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The prediction of thyroid cancer has become a significant task in recent years. Binary 

classification is frequently the objective, despite the existence of extant diagnostic methods; 

however, the datasets employed are of limited size, and the results are not validated. Model 

optimization is the primary focus of current methodologies, while the feature engineering 

component is not as extensively investigated. In order to circumvent these constraints, this 

study introduces a method that examines feature engineering for deep learning models. 

Hashimoto's thyroiditis (primary hypothyroidism), autoimmune thyroiditis (compensated 

hypothyroidism), binding protein (increased binding protein), and non-thyroidal syndrome 

(NTIS) (concurrent non-thyroidal illness) can be predicted using the SCBLN Hybrid Spatial 

Convolution Based LSTM Network(SCBLN) approach. The dataset was initially obtained and 

can be processed using the normalization strategy. After that, the principal component 

analysis(PCA) method can be employed to extract the cancer-related features. And finally, the 

thyroid cancer can be predicted by employing the SCBLN classifier. The overall 

experimentation was carried out under python environment. According to extensive 

experiments, the SCBLN classifier achieves the highest accuracy and F1 score, with a 0.99 

score. Results indicate that the SCBLN model is a superior option for the detection of thyroid 

cancer in terms of both computational complexity and accuracy. A comparison of the SCBLN 

approach's performance to existing studies confirms its superiority. 

Keywords: Deeplearning, Thyroid Prediction, Hybrid Spatial Convolution based LSTM 

Network  . 

 
I. INTRODUCTION 

In recent years, there has been an increase in the number of cases of thyroid cancer. One of the most critical 

functions of the thyroid gland is to regulate metabolism. Different abnormalities can result from thyroid gland 

irregularities; hyperthyroidism and hypothyroidism are among the most prevalent. A significant number of 

individuals are diagnosed with thyroid cancers each year, including hyperthyroidism and hypothyroidism [1]. 

Hypothyroidism and hyperthyroidism may result from insufficient thyroid hormones, which are produced by the 

thyroid gland: levothyroxine (T4) and triiodothyronine (T3) [2]. In the literature, numerous methods are 

suggested for the diagnosis of thyroid cancer. It is imperative to forecast thyroid cancer in advance in order to 

administer the appropriate treatment to the patient at the appropriate time, thereby reducing medical expenses 

and saving human lives. As a result of technological advancements in data processing and computation, machine 

learning and deep learning techniques are employed to predict thyroid diagnoses in the early phases and classify 

thyroid cancer categories, including hypothyroidism and hyperthyroidism. The healthcare domain has benefited 

from the utilisation of technology in numerous healthcare areas to promote human well-being, as a result of the 

advancement in technologies such as data mining, big data, image and video processing, and parallel computing 

[3]. Data mining-based health care applications may encompass the early detection of maladies and diagnosis, 

prediction of virus outbreaks, drug discovery and testing, health care data administration, and patient 

personalised medicine recommendations, among others [4]. Health care professionals endeavour to detect 
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cancers in their early stages to ensure that patients receive appropriate treatment and the cancer is cured in a 

timely manner with minimal expenditure. Thyroid cancer is one of the cancers that affects a significant portion of 

the global human population. The American Thyroid Association, the world's foremost professional organisation, 

estimates that 20 million Americans are affected by some form of thyroid cancer [5]. At least once in their 

lifespan, twelve percent of the United States population is diagnosed with a thyroid condition. These statistics 

indicate that thyroid-based cancers should not be dismissed carelessly. It is highly desirable to enhance the 

health care practices to detect and prevent thyroid cancers through the use of advanced technologies. While there 

are only a handful of multiclass-based detection works, the majority of existing research is focused on binary 

classification problems, in which subjects are classified as either thyroid patients or healthy individuals. 

Nevertheless, the emphasis is on three categories: normal, hypothyroidism, and hyperthyroidism. The 

optimisation of machine learning and deep learning models is the primary focus, while the feature selection 

aspect of thyroid cancer is either completely ignored or incompletely investigated. Although these reporting 

methods are highly accurate, they are only evaluated on samples that are less than 1000 in number, and the 

results are not validated. In order to effectively forecast the patient's thyroid condition and proactively manage 

the patient, it is desirable to categorise the patient based on their status, such as their health condition, treatment 

condition, and general health issues. The objective of this investigation is to address these concerns and provides 

the subsequent contributions.  

• A novel deep learning-based approach to the prediction of thyroid cancer is SCBLN, with a particular emphasis 

on the multi-class problem. In contrast to prior research that concentrates on the binary or three-class problem, 

this study examines a five-class cancer prediction problem.  

• The efficacy of the PCA feature elimination approach for the problem at hand is the subject of this study.  

 

The subsequent sections of this article are structured as follows. Section 2 delves into the most recent research on 

the detection and classification of thyroid cancers. The SCBLN methodology to resolve the issue of thyroid cancer 

prediction is detailed in Section 3. The experimental results of our study and their comparison with prior art 

studies are detailed in Section 4. Our contributions conclude the article in Section 5.  

II. RELATED WORKS 

Recent technical developments in data processing and computing have facilitated the use of machine learning 

and deep learning methods in several research papers focused on predicting thyroid illness. Early detection and 

accurate categorization of this illness as either cancer, Hypothyroidism, or Hyperthyroidism are beneficial for 

prompt medical intervention and recuperation. The literature survey is conducted by using peer-reviewed article 

databases such as Google Scholar and Scopus. The searches were conducted within the timeframe of the last five 

years to discover the most current research relevant to our topic. The relevant articles were selected using 

combinations of the keywords "Thyroid cancer", "Thyroid cancer", "machine learning", and "deep learning". Due 

to the large amount of search results, we have refined the search queries and implemented a stringent keyword 

search to discover the most relevant articles. In all, we discovered over 100 relevant publications throughout our 

first screening process. After doing a more thorough analysis, we have identified and selected some papers that 

are very pertinent to our research. Machine learning and deep learning techniques are used for the diagnosis of 

both thyroid illness and thyroid cancer. Due to the distinct nature of the application procedure for each activity, 

they are addressed individually. The research [6] used the least absolute shrinkage and selection operator 

(LASSO) and LR model to identify the ultrasonic properties linked with cancerous thyroid nodules. Next, a 

Random Forest (RF) algorithm is used in conjunction with a score system to categorise the cancerous thyroid 

nodules. The logistic lasso regression (LLR) with random forest (RF) had the highest performance, with an 

accuracy of 82%. A separate investigation [7] used machine learning to predict the presence of the BRAF 

mutation in verified cancerous thyroid nodules. For this investigation, the researchers chose 96 ultrasonic 

pictures of thyroid nodules. A total of 86 radiomic characteristics were identified from the pictures. 

Subsequently, three models, namely Logistic Regression (LR), Support Vector Machine (SVM), and Random 

Forest (RF), were used to predict the existence of the BRAF mutation. The classification accuracy for all three 

models is given as 64.3%. Idarraga et al. [8] used machine learning techniques to predict the malignancy of 

thyroid nodules. They used ultrasonic and fine-needle aspiration (FNA) features to prevent incorrect negative 

diagnoses in the first phases of thyroid cancer. The RF approach outperformed other techniques such as decision 

tree (DT) and gradient descent (GD). The performance of all the aforementioned studies is suboptimal for 
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predicting thyroid cancer diagnosis and may yet be improved. Various methods for detecting and categorising 

thyroid cancers have been described in the literature. Garcia et al. [9] used machine learning methods such as 

RF, LR, GBM, SVM, and deep neural networks (DNN) to identify the compounds that are likely to initiate thyroid 

hormone homeostasis. Early molecular prediction is advantageous for further testing during the first phases of 

thyroid illness. The molecular events were derived from ToxCast databases for conducting the studies. According 

to the research, Thyroid Peroxidase (TPO) and Thyroid Hormone receptor (TR) had the highest level of 

predictive accuracy, with F1 scores of 0.83 and 0.81, respectively. The authors in [10] used image processing 

techniques and feature selection approaches to identify the crucial elements from the dataset and get optimal 

performance in predicting thyroid illness. The categorization of thyroid cancers is a prominent issue that has to 

be addressed in the healthcare sector. Razia et al. [11] conducted a comparative analysis of several machine 

learning algorithms to categorise Thyroid illness into normal, Hypothyroidism, or hyperthyroidism groups based 

on their performance. The authors acquired the datasets from the University of California Irvine (UCI) machine 

learning library. The dataset has a total of 7200 samples, with each sample possessing 21 distinct properties. The 

authors found that DT achieved superior performance compared to SVM, NB, and multilinear regression (MLR) 

with an accuracy of 99.23%. Nevertheless, multi-classification is limited to just three categories, and there is 

insufficient information about data preparation to evaluate the suitability of the findings for real-time datasets. 

The work [12] introduces a multi-kernel Support Vector Machine (SVM) for the classification of thyroid 

disorders. According to the authors, the multi-kernel SVM attained a performance accuracy of 97.49% on the UCI 

thyroid datasets. The enhanced grey wolf optimisation algorithm conducts feature selection and improves 

efficiency. A research [13] conducted a multiclass analysis of hypothyroidism utilising specific characteristics and 

machine learning methods. Hypothyroidism is categorised into four distinct classifications. The findings indicate 

that the RF algorithm achieved a high level of performance with an accuracy of 99.81%, surpassing the SVM, 

KNN, and DT algorithms. Nevertheless, the authors failed to address the performance of their suggested 

technique in classifying thyroid cancers. A separate investigation [14] conducted an experiment to evaluate the 

effectiveness of three feature selection techniques in combination with Support Vector Machines (SVM), Decision 

Trees (DT), Random Forests (RF), Logistic Regression (LR), and Naive Bayes (NB) for the purpose of early 

detection of hypothyroidism. Three feature selection approaches, namely recursive feature selection (RFE), 

univariate feature selection (UFS), and principal component analysis (PCA), are evaluated in conjunction with 

machine learning (ML) algorithms. The combination of Recursive Feature Elimination (RFE) and Machine 

Learning (ML) algorithms outperformed previous approaches of feature selection. When the RFE feature 

selection method was used in combination with five different machine learning algorithms, all of them achieved 

an accuracy of 99.35%. Nevertheless, the dataset is very limited, including just 519 entries. They need a 

comprehensive dataset to assess the efficacy of their approach. The authors [15] assessed the efficacy of several 

machine learning algorithms in classifying thyroid cancers. SVM, RF, DT, NB, LR, KNN, and MLP are used for 

illness prognosis. A dataset of 1250 samples is collected from hospitals and labs in Iraq. The Multilayer 

Perceptron (MLP) had a 96.4% accuracy in predicting the categorization of the thyroid. Nevertheless, there is still 

potential for enhancing performance. Hosseinzadeh et al. [16] introduced an approach called multiple multi-layer 

perception (MMLP) to diagnose thyroid disorders. When the Multilayer Perceptron (MLP) is combined with a set 

of six networks using the Multimodal Learning Platform (MMLP), the accuracy is enhanced by 0.7% in 

comparison to using a single MLP alone. Despite achieving a 99% classification accuracy on huge dataset 

samples, training deep learning methods such as MMLP is expensive and requires substantial processing 

resources to expedite the training process. In [17], the KNN algorithm is used to evaluate the effectiveness of 

several distance functions in detecting thyroid illness. Prior to using the KNN algorithm with Euclidean and 

Cosine distances, the chi-square and L1-based feature selection approaches were used to choose the most suitable 

features. The authors stated that KNN achieved favourable outcomes. Nevertheless, the sample size that was 

analysed is somewhat limited, consisting of a total of 590 samples. Mishra et al. [18] used machine learning 

approaches, namely sequential minimal optimisation (SMO), decision tree (DT), random forest (RF), and K-star 

classifier, for the prediction of hypothyroid illness. This research considers a sample size of 3772 unique records. 

According to the authors, RF and DT outperformed the other two approaches, with accuracy ratings of 99.44% 

and 98.97% respectively. However, the authors failed to take into account the prediction of hyperthyroidism. 

Alyas et al. [19] conducted a comparative examination of the machine learning methods Decision Tree (DT), 

Random Forest (RF), K-Nearest Neighbours (KNN), and Artificial Neural Network (ANN) for the purpose of 

detecting thyroid illness. The experiments were performed on the most extensive dataset, taking into account 
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both sampled and unsampled data with the purpose of predicting thyroid illness. RF achieved the highest level of 

forecast accuracy, with a precision of 94.8%. Nevertheless, the authors did not conduct the tests for predicting 

the kind of thyroid illness. The researchers used deep learning algorithms to forecast the categorization of thyroid 

illness. The authors [20] used a deep neural network (DNN) to forecast the categorization of thyroid illness. The 

performance assessment is conducted on the UCI dataset, which consists of 3152 distinct samples. The 

researchers documented a classification accuracy of 99.95% while using Deep Neural Networks (DNN) to 

categorise thyroid illness. Nevertheless, a substantial dataset is necessary to adequately train the model for 

accurate performance assessment. Furthermore, an increased allocation of computer resources is required to 

facilitate the training of deep learning models. Table 1 presents a comparative analysis of the previous studies 

addressed in this section. Diverse datasets are used in scholarly works to assess the efficacy of thyroid illness 

diagnosis. However, the majority of the datasets shown in Table 1 are not considered standard datasets for the 

purpose of evaluating performance and comparing with previous research. Consequently, we used a well 

recognised UCI dataset for our research. While significant progress has been made in the aforementioned 

studies, yielding very accurate findings in detecting and classifying thyroid illness, there is a lack of 

comprehensive study on feature selection for thyroid cancer classification difficulties. In addition, the 

performance findings presented in the context of accurately classifying thyroid illness are inadequate, leaving 

room for further improvement. In addition, all previous studies categorise thyroid issues into three distinct 

groups: normal, hypothyroidism, or hyperthyroidism. It is desirable to categorise patients based on their 

treatment condition, health condition, and general health difficulties in order to efficiently and proactively 

forecast and manage their thyroid condition. Furthermore, the comprehensive assessment of machine learning 

and deep learning methods for classifying thyroid cancers and comparing their effectiveness is lacking in the 

current literature. We offer a solution for classifying thyroid illness that is based on feature selection, extremely 

accurate, and supports many classes. This solution aims to address the limits of existing methods and includes a 

full performance comparison of machine learning and deep learning-based approaches. 

Table 1. Summary of the systematic analysis of the state-of-the-art thyroid cancer studies. 

“Authors Year Sample 

Size 

Dataset 

Source 

Model Classes Evaluation 

Metrics 

Results 

[9] 2020 - ToxCast LR RF SVM XGB 

ANN 

2 F1-score (TPO) XGB-

83% and 

(TR) RF-81% 

[11] 2018 7200 

samples, 

21 

attributes 

UCI SVM, Multiple 

Linear Re- 

gression(MLR), 

NB and DT 

2 Accuracy MLR 91.59%  

SVM 96.04% 

Naive Bayes 

6.31% Decision 

Trees 99.23% 

[12] 2020 7547,30 

features 

UCI multi-kernel SVM 3 Accuracy, 

Sensitiv- 

ity, and 

Specificity 

Accuracy 

(97.49%), 

Sensitivity 

(99.05%), and 

Specificity 

(94.5%) 

[13] 2021 3771 

samples, 

30 

attributes 

UCI DT, KNN, RF, and 

SVM 

4 Accuracy KNN 98.3% 

SVM 96.1%DT 

99.5% RF 

99.81% 

[14] 2021 519 

samples 

diagnostic 

center Dhaka, 

Bangladesh 

SVM, DT, RF, LR, 

and NB. 

Recursive Feature 

Selection 

(RFE), Univariate 

Feature 

4 Accuracy RFE, SVM, DT, 

RF, LR 

accuracy- 

99.35% 



224  
 

J INFORM SYSTEMS ENG, 10(3) 

Selection (UFS) 

and PCA 

[15] 2021 1250 with 

17 

attributes 

external 

hospitals 

and 

laboratories 

SVM,RF, DT, NB, 

LR, KNN, 

MLP, linear 

discriminant 

analysis (LDA) 

and DT 

3 Accuracy DT 90.13, SVM 

92.53 RF 91.2 

NB 90.67 LR 

91.73 LDA 83.2 

KNN 91.47 

MLP 96.4 

[16] 2021 7200 

patients, 

with 21 

features 

UCI multiple MLP 3 Accuracy multiple MLP 

99% 

[17] 2021 690 

samples, 

13 

features 

datasets from 

KEEL 

repo and 

District 

Headquarters 

teaching 

hospital, 

Pakistan 

KNN without 

feature selec- 

tion, KNN using 

L1-based 

feature selection, 

and KNN 

using chi-square-

based fea- 

ture selection 

3 Accuracy KNN 98% 

[18] 2021 3772 and 

30 

attributes 

UCI RF, sequential 

minimal opti- 

mization (SMO), 

DT, and K- 

star classifier 

2 Accuracy K = 6, RF 

99.44%, DT 

98.97%, 

K-star 94.67%, 

and SMO 

93.67% 

[19] 2022 3163 UCI DT, RF, KNN, and 

ANN 

2 Accuracy Best 

performance 

Accuracy 

RF 94.8% 

[21] 2022 215 with 

5 features 

UCI KNN, XGB, LR, DT 3 Accuracy KNN 81.25 

XGBoost 87.5 

LR 96.875 DT 

98.59 

[20] 2022 3152,23 

features 

UCI DNN 2 Accuracy Accuracy 

99.95%” 

 

III. SCBLN WORK 

In this paper, a novel frame work approach is presented for effective identification of the thyroid.  The overall flow 

of the suggested methodology was illustrated in figure 1. 
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Figure 1 Schematic representation of the suggested methodology

a. Dataset 

The dataset was obtained from https://www.kaggle.com/datasets/yasserhessein/thyroid-cancer-data-set. They 

derived it from Garavan Institute as given by Ross Quinlan. 6 databases are from the Garavan Institute 

inSydney,AustraliaApproximately the following for each database has 2800 training (data) instances and 972 test 

instances 

b. Data normalization 

The distributions of missing data dictate how to manage them in the preprocessing stage to guarantee adequate 

accuracy. This research used the Missing Completely At Random (MCAR) test to verify that the missing data were 

really randomly generated. The process that led to the data being missing determines the likelihood of bias 

resulting from missing data. Analytical strategies for filling in missing data and performing the necessary inferences 

and computations are examined using the chi-square test for multi-variate quantitative data. The imputer approach 

was used to fill in the missing variables in this investigation.  

In order to enhance prediction, many classification algorithms aim to learn from pure instances and make the 

border between each class as obvious as feasible. Near the limit, learning to classify synthetic examples is 

substantially more challenging than far from it, according to most classifiers. There are three steps to the 

recommended procedure, and they are detailed here.  

Step A: Equation (1) is used to build a synthetic instance.  

𝑁 = 2 ∗ (𝑟 − 𝑧) + 𝑧 (1) 

where 𝑟 → majority class samples, z → minority class samples and 𝑁 → newly created synthetic instance. 

https://www.kaggle.com/datasets/yasserhessein/thyroid-disease-data-set
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StepB:Togetridoftheoutlierornoise,usethesesteps:If Step A receives a new instance𝑆̂ = {𝑆̂1, 𝑆̂2, 𝑆̂3, … . 𝑆̂𝑛}, we will use 

Equation (2) to determine the distance between 𝑆̂𝑖and the original minority 𝑆𝑚 , Min⁡ 𝑛Rap (𝑆̂𝑖 , 𝑆̂𝑚).  

MinRap ⁡(𝑆̂𝑖 , 𝑆̂𝑚) = ∑  

𝑧

𝑘=1

 ∑  

𝑀

𝑗=1

 √(𝑆̂𝑖

(𝑗)
− 𝑆𝑚𝑘(𝑗))

2
(2) 

where 

MinRap ⁡(𝑆̂𝑖 , 𝑆̂𝑚) →L is determined by using Equation (3) and the samples' rapprochement in accordance with 

Equation (2). 

𝐿 = ∑  

𝑛

𝑖=1

  (MinRap ⁡(𝑆̂𝑖 , 𝑆𝑚)) (3) 

Step C: The distance between each initial majority𝑆𝑎 , Maj⁡ Rap⁡(𝑆̂𝑖 , 𝑆𝑎)𝑠, as specified by Equation (4), and all 𝑆̂𝑖, must 

be calculated. 

MajRap ⁡(𝑆̂𝑖 , 𝑆𝑎) = ∑  

𝑟

𝑖=1

 ∑  

𝑀

𝑗=1

 √(𝑆̂𝑖

(𝑗)
− 𝑆𝑎𝑙

(𝑗)
)
2

(4) 

MajRap ⁡(𝑆̂𝑖 , 𝑆𝑎) →H is calculated using Equation (5) in accordance with the rapprochement of samples and Equation 

(4). 

𝐻 = ∑  

𝑛

𝑖=1

 (MajRap ⁡(𝑆̂𝑖 , 𝑆𝑎)) (5) 

As a measure of disorder, entropy is all that is required. The connection between heterogeneity and probability was 

established by Claude E. Shannon using Equations (6) and (7).. 

𝐻(𝑋) = −∑ (𝑝𝑖 ∗ log2⁡ 𝑝𝑖) (6)

 Entropy (p) = −∑  

𝑁

𝑖=1

 𝑝𝑖log2⁡ 𝑝𝑖 (7)
 

Depend upon the probability the error instances can be removed. 

c. Feature extraction 

An essential aspect of the principal component analysis cycle is the act of separating connected variables into their 

respective metrics. In order to facilitate more precise classification, fusion feature (FF) vectors are reduced in 

dimensionality using principal component analysis. The characteristics that successfully categorise the data are 

considered throughout the model's construction. A FF has n distinct dimensions.We need to reduce the multi-

dimensional F=𝑧1, 𝑧, … , 𝑧𝑛to kn in the first place. In the end, the PCA uses these steps to produce a collection of  

reduced fused features (RFFs):  

 

1. Data scaling: 

𝑧𝑗
𝑖 =

𝑧𝑗
𝑖−𝑧𝑗̅̅ ̅

𝜎𝑗
                                                                         (8) 

2. Co-variance matrix computation: 

∑ =
1

𝑚
∑  𝑚

𝑖 (𝑧𝑖)(𝑧𝑖)
𝑇 , ∑ ∈ 𝑅𝑛×𝑛(9) 

3. Third, we calculate the eigenvector and eigenvalue.: 
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𝑤𝑇 ∑ = 𝜆𝜇𝑈 = [
∣ ∣ ∣

𝑤1 𝑤2 … 𝑤𝑛

∣ ∣ ∣
] , 𝑤𝑖 ∈ 𝑅𝑛                    (10) 

4. Eigenvalue selection. To choose the 100 most important Eigenvalues in K-space for our classification 

algorithm, we used the following formula 

𝑧𝑖
new =

[
 
 
 
 
𝑤1

𝑇𝑧𝑖

𝑤2
𝑇𝑧𝑖

⋯ … . .
… . .
𝑤𝑘

𝑇𝑧𝑖 ]
 
 
 
 

∈ 𝑅𝑘(11) 

5. Finally, the feature matrix was built. At last, the feature significance score that has been acquired is 

normalised. The formula for this is shown in the following formula. 

6. At last the feature matrix was constructed. 

Lastly, the normalisation of the resulting feature significance score is shown in the following formula: 

𝑉𝐼𝑀𝑗 =
VIM𝑗

∑  𝑐
𝑖=1  𝑉𝐼𝑀𝑖

(12) 

 

Figure 2 thyroid features 

d. Prediction 

In order to store and control information, the LSTM model adds input gates, output gates, and forget gates, and 

increases the cell state compared to the regular convolutional neural network model. To create a hybrid classifier 

for thyroid prediction, we are merging CNN with LSTM in this case. Depending on the current state of the neural 

network, the following gates are responsible for determining the output information: the forget gate for retaining 

the previous state, the input gate for determining the retention of the current information, and the cell state for 

judging the information's usefulness. At any one time, the model contains both the hidden state h_t and the cell 

state C_t. The forget gate, input gate, and output gate stand in for f_t, i_t, and o_t, respectively, at the t-th time 

step. 
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The sigmoid activation function and multiplier make up the cell state, which is important to the SCBLN model. The 

amount of information that may travel through the cell state is indicated by a number between zero and one that 

the sigmoid function produces. The SCBLN model primarily comprises the following four stages in its prediction 

process. 

Step 1. The forget gate regulates the amount of information that is forgotten and determines, via the sigmoid 

function's output probability, whether the hidden cell state from the previous instant is forgotten by the present cell 

state. In order to determine the degree of information retention, the forget gate takes the state output ℎ𝑡−1 from the 

hidden layer at the last moment and the current input 𝑥𝑡 as inputs. Then, it produces an output vector 𝑓𝑡, which in 

turn determines the amount of state 𝐶𝑡−1retained by the previous neuron. Here is the formula expression: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (13) 

Here, 𝑓𝑡 is the output value of the forget gate and 𝜎 is the sigmoid function. 

Step 2.  

The input gate takes into account which new features to add to the cell state and is responsible for inputting the 

existing feature information. To begin, ℎ𝑡−1and 𝑥𝑡 work together to establish the present input data. The next step is 

for the Tanh network layer to provide the new candidate cell state 𝐶𝑡 to ℎ𝑡−1and . The input gate then uses weights, 

typically between 0 and 1, to regulate the amount of new information given to the network by assigning them to the 

components in 𝐶𝑡 . Presented below is the formula: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (14)

𝐶̃𝑡 = tach⁡(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (15)
 

Step 3. Cell state update 

In order to get fresh cell state information 𝐶𝑡, update the attention cell state information 𝐶𝑡−1. The following 

equation shows the spatial response update formula: 

 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡 . (16) 

Here, ⊙ is the Hadamard spatial product. 

Step 4. Output gate 

To get the cell output ℎ𝑡 of the current model, we use and 𝑥𝑡 andℎ𝑡−1) to get the softmax current state 𝑜𝑡. Then, we 

modify the new cell state 𝐶𝑡 using the Tanh activation function and multiply it by this vector. Following follows is 

the formula expression: 

𝑠𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                   (17) 

When training the SCBLN model, eight sets of parameters must be learnt by the model. These include four sets of 

weights𝑤𝑓 , 𝑤𝑖 , 𝑤𝑜, and wc, and four sets of bias items𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜, and 𝑏𝑐, and bc, which correspond to 𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡, and 𝐶𝑡, 

respectively. The five primary procedures are: 

Step 1: Set the weight settings to zero  

Step 2: compute each neuron's output value using the algorithm above. Step 3: calculate each neuron's error 

valuebackwards.  

Step 4: Determine each weight parameter's gradient using the associated error value.  

Step 5: Update the weights using the recommended method, iterate again until the error approaches the designated 

threshold, and then cease training.  
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IV. PERFORMANCE ANALYSIS 

At first, we partitioned the datasets into train and test subsets. This technique was used to evaluate the performance 

of The suggested methodology. The overall experimentation was carried out under python environment. The 

pytorch framework was used to train the experiment in an environment consisting of an Intel (R) Xeon (R) Gold 

5220 CPU and a GeForce RTX 2080 Ti GPU.. This study uses formatted datas from an open- source experimental 

data set made available on an official public website.

Figure 3 Simulated output 

The overall simulated output for thyroid cancer prediction was illustrated in figure 3 

Figure 4 Correlation scores for every feature of the thyroid dataset is plotted in a bar chart. 

Each column represents the score for relevant feature. The scores are sorted in descending order. 

 

 

Figure 5  Loss calculation

Figure 5 compares the loss of the SCBLN model with the loss of the base model constructed using the original 

data. When optimising neural networks in machine learning, the cross-entropy—a popular loss function—

corresponds to the loss function. During 100 epochs, isolated features are used to train the base model. From 

Figure 5, it is evident that over-fitting occurs at about epoch 20, at which point the loss in the training set (unseen 

data) rises. An over-fitting model loses its capacity to generalise its predictions to fresh inputs from unseen data 

because it becomes too focused on learning particular information from the training set. When compared to the 

trained base model, the test set loss does not suggest over-fitting. Up to step 30, it is feasible to recognise 

continuous learning in the best model's loss curve. From that point on, the error begins to rise, indicating that 

training should be stopped in the early learning epochs. Therefore, it may be said that the model fits the original 

dataset's thyroid prediction.  
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Figure 6 MAE calculation 

As of from figure 6  the MAE was seem very less shows the efficiency of the suggested classifier. 

We can utilize performance measures for evaluate the performance of the process of the categorization such as 

Accuracy, Precision, Recall, and F1-score. 

Accuracy: In classification problems, accuracy is the proportion of correct predictions that the model makes out of 

all possible predictions. The number of true predictions is multiplied by the total number of predictions, which is 

then multiplied by 100. . 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
.                                (18) 

In this context, T_P represents True Positive, which refers to a situation in which an individual is diagnosed with 

thyroid ill syndrome(1) and the model classifies their case as sick-thyroid(1). T_N is a True Negative, which refers 

to a case in which the model classifies the individual as Negative(0) despite the absence of thyroid ill syndrome. 

False Positives are classified as F_P when the model classifies a person's case as ill-thyroid(1) despite the fact that 

they do not have thyroid sick syndrome(0). F_N is False Negative, which refers to a situation in which a person has 

thyroid ill syndrome(1) and the model classifies their case as Negative(0).  

Precision: Precision is the ratio of true positives and total positives predicted. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
.                                                (19) 

Precision is a metric that indicates the percentage of patients who were diagnosed with thyroid ill syndrome and 

subsequently exhibited the condition. The predicted positives (People predicted as sick-thyroid are 𝑇𝑃 and 𝐹𝑃 ) and 

the people actually having a euthyroid sick syndrome are 𝑇𝑃. 

Recall: A recall is the ratio of true positives to all positives in the ground truth. 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑛
.                                               (20) 

In this context, recall is a metric that denotes the percentage of individuals who were diagnosed as ill-thyroid by the 

algorithm despite having actually had thyroid sick syndrome. The genuine positives (those with thyroid sick 

syndrome are TP and FN) and the patients diagnosed with thyroid sick syndrome by the model are TP. FN is 

included because the Person did, in fact, have a thyroid ill syndrome, despite the model's predictive accuracy. 

F1-score: The F1-score metric is a combination of precision and recall. The F1 score is, in fact, the average of the two 

harmonics. Excellent precision and recall are both indicated by a high F1-score. It exhibits an exceptional 

combination of recall and precision and is particularly effective in addressing imbalanced classification issues.  
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𝐹1 =
2

1

 Precision 
+

1

 Recall 

(21) 

V. PERFORMANCE EVALUATION 

The evaluation and comparison of the performance with traditional procedures has been conducted. The 

accuracy is measured and illustrated in figure 7  to validate the projected technique with 99.9% accuracy. Similarly, 

the ANN,KNN,SVC,Decision Tree and Random forest  are achieved95,86,89 and 94 . The analysis showed that the 

planned technique produced effective results. 

 

Fig.7 Analysis of Accuracy 

To validate the projected technique, Accuracy is measured and illustrated in Table 2. 

Method name Accuracy 

SCBLN 99.9 

ANN 95 

CatBoost 95 

XGBoost 95 

Random forest 94 

LightGBM 94 

Decision tree 94 

Extra-trees 91 

SVC 89 

KNN 86 

GaussianNB 65 

Table 2. Analysis of Accuracy 

 

The evaluation and comparison of the performance with traditional procedures has been conducted. The 

accuracy is measured and illustrated in figure 7  to validate the projected technique with 100%  Precision. Similarly, 
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the ANN,KNN,SVC,Decision Tree and Random forest  are achieved  95,87,94.and 94. The analysis showed that the 

planned technique produced effective results. 

 

Fig 8.Analysis of Precision 

To validate the projected technique, the Precision is measured and illustrated in Table 3. 

 

Table 3.Analysis of Precision 

The evaluation and comparison of the performance with traditional procedures has been conducted. The 

accuracy is measured and illustrated in figure 7  to validate the projected technique with 99.9%  Recall. Similarly, 

the ANN,KNN,SVC,Decision Tree and Random forest  are achieved 95,86,89,94 and  94 . The analysis showed that 

the planned technique produced effective results. 
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Method name Precision 

SCBLN 100 

ANN 95 

CatBoost 95 

XGBoost 95 

Random forest 94 

LightGBM 94 

Decision tree 94 

Extra-trees 91 

SVC 89 

KNN 87 

GaussianNB 76 
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Fig.8. Analysis of Recall 

To validate the projected technique, the F1_Measure is measured and illustrated in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Analysis of Recall 

The evaluation and comparison of the performance with traditional procedures has been conducted. The 

accuracy is measured and illustrated in figure 7  to validate the projected technique with 99.9%  F-Measure. 

Similarly, the ANN,KNN,SVC,Decision Tree and Random forest  are achieved 95,86,89,94 and  94 . The analysis 

showed that the planned technique produced effective results. 
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Method name Recall 

SCBLN 99.9 

ANN 95 

CatBoost 95 

XGBoost 95 

Random forest 94 

LightGBM 94 

Decision tree 94 

Extra-trees 91 

SVC 89 

KNN 86 

GaussianNB 65 
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Fig.9.Analysis of F1-Measure 

To validate the projected technique, the F1_Measure is measured and illustrated in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

Table.5.Analysis of F1-Measure 

As of from the table 2 to table 5 and figure 6 to fig 9,  it was revealed that the suggested methodology outperforms 

well when compared to other existing mechanisms in use. Hence , it is recommended to consider a  suggested 

classifier when using this dataset to predict thyroid risk for obtaining satisfied performance.The suggested 

methodology obtained  satisfied performance over thyroid cancer prediction by obtaining high range of 

accuracy(99.9%), precision (100%), recall(99.9%) and f1-score(100%) 

In this experiment, we employed a visualization tool called the learning curve to ascertain the benefit of feeding 

our model with more training data. It demonstrated how test results and training for a machine learning and deep 

learning model with a variable number of training samples relate to each other. Generally, the cross-validation 

method was applied for generating the learning curve. We plotted the learning curve using the Python Yellowbrick 

module. The accuracy score for the train set was shown by the term "Training Score" in the aforementioned graphs 

(Figs. 10–12), whereas the accuracy score for the test set was indicated by the phrase "Cross-Validation Score." To 

prove the efficiency of the suggested methodology it can be compared with the existing methods [20], 

100

95

95

95

94

94

94

91

89

86

60

0 20 40 60 80 100 120

SCBLN

ANN

CatBoost

XGBoost

Random forest

LightGBM

Decision tree

Extra-trees

SVC

KNN

GaussianNB

Analysis of F1-Measure

F1-score

 

Method name 

F1-score 

SCBLN 100 

ANN 95 

CatBoost 95 
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Random forest 94 

LightGBM 94 

Decision tree 94 

Extra-trees 91 

SVC 89 

KNN 86 

GaussianNB 60 
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Fig 10. Learning curves for the top four classification algorithm 

 

Fig.11.Learning curves for most important classifier algorithms (Light GBM,DecisionTree,Extra tree, SVC) 
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Fig 12.Learning curves for the lowest classifier algorithms (K-Nearest Neighbour,Naïve Bayes ) 

VI. CONCLUSION  

This study provides an experimental investigation of the SCBLN Spatial Convolution-Based LSTM 

Network(SCBLN) algorithms for the purpose of predicting thyroid risk. In order to forecast thyroid risk, these 

algorithms are implemented on the Kaggle thyroid dataset. Precision, recall, F1 score, and accuracy are computed 

to assess the algorithms that are implemented. The SCBLN classifier surpasses all other algorithms with an 

accuracy of 99.9%. Extensive experiments and analyses have demonstrated that the SCBLN classification algorithm 

achieves superior results in terms of accuracy, precision, recall, and F1 measure when used to predict thyroid risk 

on the thyroid dataset. Consequently, it is advisable to priorities the SCBLN classifier over other existing techniques 

when employing this thyroid dataset to predict thyroid risk.  In future the suggested methodology was applied on 

different cancer prediction dataset for improving its detection efficiency. 
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