
Journal of Information Systems Engineering and Management
2025, 10(24s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Optimizing Workflow Scheduling in Cloud Computing

Through Comparative Study of Dynamic Group and Prioritize

Scheduling (DGPS) and Traditional Algorithms

K.Subba Shankar1,Veeraswamy Ammisetty2

1Research Scholar, Department of CSE, Koneru Lakshmaiah Education Foundation, Green Fileds, Vaddeswaram, A.P– 522302.
2Associate Professor, Department of CSE, Koneru Lakshmaiah Education Foundation, Green Fileds, Vaddeswaram, A.P– 522302.

E-mail:1kambamshankar@gmail.com,2ammisetty.veeraswamy@gmail.com

ARTICLE INFO ABSTRACT

Received: 16 Dec 2024

Revised: 02 Feb 2025

Accepted: 20 Feb 2025

In cloud computing environments, efficient workflow scheduling is critical for optimizing

resource utilization and minimizing response times. This study introduces and evaluates a new

scheduling algorithm—Dynamic Group and Prioritize Scheduling (DGPS)—and compares its

performance with three traditional algorithms: First-Come-First-Served (FCFS), Shortest Job

First (SJF), and Round Robin (RR). The DGPS algorithm dynamically groups tasks based on

their attributes and prioritizes them before allocation to Virtual Machines (VMs), aiming to

enhance scheduling efficiency. Through simulations with 5 VMs and 50 tasks, the performance

metrics of average response time and standard deviation were analyzed. The results indicate

that DGPS provides a balanced performance with stable response times, while SJF achieves the

lowest average response time but with moderate variability. FCFS offers slightly better

response times than DGPS but with higher variability, and RR demonstrates the highest

response times and standard deviations. This research highlights the effectiveness of DGPS in

achieving consistent and efficient task scheduling in cloud environments.

Keywords: Cloud Computing, Dynamic Group and Prioritize Scheduling (DGPS),

Performance Optimization, Scheduling Algorithms, Virtual Machines (VMs)

1. INTRODUCTION

Cloud computing has rapidly evolved into a critical component of distributed computing, offering scalable and

flexible services via the Internet through hardware and software virtualization. This model enables customers to

access services under Service-Level Agreements (SLAs), with a pay-as-you-go pricing system similar to traditional

utilities [1]. The key advantages of cloud computing include its adaptability and flexibility, allowing individuals to

access and utilize resources tailored to their specific requirements from any remote location [2]. Cloud service

providers generally offer two main types of resource provisioning plans to meet various user needs [3]. The first is

the on-demand plan, where resources are requested as needed, suitable for unpredictable and fluctuating demand

patterns. The second is a reservation-based plan, where users reserve resources in advance, providing a more stable

and predictable approach to resource allocation. Industry-leading cloud platforms like Amazon EC2 and GoGrid

offer services that support both these plans, accommodating different user requirements [4, 5].

In heterogeneous distributed computing environments, a network of diverse computers, machines, and processors

collaborates using high-speed networks to handle complex computational tasks [6]. Previously, scientific

applications were executed using grid computing infrastructures, often referred to as e-science [7]. However, the

emergence of cloud computing has led to its adoption in e-business and e-science, thanks to its broad availability,

cost-effectiveness, and the flexibility offered through virtualization technologies. Cloud computing allows users to

execute scientific workflows, which are parallelizable mathematical processes implemented in real-world

engineering tasks such as Fast Fourier Transform (FFT), Gaussian-Jordan (GJ) elimination, and LU

decomposition. These workflows are typically modeled using Directed Acyclic Graphs (DAGs), where nodes

represent different application tasks and edges denote data dependencies among these tasks [8]. Since the shapes

and resource demands of these applications can significantly vary, cloud computing elasticity enables it to meet

142

J INFORM SYSTEMS ENG, 10(24s)

these diverse needs effectively, providing a scalable solution in cases where users cannot expand their current

infrastructure [9].

In cloud environments, multiple virtual machines (VMs) can execute independent tasks simultaneously, enhancing

resource utilization. A critical performance metric in this context is the turnaround time, which represents the total

elapsed time from the beginning of the first task to the completion of the final one. This metric, commonly referred

to as makespan, directly impacts user experience and serves as a primary objective in workflow optimization [10].

Therefore, minimizing makespan is crucial in optimizing resource utilization and enhancing the overall efficiency of

cloud-based applications.

Effective execution of scientific workflows in a cloud environment heavily depends on resource allocation strategies,

known as workflow scheduling. This process involves distributing workflow tasks to appropriate computing

resources while considering various resource priority constraints [11]. Given the NP-complete nature of workflow

scheduling, researcher’s focus on finding near-optimal solutions rather than absolute ones. To streamline this

process, a Workflow Management System (WMS) is essential for defining and managing workflows for execution in

cloud environments. The WMS includes a workflow scheduler that acts as a bridge between the workflow tasks and

the cloud's computing resources. As shown in Figure 1, this scheduler is responsible for organizing workflow tasks

and allocating them to targeted resources in an efficient manner, which is crucial for optimal resource utilization

and the successful execution of scientific workflows.

Figure 1: Scientific workflow execution model in cloud computing

Task scheduling in cloud computing is a critical challenge, particularly when dealing with complex and diverse

scientific workflows. These workflows often involve large volumes of data, intricate processing requirements, and

multiple criteria that must be satisfied simultaneously [12]. The complexity inherent in scientific workflows has led

researchers to develop strategies aimed at optimizing their management. One of the primary focuses in these

strategies is balancing two often conflicting Quality of Service (QoS) variables: cost and time [13]. QoS serves as a

measure of user satisfaction with cloud services and is typically evaluated based on criteria such as reliability,

computational cost, and execution time.

The challenge of balancing the dual objectives of minimizing processing time and reducing costs is significant in

cloud environments. Faster processing generally necessitates the use of more powerful and, therefore, more

expensive resources, whereas opting for cheaper resources might prolong the completion time of tasks [14]. To

address this issue, it is essential to devise strategies that not only shorten processing times but also reduce costs,

while simultaneously adhering to established deadlines and budgets. The ultimate objective is to find an ideal

balance between meeting performance requirements and optimizing resource utilization in a cost-effective manner.

The study in question aims to enhance scientific workflow scheduling performance in cloud computing

environments by concentrating on three primary objectives: optimizing execution time, minimizing financial costs,

and maintaining effective load balancing across available resources. This study proposes the use of the Whale

Optimization Algorithm (WOA) in a multi-level approach to achieve these objectives. The WOA-based approach is

designed to minimize the makespan of workflows, ensuring that tasks are completed in the shortest possible time.

143

J INFORM SYSTEMS ENG, 10(24s)

By minimizing makespan, users can benefit from improved system responsiveness, directly impacting their overall

experience.

In addition to reducing execution time, the proposed method also focuses on minimizing the monetary costs

associated with resource utilization. This cost minimization is achieved by optimizing the distribution of tasks

among virtual machines (VMs). Effective task distribution not only reduces costs but also improves resource

utilization, ensuring that computational resources are used efficiently. Lastly, the study emphasizes the importance

of load balancing, which involves distributing the computational load evenly across all available resources. Effective

load balancing helps to prevent bottlenecks, thereby enhancing overall system performance and reliability.

To address workflow scheduling issues in dynamic cloud environments, there is a need for an efficient and effective

scheduling algorithm. In this study, the proposed Dynamic Group and Prioritize Scheduling (DGPS) algorithm is

introduced as a novel solution for optimizing the allocation of tasks in cloud computing. The DGPS algorithm

focuses on grouping tasks based on their characteristics, such as priority, resource demands, and deadlines, and

then prioritizes these grouped tasks before assigning them to VMs. This structured approach allows for a more

efficient allocation of resources, ensuring that critical tasks are executed promptly while less urgent tasks are

queued appropriately.

In addition to DGPS, the study also implements and compares several traditional scheduling algorithms, including

First-Come-First-Served (FCFS), Shortest Job First (SJF), and Round Robin (RR). FCFS is a straightforward

scheduling method where tasks are executed in the order they arrive, regardless of their size or resource demands.

While simple, FCFS often leads to inefficiencies, especially when larger tasks occupy resources for extended

periods, causing delays for smaller, potentially more urgent tasks. On the other hand, SJF prioritizes tasks with the

shortest execution time, minimizing the overall processing time but potentially leading to the starvation of longer

tasks if shorter ones keep entering the system. The Round Robin (RR) method allocates a fixed time slice for each

task, ensuring that all tasks receive an equal opportunity for execution. However, RR can be inefficient for

workflows with varying resource demands, as it may not adapt to the specific needs of each task.

The proposed DGPS algorithm aims to address the limitations of these traditional scheduling methods by

incorporating a more dynamic and flexible approach. It groups tasks based on their specific attributes and assigns

them priorities, ensuring that resource allocation is optimized to meet varying workflow requirements. By doing so,

DGPS enhances system performance, minimizes response times, and maximizes resource utilization.

Problem Definition: In cloud computing environments, multiple users simultaneously request services, and

these requests are managed by numerous virtual machines (VMs). The primary challenge in this context is to

allocate tasks efficiently in order to minimize response time and ensure optimal resource usage. Ineffective task

scheduling can lead to resource bottlenecks, increased processing times, and higher operational costs. The

proposed DGPS algorithm addresses these issues by grouping tasks according to their characteristics, assigning

them appropriate priorities, and then allocating them to VMs in a manner that optimizes both processing speed and

cost.

The comparison of DGPS with traditional algorithms such as FCFS, SJF, and RR in this study provides valuable

insights into the effectiveness of different scheduling methods in cloud environments. By analyzing the strengths

and weaknesses of each algorithm, the study aims to identify the most suitable strategies for various cloud

computing scenarios. This approach not only contributes to the understanding of task scheduling in cloud

computing but also guides the development of future algorithms that can adapt to the dynamic nature of cloud

environments.

In conclusion, task scheduling remains a significant concern in cloud computing, especially when dealing with

complex scientific workflows. The proposed DGPS algorithm, combined with a comparative analysis of traditional

scheduling methods, offers a comprehensive approach to optimizing workflow execution. By focusing on reducing

execution time, minimizing costs, and maintaining load balance, this study aims to enhance the performance and

efficiency of cloud-based scientific workflows, ultimately improving user satisfaction and resource utilization.

2. LITERATURE REVIEW

Cloud computing offers a flexible, scalable, and efficient platform for users to access services and resources. Task

scheduling plays a pivotal role in optimizing the allocation and utilization of these resources, ultimately improving

144

J INFORM SYSTEMS ENG, 10(24s)

the system's performance. Over the years, numerous task scheduling algorithms have been proposed, each

addressing various aspects of performance, resource utilization, cost, and energy efficiency. This literature review

provides a comprehensive analysis of these task scheduling algorithms and their methodologies.

The "Cost-Based Task Scheduling Algorithm" proposed by Garg [15] focuses on efficiently allocating tasks in a cloud

computing environment, particularly at the platform and infrastructure levels. Cloud computing environments

often face the challenge of assigning 'm' tasks to 'n' virtual machines (VMs) where 'm' exceeds 'n'. The algorithm

aims to optimize resource usage by evaluating the processing cost of each task on every VM using the Shortest Job

First (SJF) approach. The SJF algorithm allocates tasks to VMs based on the minimum processing load to ensure

optimal resource utilization. The process begins by reading the number of VMs (n) and tasks (m), then calculates

the processing cost for each task on the available VMs. Tasks are then assigned to the VM with the minimum

processing load iteratively until all tasks are scheduled. This method helps in reducing total processing costs and

optimizing task execution times. However, the primary limitation of this approach is that it assumes a known

processing cost for each task, making it less adaptable in dynamic and unpredictable cloud environments.

Nandhini, Radha, Pavithra, and Srikanth [17] presented a comprehensive "Survey on Task Scheduling Models

Using Optimization Techniques" to address task scheduling challenges in cloud computing. The study highlights

that the primary goal of a task scheduling algorithm is to minimize makespan (the total time required to complete a

set of tasks) and maximize resource utilization. Various algorithms, including Max-Min, Genetic Algorithm (GA),

Particle Swarm Optimization (PSO), Ant Colony Algorithm, and Bee Colony Algorithm, were discussed in their

paper. The survey introduces a Hybrid Cuckoo Algorithm that combines the advantages of the Genetic Algorithm

and Cuckoo Algorithm, aiming to improve energy efficiency, execution time, and resource utilization. This hybrid

approach effectively eliminates the need for traditional task scheduling algorithms, thereby reducing overall

scheduling time. Despite its advantages, the complexity of implementing hybrid algorithms and their

computational costs are noteworthy challenges that need to be considered in real-world cloud scenarios.

The "Enhanced Max-Min Task Scheduling Algorithm" proposed by Bhoi and Ramanuj [20] emphasizes the need for

reduced waiting times, reduced makespan, optimal resource utilization, and overall better system performance. The

proposed Scheduling Algorithm (SA) aims to enhance traditional scheduling approaches by improving the task

allocation process. Using the CloudSim framework for evaluation, the SA algorithm demonstrated superior

performance in comparison to the existing SJF algorithms. By consistently reducing processing times, the

algorithm showcased its potential in optimizing task scheduling within cloud environments. However, the

limitations of this approach include the lack of scalability in large-scale cloud systems and the assumption of

homogeneous resources.

Saxena, Chauhan, and Kait [21] introduced the "Dynamic Fair Priority Optimization Task Scheduling Algorithm,"

which implements the concept of "Weighted Fair Queuing" to enhance quality of service (QoS). This algorithm

addresses challenges related to resource allocation, task execution order, overhead minimization, VM monitoring,

and cost considerations in cloud task scheduling. The algorithm categorizes tasks into two groups: deadline-based

and reduced cost-based, using dynamic optimization and priority equity principles. It utilizes three priority queues

(high, mid, low) with assigned weights, implementing a round-robin approach. This algorithm's key benefit is its

ability to balance fairness and efficiency for both users and service providers. However, it introduces complexity

due to the classification and dynamic priority adjustments, which may lead to increased computational overhead.

The "Task Scheduling Algorithm with Improved Makespan Based on Prediction of Task Computation Time (PTCT)"

proposed by Al-Maytami, Fan, Hussain, Baker, and Liatsis [23] introduces a novel approach using Directed Acyclic

Graphs (DAGs) and Principal Component Analysis (PCA). The PTCT algorithm focuses on enhancing task

scheduling performance and minimizing computational costs in cloud environments. By leveraging PCA to

minimize matrix size, PTCT efficiently optimizes resource allocation and considers QoS constraints. It was

compared to other state-of-the-art scheduling algorithms like Min-Min, Max-Min, QoS-Guide, and Min-Max,

demonstrating superior performance in terms of speedup, efficiency, and schedule length ratio. Despite its

advantages, PTCT's fixed approach may limit flexibility in highly dynamic cloud environments, and its reliance on

historical data for prediction may not always guarantee optimality.

The "Dynamic Priority Scheduling Algorithm Based on Heapsort," proposed by Meng, Zhu, and Xia [25], introduces

a new method that accounts for task deadlines, values, and energy consumption. Using the hierarchy process

145

J INFORM SYSTEMS ENG, 10(24s)

(FAHP) to prioritize tasks, the algorithm employs heapsort to efficiently sort tasks in order of priority. This

algorithm is particularly suited for real-time systems and industrial control applications, where reducing the

frequency of missed deadlines is crucial. The experimental results indicate a decrease in missed deadlines by an

average of 0.1789, thereby enhancing overall scheduling performance. However, this algorithm's reliance on

heapsort can become a bottleneck in environments with rapidly changing task priorities, impacting real-time

performance.

2.1 Comparison of Methodologies and Drawbacks

To provide a more structured overview of these methodologies, a comparison table (Table 1) is provided below. This

table outlines each algorithm, its methodology, and its key drawbacks/limitations.

Table 1: Comparison of Related Work and Methodologies

Author Paper Title Methodology Drawbacks/Limitations

Meng, S., et.al [25]
Improvement of the Dynamic
Priority Scheduling Algorithm

Based on a Heapsort

Heapsort, Dynamic
Priority Scheduling

Bottleneck in real-time
environments, High

computational complexity

Shi, J., et.al. [26]

Elastic Resource Provisioning for
Scientific Workflow Scheduling in
Cloud Under Budget and Deadline

Constraints

Budget-Constrained
Scheduling, Elastic

Resource Provisioning

Limited to budget and
deadline constraints, Less

adaptable to real-time
changes.

Aziza, et.al [27]
A Hybrid Genetic Algorithm for

Scientific Workflow Scheduling in
Cloud Environment

Hybrid Genetic
Algorithm

High computational overhead,
Requires fine-tuning of

parameters

Iranmanesh, et.al
[28]

DCHG-TS: A Deadline-Constrained
and Cost-Effective Hybrid Genetic
Algorithm for Scientific Workflow
Scheduling in Cloud Computing.

Hybrid Genetic
Algorithm, Deadline-

Constrained
Scheduling.

High complexity, Scalability
concerns.

Mohammadzadeh,
A., et.al [29]

Scientific Workflow Scheduling in
Multi-Cloud Computing Using a

Hybrid Multi-Objective
Optimization Algorithm.

Hybrid Multi-
Objective

Optimization

Limited real-world validation,
High computational cost.

Choudhary, et.al
[30]

Energy-Aware Scientific Workflow
Scheduling in Cloud Environment.

Energy-Aware
Scheduling, Workflow

Optimization.

Complex implementation,
Limited flexibility in dynamic

environments.

Khaleel, et.al [31]

Multi-Objective Optimization for
Scientific Workflow Scheduling

Based on Performance-to-Power
Ratio in Fog–Cloud Environments.

Multi-Objective
Optimization,

Performance-to-Power
Ratio.

Limited applicability to large-
scale cloud environments,
Requires accurate power-

performance models.

Al-Moalmi, et.al.
[32]

A Whale Optimization System for
Energy-Efficient Container
Placement in Data Centers

Whale Optimization
Algorithm

High computational
complexity, Limited evaluation

in diverse scenarios

In summary, task scheduling in cloud computing has been extensively explored using various algorithms and

techniques. Each approach brings unique advantages while facing its own set of challenges. The evolution from

traditional cost-based scheduling to more dynamic and optimized algorithms signifies the continuous effort to

improve cloud resource management. The next step in this research involves comparing the proposed Dynamic

Group and Prioritize Scheduling (DGPS) approach with these traditional methodologies to identify potential

enhancements in performance, resource utilization, and overall efficiency.

3. PROPOSED METHODOLOGY

The proposed methodology aims to address workflow scheduling issues in cloud computing environments with

dynamic resource availability. Given the cloud’s vast network of servers and the continuous influx of user tasks,

scheduling needs to be optimized to ensure that each task receives adequate resources promptly. The methodology

focuses on dynamically grouping tasks based on their characteristics, prioritizing them, and allocating the most

146

J INFORM SYSTEMS ENG, 10(24s)

suitable Virtual Machine (VM) for execution. This systematic approach enhances resource utilization, minimizes

response time, and efficiently manages the execution of diverse tasks.

3.1. Task Grouping Based on Attributes

The first step of the proposed methodology involves grouping incoming tasks based on specific attributes such as

deadlines, cost requirements, or resource demands. This dynamic grouping reduces the complexity of scheduling by

categorizing tasks with similar characteristics, allowing for more targeted resource management. The attribute-

based clustering helps in the effective distribution of tasks, optimizing their placement and resource usage across

the cloud environment. The key aspects of this phase include:

a) Dynamic Identification of Attributes: Each task is analyzed to identify attributes like execution time,

cost sensitivity, and urgency (e.g., deadline constraints).

b) Attribute-Based Clustering: Tasks are then dynamically grouped based on these attributes. For

example, tasks with strict deadlines are grouped separately from those that are cost-sensitive, while tasks

requiring high computational resources are clustered based on resource demand.

3.2. Task Prioritization within Groups

After grouping, the methodology involves prioritizing tasks within each group. This prioritization ensures that the

most critical tasks receive attention first, thereby optimizing response times and resource allocation. The

prioritization is based on a scoring mechanism that incorporates various task attributes:

a) Priority Score Calculation:

A priority score is assigned to each task using a weighted combination of its attributes:

Priority Score = w1 × Deadline Urgency + w2 × Execution Time + w3 × Cost Sensitivity (1)

Where:

➢ w1, w2, and w3 are adjustable weights based on system requirements

➢ Deadline Urgency represents deadline proximity

➢ Execution Time represents task duration

➢ Cost Sensitivity represents resource usage

b) Sorting by Priority:

Tasks within each group are sorted in descending order of their priority scores, ensuring:

a) Most critical tasks are addressed promptly

b) Efficient management of other tasks

By prioritizing tasks based on their attributes, this methodology optimizes resource allocation and response times.

3.3. Dynamic Resource Allocation to Virtual Machines

The final step involves dynamically allocating tasks to the available VMs based on their capabilities and current

load status. The cloud environment typically consists of multiple VMs, each with varying resource capacities. The

methodology selects the optimal VM for each task, considering both task priority and VM status:

a) VM Selection: The system continuously monitors the available VMs, evaluating their response times and

resource capacities. For each task, the VMs capable of handling it are identified, and the one with the

minimum response time is selected for execution.

b) Task Assignment and Execution: The selected VM is then assigned the task, and its status is updated

to reflect the new workload. This dynamic assignment helps maintain an optimal balance across the cloud

infrastructure, preventing overloading of individual VMs and improving overall system performance.

147

J INFORM SYSTEMS ENG, 10(24s)

c) Feedback Mechanism: The methodology includes a feedback mechanism that continuously monitors

VM performance. If any inefficiencies or delays are detected, adjustments are made to future task

assignments, ensuring ongoing optimization of resource usage and response times.

3.3 Proposed Algorithm: Dynamic Group-Prioritized Scheduling (DGPS) Algorithm

To design a dynamic task scheduling algorithm that optimizes workflow management by grouping tasks based on

specific attributes, prioritizing them, and allocating dynamic resources (VMs) in a cloud environment to minimize

response time and maximize resource utilization.

Steps of the Algorithm:

1. Input:

- Set of incoming tasks: T = {T1, T2, …, Tn}

- Set of available Virtual Machines (VMs): V = {V1, V2, …, Vm}

- Task attributes: deadlines, cost requirements, resource demands

- VM attributes: response time, current load, resource capacity

2. Initialize:

- Create empty groups G = {G1, G2, …, Gk} based on task attributes (e.g., deadlines, cost requirements)

- Initialize a priority queue for each group

3. Task Grouping:

- For each incoming task Ti in T:

- Identify its attributes (e.g., deadline, cost)

 - Assign Ti to the appropriate group Gj based on its attributes

4. Task Prioritization:

 - For each group Gj in G:

 - Calculate a priority score for each task Ti in Gj using the formula:

Priority Score = w1 × Deadline Urgency + w2 × Execution Time + w3 × Cost Sensitivity

- Sort tasks in Gj based on their priority scores in descending order

5. VM Selection and Task Assignment:

 - For each task Ti in the priority queue of group Gj:

 - Identify the set of VMs V′ ⊆ V that have the capacity to execute Ti

 - Select the VM Vmin ∈ V′ with the minimum response time

- Assign Ti to Vmin for execution

 - Update the status and load of Vmin to reflect the addition of Ti

6. Feedback and Adjustment:

 - Continuously monitor the performance of each VM

 - Adjust task groupings, priorities, and VM selections based on real-time feedback to optimize future scheduling

7. Output:

 - An optimal schedule of tasks assigned to VMs

148

J INFORM SYSTEMS ENG, 10(24s)

8. End of Algorithm

This proposed methodology ensures an adaptive and efficient approach to workflow scheduling in cloud

environments. By dynamically grouping tasks, prioritizing them, and allocating resources based on real-time

system status, it addresses the complexities of handling dynamic resources in cloud computing. The feedback

mechanism further enables ongoing optimization, improving system performance and user experience.

4. Implementation

In our study, we implemented and tested four scheduling algorithms to evaluate their performance in a simulated

cloud computing environment. The experimental setup included:

➢ Number of Virtual Machines (VMs): 5

➢ Number of Tasks: 50

The tasks were characterized by varying execution times and deadlines to create a realistic workload. The four

algorithms under evaluation were:

1. Dynamic Group and Prioritize Scheduling (DGPS)

2. First-Come-First-Served (FCFS)

3. Shortest Job First (SJF)

4. Round Robin (RR)

Each algorithm was implemented and applied to the same set of tasks across the 5 VMs. The tasks were scheduled

according to the specific rules of each algorithm, and their performance was measured based on the average

response time and standard deviation of response times.

4.1 Algorithm Implementation Details:

a) DGPS: Tasks were first grouped based on deadlines and then prioritized within each group by execution

time. Each task was assigned to the VM with the minimum load, aiming for efficient resource utilization

and timely task completion.

b) FCFS: Tasks were processed in the order they arrived. Each task was assigned to the VM with the least

current load, without considering task priorities or deadlines.

c) SJF: Tasks were prioritized based on their execution times, with shorter tasks processed before longer

ones. This method aimed to minimize the average response time by handling shorter tasks first.

d) RR: Tasks were allocated to VMs in a cyclic manner with fixed time slices. This ensured each VM received

an equal share of CPU time, though it might not be optimal for tasks with varying lengths.

5. RESULTS

The performance of each scheduling algorithm was assessed by measuring the average response time and standard

deviation of response times. The results are summarized in the table below:

Algorithm
Average Response

Time (units)

Standard

Deviation (units)

DGPS 57.61 4.13

FCFS 57.06 5.88

SJF 42.26 4.78

Round Robin (RR) 144.37 22.08

149

J INFORM SYSTEMS ENG, 10(24s)

5.1 Performance Analysis:

a) DGPS: This algorithm provided a balanced performance with an average response time of 57.61 units and

a low standard deviation of 4.13 units. The low standard deviation indicates consistent task handling and

stable performance across various scenarios.

b) FCFS: The FCFS algorithm achieved a marginally better average response time of 57.06 units compared to

DGPS. However, it had a higher standard deviation of 5.88 units, reflecting greater variability in response

times and less consistency in scheduling.

c) SJF: The SJF algorithm excelled in minimizing the average response time, achieving the lowest value of

42.26 units. Despite its superior average response time, SJF had a moderate standard deviation of 4.78

units, indicating some variability in task completion times.

d) RR: The Round Robin algorithm resulted in the highest average response time of 144.37 units and the

highest standard deviation of 22.08 units. This indicates that RR was the least efficient, with significant

delays and variability in task completion.

To visualize the performance differences among the algorithms, the following graphs illustrate the average response

times and standard deviations.

Figure 2: Average Response Time Comparison

The graph shows that SJF has the lowest average response time, followed by DGPS and FCFS. RR has the highest

average response time.

Figure 3: Standard Deviation Comparison

150

J INFORM SYSTEMS ENG, 10(24s)

This graph highlights the consistency of the algorithms. DGPS and SJF have lower standard deviations compared to

FCFS and RR, indicating more stable performance.

The comparative analysis reveals that the DGPS algorithm offers a good balance between response time and

consistency, making it suitable for environments where stable performance is crucial. The SJF algorithm, while

providing the best average response time, introduces some variability in response times. The FCFS algorithm,

although slightly better than DGPS in response time, suffers from higher variability. The RR algorithm, with its

high response times and standard deviation, proves to be less effective in optimizing scheduling performance.

6. CONCLUSION AND FUTURE SCOPE

Efficient workflow scheduling is crucial in cloud computing for optimizing resource use and minimizing response

times. This study introduced the Dynamic Group and Prioritize Scheduling (DGPS) algorithm and compared its

performance with traditional methods like First-Come-First-Served (FCFS), Shortest Job First (SJF), and Round

Robin (RR). DGPS proved effective by providing balanced and stable response times, with SJF showing the lowest

average response time but higher variability, and FCFS performing slightly better than DGPS in response time but

with increased inconsistency. Round Robin resulted in the highest response times and variability. Future work

could enhance DGPS by integrating machine learning for dynamic task management, testing in larger-scale or

heterogeneous cloud environments, and incorporating energy-efficient mechanisms to address data center energy

consumption.

Funding: No- funding.

Availability of data and materials: Data will be made available on reasonable request.

Code availability: Available on reasonable request.

Declarations Conflict of interest: There is no conflict of interest.

REFERENCES

[1] Hayyolalam, V., Pourghebleh, B., Kazem, A. A. P., & Ghaffari, A. (2019). Exploring the state-of-the-art service

composition approaches in cloud manufacturing systems to enhance upcoming techniques. International

Journal of Advanced Manufacturing Technology, 105(1–4), 471–498.

[2] Wang, X., Sun, Y., Sun, Q., Lin, W., Wang, J. Z., & Li, W. (2023). HCIndex: a Hilbert-curve-based clustering

index for efficient multi-dimensional queries for cloud storage systems. Cluster Computing, 26(3), 2011–

2025.

[3] Hayyolalam, V., Pourghebleh, B., & Chehrehzad, M. R., Pourhaji Kazem, A. A. (2022). Single-objective

service composition methods in cloud manufacturing systems: recent techniques, classification, and future

trends. Concurrency and Computation: Practice and Experience, 34(5), e6698.

[4] Yakubu, I. Z., & Murali, M. (2023). An efficient meta-heuristic resource allocation with load balancing in IoT-

Fog-cloud computing environment. Journal of Ambient Intelligence and Humanized Computing, 14(3),

2981–2992.

[5] Sefati, S., Mousavinasab, M., & Zareh Farkhady, R. (2022). Load balancing in cloud computing environment

using the grey wolf optimization algorithm based on the reliability: performance evaluation. Journal of

Supercomputing, 78(1), 18–42.

[6] Al-Jumaili, A. H. A., Muniyandi, R. C., Hasan, M. K., Paw, J. K. S., & Singh, M. J. (2023). Big data analytics

using cloud computing-based frameworks for power management systems: status, constraints, and future

recommendations. Sensors, 23(6), 2952.

[7] He, J. (2022). Cloud computing load balancing mechanism taking into account load balancing ant colony

optimization algorithm. Computational Intelligence and Neuroscience, 2022, 3120883.

[8] Mangalampalli, S., et al. (2023). Prioritized task-scheduling algorithm in cloud computing using cat swarm

optimization. Sensors, 23(13), 6155.

[9] Praveenchandar, J., & Tamilarasi, A. (2021). Dynamic resource allocation with optimized task scheduling

and improved power management in cloud computing. Journal of Ambient Intelligence and Humanized

Computing, 12(3), 4147–4159.

[10] Dubey, K., & Sharma, S. C. (2021). A novel multi-objective CR-PSO task scheduling algorithm with deadline

constraint in cloud computing. Sustainable Computing, 32, 100605.

151

J INFORM SYSTEMS ENG, 10(24s)

[11] Hosseinzadeh, M., Ghafour, M. Y., Hama, H. K., Vo, B., & Khoshnevis, A. (2020). Multi-objective task and

workflow scheduling approaches in cloud computing: a comprehensive review. Journal of Grid Computing,

18, 1–30.

[12] Kamanga, C. T., Bugingo, E., Badibanga, S. N., & Mukendi, E. M. (2023). A multi-criteria decision-making

heuristic for workflow scheduling in cloud computing environment. Journal of Supercomputing, 79(1), 243–

264.

[13] Mikram, H., El Kafhali, S., & Saadi, Y. (2024). HEPGA: a new effective hybrid algorithm for scientific

workflow scheduling in cloud computing environment. Simulation Modelling Practice and Theory, 130,

102864.

[14] Asghari Alaie, Y., Hosseini Shirvani, M., & Rahmani, A. M. (2023). A hybrid bi-objective scheduling

algorithm for execution of scientific workflows on cloud platforms with execution time and reliability

approach. Journal of Supercomputing, 79(2), 1451–1503.

[15] Garg, S. (2014). Cost-Based Task Scheduling Algorithm in Cloud Computing. International Journal of

Research in Engineering and Technology, 03, 59-61. https://doi.org/10.15623/ijret.2014.0326013

[16] Chawla, Y., & Bhonsle, M. (2013). Dynamically Optimized Cost-Based Task Scheduling in Cloud Computing.

International Journal of Emerging Trend & Technology in Computer Science (IJETTCS), 2(3), 38-42.

[17] Nandhini, A., Radha, S., Pavithra, T. V., & Srikanth, G. U. (2017). A Survey on Task Scheduling Model in

Cloud Computing Using Optimization Techniques. International Journal of Advanced Research, 5(2), 345-

348.

[18] Ramya, G., Keerthika, P., Suresh, P., & Sivaranjani, M. (2016). Optimized Scheduling of Tasks Using

Heuristic Approach With Cost-Efficiency in Cloud Data Centers. International Journal of Scientific &

Engineering Research, 7(2), 208-213.

[19] Arora, S., & Anand, S. (2014). Improved Task Scheduling Algorithm in Cloud Environment. International

Journal of Computer Applications, 96(7), 7-12. https://doi.org/10.5120/16772-6342

[20] Bhoi, U., & Ramanuj, P. N. (2013). Enhanced Max-Min Task Scheduling Algorithm in Cloud Computing.

International Journal of Application or Innovation in Engineering & Management, 2(4), 259-264.

[21] Saxena, D., Chauhan, R. K., & Kait, R. (2016). Dynamic Fair Priority Optimization Task Scheduling

Algorithm in Cloud Computing: Concepts and Implementations. International Journal of Computer

Network and Information Security (IJCNIS), 8(2), 41-48. https://doi.org/10.5815/ijcnis.2016.02.05

[22] Chaudhary, M., & Peddoju, S. K. (2012). A Dynamic Optimization Algorithm for Task Scheduling in Cloud

Environment. International Journal of Engineering Research and Application, 2(3), 1-5.

[23] Ch, R., Batra, I., & Malik, A. (2023). Blockchain-based secure with improvised bloom filter over a

decentralized access control network on a cloud platform. Journal of Engineering Science and Technology

Review, 16(2), 123–130.

[24] Ravikumar, C. H., Batra, I., & Malik, A. (2022). A novel design to minimise the energy consumption and

node traversing in blockchain over cloud using ensemble cuckoo model. International Journal on Recent

and Innovation Trends in Computing and Communication, 10(1), 254–264.

[25] Al-Maytami, B. A., Fan, P., Hussain, A., Baker, T., & Liatsis, P. (2019). A Task Scheduling Algorithm with

Improved Makespan Based on Prediction of Task Computation Time for Cloud Computing. IEEE Access, 7,

160916-160926. https://doi.org/10.1109/ACCESS.2019.2948704

[26] Maipan-uku, J. Y., Muhammed, A., Abdullah, A., & Hussin, M. (2016). Max-Average: An Extended Max-Min

Scheduling Algorithm for Grid Computing Environment. Journal of Telecommunication, Electronic and

Computer Engineering, 8(6), 43-47.

[27] Meng, S., Zhu, Q., & Xia, F. (2019). Improvement of the Dynamic Priority Scheduling Algorithm Based on a

Heapsort. IEEE Access, 7, 68503-68510. https://doi.org/10.1109/ACCESS.2019.2917043

[28] Shi, J., Luo, J., Dong, F., Zhang, J., & Zhang, J. (2016). Elastic resource provisioning for scientific workflow

scheduling in cloud under budget and deadline constraints. Cluster Computing, 19, 167–182.

[29] Aziza, H., & Krichen, S. (2020). A hybrid genetic algorithm for scientific workflow scheduling in cloud

environment. Neural Computing and Applications, 32, 15263–15278.

[30] Iranmanesh, A., & Naji, H. R. (2021). DCHG-TS: a deadline-constrained and cost-effective hybrid genetic

algorithm for scientific workflow scheduling in cloud computing. Cluster Computing, 24, 667–681.

152

J INFORM SYSTEMS ENG, 10(24s)

[31] Mohammadzadeh, A., & Masdari, M. (2021). Scientific workflow scheduling in multi-cloud computing using

a hybrid multi-objective optimization algorithm. Journal of Ambient Intelligence and Humanized

Computing, 14, 3509–3529.

[32] Choudhary, A., Govil, M. C., Singh, G., Awasthi, L. K., & Pilli, E. S. (2022). Energy-aware scientific workflow

scheduling in cloud environment. Cluster Computing, 25(6), 3845–3874.

[33] Ravikumar, C., Naresh, B., Prasanna, P. L., Goud, E. A., & Prasad, P. R. (2024). Exploring machine learning

algorithms for robust cyber threat detection and classification: A comprehensive evaluation. In Proceedings

of the 2024 International Conference on Intelligent Systems for Cybersecurity (ISCS 2024)

[34] Khaleel, M. I. (2022). Multi-objective optimization for scientific workflow scheduling based on performance-

to-power ratio in fog–cloud environments. Simulation Modelling Practice and Theory, 119, 102589.

[35] Al-Moalmi, A., Luo, J., Salah, A., Li, K., & Yin, L. (2021). A whale optimization system for energy-efficient

container placement in data centers. Expert Systems with Applications, 164, 113719.

