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In cloud computing environments, efficient workflow scheduling is critical for optimizing 

resource utilization and minimizing response times. This study introduces and evaluates a new 

scheduling algorithm—Dynamic Group and Prioritize Scheduling (DGPS)—and compares its 

performance with three traditional algorithms: First-Come-First-Served (FCFS), Shortest Job 

First (SJF), and Round Robin (RR). The DGPS algorithm dynamically groups tasks based on 

their attributes and prioritizes them before allocation to Virtual Machines (VMs), aiming to 

enhance scheduling efficiency. Through simulations with 5 VMs and 50 tasks, the performance 

metrics of average response time and standard deviation were analyzed. The results indicate 

that DGPS provides a balanced performance with stable response times, while SJF achieves the 

lowest average response time but with moderate variability. FCFS offers slightly better 

response times than DGPS but with higher variability, and RR demonstrates the highest 

response times and standard deviations. This research highlights the effectiveness of DGPS in 

achieving consistent and efficient task scheduling in cloud environments. 

Keywords: Cloud Computing, Dynamic Group and Prioritize Scheduling (DGPS), 

Performance Optimization, Scheduling Algorithms, Virtual Machines (VMs) 

 

1. INTRODUCTION 

Cloud computing has rapidly evolved into a critical component of distributed computing, offering scalable and 

flexible services via the Internet through hardware and software virtualization. This model enables customers to 

access services under Service-Level Agreements (SLAs), with a pay-as-you-go pricing system similar to traditional 

utilities [1]. The key advantages of cloud computing include its adaptability and flexibility, allowing individuals to 

access and utilize resources tailored to their specific requirements from any remote location [2]. Cloud service 

providers generally offer two main types of resource provisioning plans to meet various user needs [3]. The first is 

the on-demand plan, where resources are requested as needed, suitable for unpredictable and fluctuating demand 

patterns. The second is a reservation-based plan, where users reserve resources in advance, providing a more stable 

and predictable approach to resource allocation. Industry-leading cloud platforms like Amazon EC2 and GoGrid 

offer services that support both these plans, accommodating different user requirements [4, 5]. 

In heterogeneous distributed computing environments, a network of diverse computers, machines, and processors 

collaborates using high-speed networks to handle complex computational tasks [6]. Previously, scientific 

applications were executed using grid computing infrastructures, often referred to as e-science [7]. However, the 

emergence of cloud computing has led to its adoption in e-business and e-science, thanks to its broad availability, 

cost-effectiveness, and the flexibility offered through virtualization technologies. Cloud computing allows users to 

execute scientific workflows, which are parallelizable mathematical processes implemented in real-world 

engineering tasks such as Fast Fourier Transform (FFT), Gaussian-Jordan (GJ) elimination, and LU 

decomposition. These workflows are typically modeled using Directed Acyclic Graphs (DAGs), where nodes 

represent different application tasks and edges denote data dependencies among these tasks [8]. Since the shapes 

and resource demands of these applications can significantly vary, cloud computing elasticity enables it to meet 
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these diverse needs effectively, providing a scalable solution in cases where users cannot expand their current 

infrastructure [9]. 

In cloud environments, multiple virtual machines (VMs) can execute independent tasks simultaneously, enhancing 

resource utilization. A critical performance metric in this context is the turnaround time, which represents the total 

elapsed time from the beginning of the first task to the completion of the final one. This metric, commonly referred 

to as makespan, directly impacts user experience and serves as a primary objective in workflow optimization [10]. 

Therefore, minimizing makespan is crucial in optimizing resource utilization and enhancing the overall efficiency of 

cloud-based applications. 

Effective execution of scientific workflows in a cloud environment heavily depends on resource allocation strategies, 

known as workflow scheduling. This process involves distributing workflow tasks to appropriate computing 

resources while considering various resource priority constraints [11]. Given the NP-complete nature of workflow 

scheduling, researcher’s focus on finding near-optimal solutions rather than absolute ones. To streamline this 

process, a Workflow Management System (WMS) is essential for defining and managing workflows for execution in 

cloud environments. The WMS includes a workflow scheduler that acts as a bridge between the workflow tasks and 

the cloud's computing resources. As shown in Figure 1, this scheduler is responsible for organizing workflow tasks 

and allocating them to targeted resources in an efficient manner, which is crucial for optimal resource utilization 

and the successful execution of scientific workflows. 

 

Figure 1: Scientific workflow execution model in cloud computing 

Task scheduling in cloud computing is a critical challenge, particularly when dealing with complex and diverse 

scientific workflows. These workflows often involve large volumes of data, intricate processing requirements, and 

multiple criteria that must be satisfied simultaneously [12]. The complexity inherent in scientific workflows has led 

researchers to develop strategies aimed at optimizing their management. One of the primary focuses in these 

strategies is balancing two often conflicting Quality of Service (QoS) variables: cost and time [13]. QoS serves as a 

measure of user satisfaction with cloud services and is typically evaluated based on criteria such as reliability, 

computational cost, and execution time. 

The challenge of balancing the dual objectives of minimizing processing time and reducing costs is significant in 

cloud environments. Faster processing generally necessitates the use of more powerful and, therefore, more 

expensive resources, whereas opting for cheaper resources might prolong the completion time of tasks [14]. To 

address this issue, it is essential to devise strategies that not only shorten processing times but also reduce costs, 

while simultaneously adhering to established deadlines and budgets. The ultimate objective is to find an ideal 

balance between meeting performance requirements and optimizing resource utilization in a cost-effective manner. 

The study in question aims to enhance scientific workflow scheduling performance in cloud computing 

environments by concentrating on three primary objectives: optimizing execution time, minimizing financial costs, 

and maintaining effective load balancing across available resources. This study proposes the use of the Whale 

Optimization Algorithm (WOA) in a multi-level approach to achieve these objectives. The WOA-based approach is 

designed to minimize the makespan of workflows, ensuring that tasks are completed in the shortest possible time. 
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By minimizing makespan, users can benefit from improved system responsiveness, directly impacting their overall 

experience. 

In addition to reducing execution time, the proposed method also focuses on minimizing the monetary costs 

associated with resource utilization. This cost minimization is achieved by optimizing the distribution of tasks 

among virtual machines (VMs). Effective task distribution not only reduces costs but also improves resource 

utilization, ensuring that computational resources are used efficiently. Lastly, the study emphasizes the importance 

of load balancing, which involves distributing the computational load evenly across all available resources. Effective 

load balancing helps to prevent bottlenecks, thereby enhancing overall system performance and reliability. 

To address workflow scheduling issues in dynamic cloud environments, there is a need for an efficient and effective 

scheduling algorithm. In this study, the proposed Dynamic Group and Prioritize Scheduling (DGPS) algorithm is 

introduced as a novel solution for optimizing the allocation of tasks in cloud computing. The DGPS algorithm 

focuses on grouping tasks based on their characteristics, such as priority, resource demands, and deadlines, and 

then prioritizes these grouped tasks before assigning them to VMs. This structured approach allows for a more 

efficient allocation of resources, ensuring that critical tasks are executed promptly while less urgent tasks are 

queued appropriately. 

In addition to DGPS, the study also implements and compares several traditional scheduling algorithms, including 

First-Come-First-Served (FCFS), Shortest Job First (SJF), and Round Robin (RR). FCFS is a straightforward 

scheduling method where tasks are executed in the order they arrive, regardless of their size or resource demands. 

While simple, FCFS often leads to inefficiencies, especially when larger tasks occupy resources for extended 

periods, causing delays for smaller, potentially more urgent tasks. On the other hand, SJF prioritizes tasks with the 

shortest execution time, minimizing the overall processing time but potentially leading to the starvation of longer 

tasks if shorter ones keep entering the system. The Round Robin (RR) method allocates a fixed time slice for each 

task, ensuring that all tasks receive an equal opportunity for execution. However, RR can be inefficient for 

workflows with varying resource demands, as it may not adapt to the specific needs of each task. 

The proposed DGPS algorithm aims to address the limitations of these traditional scheduling methods by 

incorporating a more dynamic and flexible approach. It groups tasks based on their specific attributes and assigns 

them priorities, ensuring that resource allocation is optimized to meet varying workflow requirements. By doing so, 

DGPS enhances system performance, minimizes response times, and maximizes resource utilization. 

Problem Definition: In cloud computing environments, multiple users simultaneously request services, and 

these requests are managed by numerous virtual machines (VMs). The primary challenge in this context is to 

allocate tasks efficiently in order to minimize response time and ensure optimal resource usage. Ineffective task 

scheduling can lead to resource bottlenecks, increased processing times, and higher operational costs. The 

proposed DGPS algorithm addresses these issues by grouping tasks according to their characteristics, assigning 

them appropriate priorities, and then allocating them to VMs in a manner that optimizes both processing speed and 

cost. 

The comparison of DGPS with traditional algorithms such as FCFS, SJF, and RR in this study provides valuable 

insights into the effectiveness of different scheduling methods in cloud environments. By analyzing the strengths 

and weaknesses of each algorithm, the study aims to identify the most suitable strategies for various cloud 

computing scenarios. This approach not only contributes to the understanding of task scheduling in cloud 

computing but also guides the development of future algorithms that can adapt to the dynamic nature of cloud 

environments. 

In conclusion, task scheduling remains a significant concern in cloud computing, especially when dealing with 

complex scientific workflows. The proposed DGPS algorithm, combined with a comparative analysis of traditional 

scheduling methods, offers a comprehensive approach to optimizing workflow execution. By focusing on reducing 

execution time, minimizing costs, and maintaining load balance, this study aims to enhance the performance and 

efficiency of cloud-based scientific workflows, ultimately improving user satisfaction and resource utilization. 

2. LITERATURE REVIEW 

Cloud computing offers a flexible, scalable, and efficient platform for users to access services and resources. Task 

scheduling plays a pivotal role in optimizing the allocation and utilization of these resources, ultimately improving 
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the system's performance. Over the years, numerous task scheduling algorithms have been proposed, each 

addressing various aspects of performance, resource utilization, cost, and energy efficiency. This literature review 

provides a comprehensive analysis of these task scheduling algorithms and their methodologies. 

The "Cost-Based Task Scheduling Algorithm" proposed by Garg [15] focuses on efficiently allocating tasks in a cloud 

computing environment, particularly at the platform and infrastructure levels. Cloud computing environments 

often face the challenge of assigning 'm' tasks to 'n' virtual machines (VMs) where 'm' exceeds 'n'. The algorithm 

aims to optimize resource usage by evaluating the processing cost of each task on every VM using the Shortest Job 

First (SJF) approach. The SJF algorithm allocates tasks to VMs based on the minimum processing load to ensure 

optimal resource utilization. The process begins by reading the number of VMs (n) and tasks (m), then calculates 

the processing cost for each task on the available VMs. Tasks are then assigned to the VM with the minimum 

processing load iteratively until all tasks are scheduled. This method helps in reducing total processing costs and 

optimizing task execution times. However, the primary limitation of this approach is that it assumes a known 

processing cost for each task, making it less adaptable in dynamic and unpredictable cloud environments. 

Nandhini, Radha, Pavithra, and Srikanth [17] presented a comprehensive "Survey on Task Scheduling Models 

Using Optimization Techniques" to address task scheduling challenges in cloud computing. The study highlights 

that the primary goal of a task scheduling algorithm is to minimize makespan (the total time required to complete a 

set of tasks) and maximize resource utilization. Various algorithms, including Max-Min, Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), Ant Colony Algorithm, and Bee Colony Algorithm, were discussed in their 

paper. The survey introduces a Hybrid Cuckoo Algorithm that combines the advantages of the Genetic Algorithm 

and Cuckoo Algorithm, aiming to improve energy efficiency, execution time, and resource utilization. This hybrid 

approach effectively eliminates the need for traditional task scheduling algorithms, thereby reducing overall 

scheduling time. Despite its advantages, the complexity of implementing hybrid algorithms and their 

computational costs are noteworthy challenges that need to be considered in real-world cloud scenarios. 

The "Enhanced Max-Min Task Scheduling Algorithm" proposed by Bhoi and Ramanuj [20] emphasizes the need for 

reduced waiting times, reduced makespan, optimal resource utilization, and overall better system performance. The 

proposed Scheduling Algorithm (SA) aims to enhance traditional scheduling approaches by improving the task 

allocation process. Using the CloudSim framework for evaluation, the SA algorithm demonstrated superior 

performance in comparison to the existing SJF algorithms. By consistently reducing processing times, the 

algorithm showcased its potential in optimizing task scheduling within cloud environments. However, the 

limitations of this approach include the lack of scalability in large-scale cloud systems and the assumption of 

homogeneous resources. 

Saxena, Chauhan, and Kait [21] introduced the "Dynamic Fair Priority Optimization Task Scheduling Algorithm," 

which implements the concept of "Weighted Fair Queuing" to enhance quality of service (QoS). This algorithm 

addresses challenges related to resource allocation, task execution order, overhead minimization, VM monitoring, 

and cost considerations in cloud task scheduling. The algorithm categorizes tasks into two groups: deadline-based 

and reduced cost-based, using dynamic optimization and priority equity principles. It utilizes three priority queues 

(high, mid, low) with assigned weights, implementing a round-robin approach. This algorithm's key benefit is its 

ability to balance fairness and efficiency for both users and service providers. However, it introduces complexity 

due to the classification and dynamic priority adjustments, which may lead to increased computational overhead. 

The "Task Scheduling Algorithm with Improved Makespan Based on Prediction of Task Computation Time (PTCT)" 

proposed by Al-Maytami, Fan, Hussain, Baker, and Liatsis [23] introduces a novel approach using Directed Acyclic 

Graphs (DAGs) and Principal Component Analysis (PCA). The PTCT algorithm focuses on enhancing task 

scheduling performance and minimizing computational costs in cloud environments. By leveraging PCA to 

minimize matrix size, PTCT efficiently optimizes resource allocation and considers QoS constraints. It was 

compared to other state-of-the-art scheduling algorithms like Min-Min, Max-Min, QoS-Guide, and Min-Max, 

demonstrating superior performance in terms of speedup, efficiency, and schedule length ratio. Despite its 

advantages, PTCT's fixed approach may limit flexibility in highly dynamic cloud environments, and its reliance on 

historical data for prediction may not always guarantee optimality. 

The "Dynamic Priority Scheduling Algorithm Based on Heapsort," proposed by Meng, Zhu, and Xia [25], introduces 

a new method that accounts for task deadlines, values, and energy consumption. Using the hierarchy process 
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(FAHP) to prioritize tasks, the algorithm employs heapsort to efficiently sort tasks in order of priority. This 

algorithm is particularly suited for real-time systems and industrial control applications, where reducing the 

frequency of missed deadlines is crucial. The experimental results indicate a decrease in missed deadlines by an 

average of 0.1789, thereby enhancing overall scheduling performance. However, this algorithm's reliance on 

heapsort can become a bottleneck in environments with rapidly changing task priorities, impacting real-time 

performance. 

2.1 Comparison of Methodologies and Drawbacks 

To provide a more structured overview of these methodologies, a comparison table (Table 1) is provided below. This 

table outlines each algorithm, its methodology, and its key drawbacks/limitations. 

Table 1: Comparison of Related Work and Methodologies 

Author Paper Title Methodology Drawbacks/Limitations 

Meng, S., et.al [25] 
Improvement of the Dynamic 
Priority Scheduling Algorithm 

Based on a Heapsort 

Heapsort, Dynamic 
Priority Scheduling 

Bottleneck in real-time 
environments, High 

computational complexity 

Shi, J., et.al. [26] 

Elastic Resource Provisioning for 
Scientific Workflow Scheduling in 
Cloud Under Budget and Deadline 

Constraints 

Budget-Constrained 
Scheduling, Elastic 

Resource Provisioning 

Limited to budget and 
deadline constraints, Less 

adaptable to real-time 
changes. 

Aziza, et.al [27] 
A Hybrid Genetic Algorithm for 

Scientific Workflow Scheduling in 
Cloud Environment 

Hybrid Genetic 
Algorithm 

High computational overhead, 
Requires fine-tuning of 

parameters 

Iranmanesh, et.al 
[28] 

DCHG-TS: A Deadline-Constrained 
and Cost-Effective Hybrid Genetic 
Algorithm for Scientific Workflow 
Scheduling in Cloud Computing. 

Hybrid Genetic 
Algorithm, Deadline-

Constrained 
Scheduling. 

High complexity, Scalability 
concerns. 

Mohammadzadeh, 
A., et.al [29] 

Scientific Workflow Scheduling in 
Multi-Cloud Computing Using a 

Hybrid Multi-Objective 
Optimization Algorithm. 

Hybrid Multi-
Objective 

Optimization 

Limited real-world validation, 
High computational cost. 

Choudhary, et.al 
[30] 

Energy-Aware Scientific Workflow 
Scheduling in Cloud Environment. 

Energy-Aware 
Scheduling, Workflow 

Optimization. 

Complex implementation, 
Limited flexibility in dynamic 

environments. 

Khaleel, et.al [31] 

Multi-Objective Optimization for 
Scientific Workflow Scheduling 

Based on Performance-to-Power 
Ratio in Fog–Cloud Environments. 

Multi-Objective 
Optimization, 

Performance-to-Power 
Ratio. 

Limited applicability to large-
scale cloud environments, 
Requires accurate power-

performance models. 

Al-Moalmi, et.al. 
[32] 

A Whale Optimization System for 
Energy-Efficient Container 
Placement in Data Centers 

Whale Optimization 
Algorithm 

High computational 
complexity, Limited evaluation 

in diverse scenarios 

In summary, task scheduling in cloud computing has been extensively explored using various algorithms and 

techniques. Each approach brings unique advantages while facing its own set of challenges. The evolution from 

traditional cost-based scheduling to more dynamic and optimized algorithms signifies the continuous effort to 

improve cloud resource management. The next step in this research involves comparing the proposed Dynamic 

Group and Prioritize Scheduling (DGPS) approach with these traditional methodologies to identify potential 

enhancements in performance, resource utilization, and overall efficiency. 

3. PROPOSED METHODOLOGY 

The proposed methodology aims to address workflow scheduling issues in cloud computing environments with 

dynamic resource availability. Given the cloud’s vast network of servers and the continuous influx of user tasks, 

scheduling needs to be optimized to ensure that each task receives adequate resources promptly. The methodology 

focuses on dynamically grouping tasks based on their characteristics, prioritizing them, and allocating the most 
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suitable Virtual Machine (VM) for execution. This systematic approach enhances resource utilization, minimizes 

response time, and efficiently manages the execution of diverse tasks. 

3.1. Task Grouping Based on Attributes 

The first step of the proposed methodology involves grouping incoming tasks based on specific attributes such as 

deadlines, cost requirements, or resource demands. This dynamic grouping reduces the complexity of scheduling by 

categorizing tasks with similar characteristics, allowing for more targeted resource management. The attribute-

based clustering helps in the effective distribution of tasks, optimizing their placement and resource usage across 

the cloud environment. The key aspects of this phase include: 

a) Dynamic Identification of Attributes: Each task is analyzed to identify attributes like execution time, 

cost sensitivity, and urgency (e.g., deadline constraints). 

b) Attribute-Based Clustering: Tasks are then dynamically grouped based on these attributes. For 

example, tasks with strict deadlines are grouped separately from those that are cost-sensitive, while tasks 

requiring high computational resources are clustered based on resource demand. 

3.2. Task Prioritization within Groups 

After grouping, the methodology involves prioritizing tasks within each group. This prioritization ensures that the 

most critical tasks receive attention first, thereby optimizing response times and resource allocation. The 

prioritization is based on a scoring mechanism that incorporates various task attributes: 

a) Priority Score Calculation: 

A priority score is assigned to each task using a weighted combination of its attributes: 

Priority Score = w1 × Deadline Urgency + w2 × Execution Time + w3 × Cost Sensitivity    (1) 

Where: 

➢ w1, w2, and w3 are adjustable weights based on system requirements 

➢ Deadline Urgency represents deadline proximity 

➢ Execution Time represents task duration 

➢ Cost Sensitivity represents resource usage 

b) Sorting by Priority: 

Tasks within each group are sorted in descending order of their priority scores, ensuring: 

a) Most critical tasks are addressed promptly 

b) Efficient management of other tasks 

By prioritizing tasks based on their attributes, this methodology optimizes resource allocation and response times. 

3.3. Dynamic Resource Allocation to Virtual Machines 

The final step involves dynamically allocating tasks to the available VMs based on their capabilities and current 

load status. The cloud environment typically consists of multiple VMs, each with varying resource capacities. The 

methodology selects the optimal VM for each task, considering both task priority and VM status: 

a) VM Selection: The system continuously monitors the available VMs, evaluating their response times and 

resource capacities. For each task, the VMs capable of handling it are identified, and the one with the 

minimum response time is selected for execution. 

b) Task Assignment and Execution: The selected VM is then assigned the task, and its status is updated 

to reflect the new workload. This dynamic assignment helps maintain an optimal balance across the cloud 

infrastructure, preventing overloading of individual VMs and improving overall system performance. 
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c) Feedback Mechanism: The methodology includes a feedback mechanism that continuously monitors 

VM performance. If any inefficiencies or delays are detected, adjustments are made to future task 

assignments, ensuring ongoing optimization of resource usage and response times. 

3.3 Proposed Algorithm: Dynamic Group-Prioritized Scheduling (DGPS) Algorithm 

To design a dynamic task scheduling algorithm that optimizes workflow management by grouping tasks based on 

specific attributes, prioritizing them, and allocating dynamic resources (VMs) in a cloud environment to minimize 

response time and maximize resource utilization. 

Steps of the Algorithm: 

 

1. Input: 

- Set of incoming tasks: T = {T1, T2, …, Tn} 

- Set of available Virtual Machines (VMs): V = {V1, V2, …, Vm} 

- Task attributes: deadlines, cost requirements, resource demands 

- VM attributes: response time, current load, resource capacity 

2. Initialize: 

- Create empty groups G = {G1, G2, …, Gk} based on task attributes (e.g., deadlines, cost requirements) 

- Initialize a priority queue for each group 

3. Task Grouping: 

- For each incoming task Ti in T: 

- Identify its attributes (e.g., deadline, cost) 

    - Assign Ti to the appropriate group Gj based on its attributes 

4. Task Prioritization: 

 - For each group Gj in G: 

 - Calculate a priority score for each task Ti in Gj using the formula: 

Priority Score = w1 × Deadline Urgency + w2 × Execution Time + w3 × Cost Sensitivity 

- Sort tasks in Gj based on their priority scores in descending order 

5. VM Selection and Task Assignment: 

 - For each task Ti in the priority queue of group Gj: 

 - Identify the set of VMs V′ ⊆ V that have the capacity to execute Ti 

 - Select the VM Vmin ∈ V′ with the minimum response time 

- Assign Ti to Vmin for execution 

 - Update the status and load of Vmin to reflect the addition of Ti 

 

6. Feedback and Adjustment: 

 - Continuously monitor the performance of each VM 

 - Adjust task groupings, priorities, and VM selections based on real-time feedback to optimize future scheduling 

7. Output: 

 - An optimal schedule of tasks assigned to VMs 
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8. End of Algorithm 

 

This proposed methodology ensures an adaptive and efficient approach to workflow scheduling in cloud 

environments. By dynamically grouping tasks, prioritizing them, and allocating resources based on real-time 

system status, it addresses the complexities of handling dynamic resources in cloud computing. The feedback 

mechanism further enables ongoing optimization, improving system performance and user experience. 

4. Implementation 

In our study, we implemented and tested four scheduling algorithms to evaluate their performance in a simulated 

cloud computing environment. The experimental setup included: 

➢ Number of Virtual Machines (VMs): 5 

➢ Number of Tasks: 50 

The tasks were characterized by varying execution times and deadlines to create a realistic workload. The four 

algorithms under evaluation were: 

1. Dynamic Group and Prioritize Scheduling (DGPS) 

2. First-Come-First-Served (FCFS) 

3. Shortest Job First (SJF) 

4. Round Robin (RR) 

Each algorithm was implemented and applied to the same set of tasks across the 5 VMs. The tasks were scheduled 

according to the specific rules of each algorithm, and their performance was measured based on the average 

response time and standard deviation of response times. 

4.1 Algorithm Implementation Details: 

a) DGPS: Tasks were first grouped based on deadlines and then prioritized within each group by execution 

time. Each task was assigned to the VM with the minimum load, aiming for efficient resource utilization 

and timely task completion. 

b) FCFS: Tasks were processed in the order they arrived. Each task was assigned to the VM with the least 

current load, without considering task priorities or deadlines. 

c) SJF: Tasks were prioritized based on their execution times, with shorter tasks processed before longer 

ones. This method aimed to minimize the average response time by handling shorter tasks first. 

d) RR: Tasks were allocated to VMs in a cyclic manner with fixed time slices. This ensured each VM received 

an equal share of CPU time, though it might not be optimal for tasks with varying lengths. 

5. RESULTS 

The performance of each scheduling algorithm was assessed by measuring the average response time and standard 

deviation of response times. The results are summarized in the table below: 

Algorithm 
Average Response 

Time (units) 

Standard 

Deviation (units) 

DGPS 57.61 4.13 

FCFS 57.06 5.88 

SJF 42.26 4.78 

Round Robin (RR) 144.37 22.08 
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5.1 Performance Analysis: 

a) DGPS: This algorithm provided a balanced performance with an average response time of 57.61 units and 

a low standard deviation of 4.13 units. The low standard deviation indicates consistent task handling and 

stable performance across various scenarios. 

b) FCFS: The FCFS algorithm achieved a marginally better average response time of 57.06 units compared to 

DGPS. However, it had a higher standard deviation of 5.88 units, reflecting greater variability in response 

times and less consistency in scheduling. 

c) SJF: The SJF algorithm excelled in minimizing the average response time, achieving the lowest value of 

42.26 units. Despite its superior average response time, SJF had a moderate standard deviation of 4.78 

units, indicating some variability in task completion times. 

d) RR: The Round Robin algorithm resulted in the highest average response time of 144.37 units and the 

highest standard deviation of 22.08 units. This indicates that RR was the least efficient, with significant 

delays and variability in task completion. 

To visualize the performance differences among the algorithms, the following graphs illustrate the average response 

times and standard deviations. 

 

Figure 2: Average Response Time Comparison 

The graph shows that SJF has the lowest average response time, followed by DGPS and FCFS. RR has the highest 

average response time. 

 

Figure 3: Standard Deviation Comparison 
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This graph highlights the consistency of the algorithms. DGPS and SJF have lower standard deviations compared to 

FCFS and RR, indicating more stable performance. 

The comparative analysis reveals that the DGPS algorithm offers a good balance between response time and 

consistency, making it suitable for environments where stable performance is crucial. The SJF algorithm, while 

providing the best average response time, introduces some variability in response times. The FCFS algorithm, 

although slightly better than DGPS in response time, suffers from higher variability. The RR algorithm, with its 

high response times and standard deviation, proves to be less effective in optimizing scheduling performance. 

6. CONCLUSION AND FUTURE SCOPE 

Efficient workflow scheduling is crucial in cloud computing for optimizing resource use and minimizing response 

times. This study introduced the Dynamic Group and Prioritize Scheduling (DGPS) algorithm and compared its 

performance with traditional methods like First-Come-First-Served (FCFS), Shortest Job First (SJF), and Round 

Robin (RR). DGPS proved effective by providing balanced and stable response times, with SJF showing the lowest 

average response time but higher variability, and FCFS performing slightly better than DGPS in response time but 

with increased inconsistency. Round Robin resulted in the highest response times and variability. Future work 

could enhance DGPS by integrating machine learning for dynamic task management, testing in larger-scale or 

heterogeneous cloud environments, and incorporating energy-efficient mechanisms to address data center energy 

consumption. 
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