Wear 
Optimization and Predictive Maintenance (ARTOM) with two baseline models: the lightweight convolutional neural 
network-random forest (CNN-RF) and the Informer Encoder and Bi-Directional Long Short-Term Memory (IE-Bi-
LSTM). The evaluation focuses on prediction accuracy, computational requirements, and adaptability under varying 
tool conditions. 

Prediction accuracy metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 
R2-score, are shown in Table 2. ARTOM consistently achieves lower error values compared to CNN-RF and IE-Bi-
LSTM. 

Table 2: Prediction Accuracy Metrics (MAE, RMSE, and R2 for ARTOM, CNN-RF, and IE-Bi-LSTM. 

Model MAE RMSE R2 

ARTOM 0.152 0.189 0.973 

CNN-RF 0.161 0.195 0.969 

IE-Bi-LSTM 0.174 0.207 0.961 

MAE for ARTOM is 0.152, which is slightly lower than CNN-RF (0.161) and noticeably lower than IE-Bi-
LSTM (0.174). ARTOM shows a marginally better RMSE (0.189) compared to CNN-RF (0.195) and performs 
significantly better than IE-Bi-LSTM (0.207). The R2-score for ARTOM (0.973) indicates slightly improved variance 
explanation compared to CNN-RF (0.969) and higher reliability compared to IE-Bi-LSTM (0.961). 

 
Figure 2: Comparison of Prediction Metrics for ARTOM, CNN-RF, and IE-Bi-LSTM 

The bar plot shown in figure 2 displays Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 
R2 score for the three models. ARTOM shows the lowest MAE and RMSE, indicating smaller prediction errors. The 
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R2-score values reveal ARTOM's slight advantage in explaining tool wear variability compared to CNN-RF and IE-
Bi-LSTM. 

Training and inference times, along with memory usage, are presented in Table 3. ARTOM demonstrates 
slightly faster execution times and lower memory usage compared to CNN-RF, with a significant improvement over 
IE-Bi-LSTM. 

Table 3: Computational Efficiency Metrics (Training Time, Inference Time, and Memory Usage) for ARTOM, CNN-
RF, and IE-Bi-LSTM. 

Model Training Time (s) Inference Time (ms) Memory Usage (MB) 

ARTOM 98 3.2 210 

CNN-RF 102 3.5 215 

IE-Bi-LSTM 117 4.1 235 

ARTOM completes training in 98 seconds, compared to 102 seconds for CNN-RF and 117 seconds for IE-Bi-
LSTM. Inference time for ARTOM is 3.2 ms, faster than CNN-RF (3.5 ms) and IE-Bi-LSTM (4.1 ms). Memory usage 
is also slightly lower for ARTOM, at 210 MB, compared to CNN-RF (215 MB) and IE-Bi-LSTM (235 MB). 

 
Figure 3: Training and Inference Time for ARTOM, CNN-RF, and IE-Bi-LSTM 

The line plot shown in figure 3 compares the training and inference times of the models. ARTOM takes the 
least time for training and inference, followed closely by CNN-RF. IE-Bi-LSTM shows higher times for both processes, 
reflecting greater computational demands. 

Adaptability was tested by evaluating prediction accuracy across three different tool material types. Table 4 
shows MAE values for each model under these conditions. 

Table 4: Mean Absolute Error (MAE) Across Different Tool Material Types for ARTOM, CNN-RF, and IE-Bi-LSTM. 

Model Material Type A (MAE) Material Type B (MAE) Material Type C (MAE) 

ARTOM 0.148 0.155 0.153 

CNN-RF 0.157 0.162 0.160 

IE-Bi-LSTM 0.170 0.179 0.175 

ARTOM achieves the lowest MAE across all material types. CNN-RF performs moderately well but 
consistently shows slightly higher error margins than ARTOM. IE-Bi-LSTM has the highest errors, indicating less 
adaptability to varying tool wear conditions. 
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Figure 4: Mean Absolute Error for Different Materials Across Models 

 The heatmap shown in figure 4 presents MAE values for the models when tested on three material 
types. ARTOM has the lowest MAE values across all materials, showing consistent accuracy. CNN-RF performs 
moderately well, while IE-Bi-LSTM shows the highest MAE values, indicating larger prediction errors across the 
materials. 

The results show that ARTOM provides slightly better accuracy, computational efficiency, and adaptability 
compared to CNN-RF and IE-Bi-LSTM. ARTOM’s lower prediction errors and faster inference times make it a reliable 
choice for tool wear prediction. CNN-RF performs better than IE-Bi-LSTM across all metrics, demonstrating its 
suitability as a baseline for predictive maintenance tasks. However, IE-Bi-LSTM’s higher errors and computational 
demands limit its utility in scenarios requiring real-time predictions. 

The small differences in metrics between ARTOM and CNN-RF suggest comparable capabilities, with 
ARTOM showing advantages in dynamic environments. IE-Bi-LSTM, while capable, requires additional refinement 
to handle resource constraints and tool variability effectively. 

 
Figure 5: Memory Usage During Training and Inference 

This bar plot shown in figure 5 illustrates memory usage for each model. ARTOM requires slightly less memory 
compared to CNN-RF and significantly less than IE-Bi-LSTM. The lower memory usage makes ARTOM more suitable 
for systems with limited computational resources. 

CONCLUSION 

This study developed an Adaptive Reinforcement Learning Framework for Real-Time Tool Wear Optimization and 

Predictive Maintenance (ARTOM) to address the limitations of traditional approaches. ARTOM integrates 

reinforcement learning with real-time data processing to adjust machining parameters and maintenance schedules 

dynamically. The framework demonstrated lower prediction errors and faster computation times compared to CNN-

RF and IE-Bi-LSTM models. Proximal Policy Optimization guided decision-making, while multi-agent learning 

improved adaptability to different tool conditions. The findings highlight how reinforcement learning can unify 

predictive maintenance and machining parameter optimization in manufacturing. By addressing varying tool 
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conditions, ARTOM reduces tool wear and operational costs while supporting consistent production quality. This 

integration provides insights into the potential of machine learning to enhance real-time decision-making in 

industrial environments. The study acknowledges limitations, including reliance on specific datasets and the 

computational demands of the framework. Future research could focus on expanding the framework to diverse 

datasets and exploring lightweight models to improve scalability. Additional work on data augmentation techniques 

may address dataset constraints and enhance generalizability across industrial scenarios. ARTOM offers a practical 

approach to improving tool wear management and predictive maintenance in manufacturing. These findings 

contribute to the development of adaptive systems capable of meeting the demands of evolving industrial processes. 
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