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resource utilization and minimizing response times. This study introduces and evaluates a new

scheduling algorithm—Dynamic Group and Prioritize Scheduling (DGPS)—and compares its

Accepted: 20 Feb 2025 performance with three traditional algorithms: First-Come-First-Served (FCFS), Shortest Job
First (SJF), and Round Robin (RR). The DGPS algorithm dynamically groups tasks based on
their attributes and prioritizes them before allocation to Virtual Machines (VMs), aiming to
enhance scheduling efficiency. Through simulations with 5 VMs and 50 tasks, the performance
metrics of average response time and standard deviation were analyzed. The results indicate
that DGPS provides a balanced performance with stable response times, while SJF achieves the
lowest average response time but with moderate variability. FCFS offers slightly better
response times than DGPS but with higher variability, and RR demonstrates the highest
response times and standard deviations. This research highlights the effectiveness of DGPS in
achieving consistent and efficient task scheduling in cloud environments.
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1. INTRODUCTION

Cloud computing has rapidly evolved into a critical component of distributed computing, offering scalable and
flexible services via the Internet through hardware and software virtualization. This model enables customers to
access services under Service-Level Agreements (SLAs), with a pay-as-you-go pricing system similar to traditional
utilities [1]. The key advantages of cloud computing include its adaptability and flexibility, allowing individuals to
access and utilize resources tailored to their specific requirements from any remote location [2]. Cloud service
providers generally offer two main types of resource provisioning plans to meet various user needs [3]. The first is
the on-demand plan, where resources are requested as needed, suitable for unpredictable and fluctuating demand
patterns. The second is a reservation-based plan, where users reserve resources in advance, providing a more stable
and predictable approach to resource allocation. Industry-leading cloud platforms like Amazon EC2 and GoGrid
offer services that support both these plans, accommodating different user requirements [4, 5].

In heterogeneous distributed computing environments, a network of diverse computers, machines, and processors
collaborates using high-speed networks to handle complex computational tasks [6]. Previously, scientific
applications were executed using grid computing infrastructures, often referred to as e-science [7]. However, the
emergence of cloud computing has led to its adoption in e-business and e-science, thanks to its broad availability,
cost-effectiveness, and the flexibility offered through virtualization technologies. Cloud computing allows users to
execute scientific workflows, which are parallelizable mathematical processes implemented in real-world
engineering tasks such as Fast Fourier Transform (FFT), Gaussian-Jordan (GJ) elimination, and LU
decomposition. These workflows are typically modeled using Directed Acyclic Graphs (DAGs), where nodes
represent different application tasks and edges denote data dependencies among these tasks [8]. Since the shapes
and resource demands of these applications can significantly vary, cloud computing elasticity enables it to meet
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these diverse needs effectively, providing a scalable solution in cases where users cannot expand their current
infrastructure [9].

In cloud environments, multiple virtual machines (VMs) can execute independent tasks simultaneously, enhancing
resource utilization. A critical performance metric in this context is the turnaround time, which represents the total
elapsed time from the beginning of the first task to the completion of the final one. This metric, commonly referred
to as makespan, directly impacts user experience and serves as a primary objective in workflow optimization [10].
Therefore, minimizing makespan is crucial in optimizing resource utilization and enhancing the overall efficiency of
cloud-based applications.

Effective execution of scientific workflows in a cloud environment heavily depends on resource allocation strategies,
known as workflow scheduling. This process involves distributing workflow tasks to appropriate computing
resources while considering various resource priority constraints [11]. Given the NP-complete nature of workflow
scheduling, researcher’s focus on finding near-optimal solutions rather than absolute ones. To streamline this
process, a Workflow Management System (WMS) is essential for defining and managing workflows for execution in
cloud environments. The WMS includes a workflow scheduler that acts as a bridge between the workflow tasks and
the cloud's computing resources. As shown in Figure 1, this scheduler is responsible for organizing workflow tasks
and allocating them to targeted resources in an efficient manner, which is crucial for optimal resource utilization
and the successful execution of scientific workflows.

Scientific
workflow

Figure 1: Scientific workflow execution model in cloud computing

Task scheduling in cloud computing is a critical challenge, particularly when dealing with complex and diverse
scientific workflows. These workflows often involve large volumes of data, intricate processing requirements, and
multiple criteria that must be satisfied simultaneously [12]. The complexity inherent in scientific workflows has led
researchers to develop strategies aimed at optimizing their management. One of the primary focuses in these
strategies is balancing two often conflicting Quality of Service (QoS) variables: cost and time [13]. QoS serves as a
measure of user satisfaction with cloud services and is typically evaluated based on criteria such as reliability,
computational cost, and execution time.

The challenge of balancing the dual objectives of minimizing processing time and reducing costs is significant in
cloud environments. Faster processing generally necessitates the use of more powerful and, therefore, more
expensive resources, whereas opting for cheaper resources might prolong the completion time of tasks [14]. To
address this issue, it is essential to devise strategies that not only shorten processing times but also reduce costs,
while simultaneously adhering to established deadlines and budgets. The ultimate objective is to find an ideal
balance between meeting performance requirements and optimizing resource utilization in a cost-effective manner.

The study in question aims to enhance scientific workflow scheduling performance in cloud computing
environments by concentrating on three primary objectives: optimizing execution time, minimizing financial costs,
and maintaining effective load balancing across available resources. This study proposes the use of the Whale
Optimization Algorithm (WOA) in a multi-level approach to achieve these objectives. The WOA-based approach is
designed to minimize the makespan of workflows, ensuring that tasks are completed in the shortest possible time.
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By minimizing makespan, users can benefit from improved system responsiveness, directly impacting their overall
experience.

In addition to reducing execution time, the proposed method also focuses on minimizing the monetary costs
associated with resource utilization. This cost minimization is achieved by optimizing the distribution of tasks
among virtual machines (VMs). Effective task distribution not only reduces costs but also improves resource
utilization, ensuring that computational resources are used efficiently. Lastly, the study emphasizes the importance
of load balancing, which involves distributing the computational load evenly across all available resources. Effective
load balancing helps to prevent bottlenecks, thereby enhancing overall system performance and reliability.

To address workflow scheduling issues in dynamic cloud environments, there is a need for an efficient and effective
scheduling algorithm. In this study, the proposed Dynamic Group and Prioritize Scheduling (DGPS) algorithm is
introduced as a novel solution for optimizing the allocation of tasks in cloud computing. The DGPS algorithm
focuses on grouping tasks based on their characteristics, such as priority, resource demands, and deadlines, and
then prioritizes these grouped tasks before assigning them to VMs. This structured approach allows for a more
efficient allocation of resources, ensuring that critical tasks are executed promptly while less urgent tasks are
queued appropriately.

In addition to DGPS, the study also implements and compares several traditional scheduling algorithms, including
First-Come-First-Served (FCFS), Shortest Job First (SJF), and Round Robin (RR). FCFS is a straightforward
scheduling method where tasks are executed in the order they arrive, regardless of their size or resource demands.
While simple, FCFS often leads to inefficiencies, especially when larger tasks occupy resources for extended
periods, causing delays for smaller, potentially more urgent tasks. On the other hand, SJF prioritizes tasks with the
shortest execution time, minimizing the overall processing time but potentially leading to the starvation of longer
tasks if shorter ones keep entering the system. The Round Robin (RR) method allocates a fixed time slice for each
task, ensuring that all tasks receive an equal opportunity for execution. However, RR can be inefficient for
workflows with varying resource demands, as it may not adapt to the specific needs of each task.

The proposed DGPS algorithm aims to address the limitations of these traditional scheduling methods by
incorporating a more dynamic and flexible approach. It groups tasks based on their specific attributes and assigns
them priorities, ensuring that resource allocation is optimized to meet varying workflow requirements. By doing so,
DGPS enhances system performance, minimizes response times, and maximizes resource utilization.

Problem Definition: In cloud computing environments, multiple users simultaneously request services, and
these requests are managed by numerous virtual machines (VMs). The primary challenge in this context is to
allocate tasks efficiently in order to minimize response time and ensure optimal resource usage. Ineffective task
scheduling can lead to resource bottlenecks, increased processing times, and higher operational costs. The
proposed DGPS algorithm addresses these issues by grouping tasks according to their characteristics, assigning
them appropriate priorities, and then allocating them to VMs in a manner that optimizes both processing speed and
cost.

The comparison of DGPS with traditional algorithms such as FCFS, SJF, and RR in this study provides valuable
insights into the effectiveness of different scheduling methods in cloud environments. By analyzing the strengths
and weaknesses of each algorithm, the study aims to identify the most suitable strategies for various cloud
computing scenarios. This approach not only contributes to the understanding of task scheduling in cloud
computing but also guides the development of future algorithms that can adapt to the dynamic nature of cloud
environments.

In conclusion, task scheduling remains a significant concern in cloud computing, especially when dealing with
complex scientific workflows. The proposed DGPS algorithm, combined with a comparative analysis of traditional
scheduling methods, offers a comprehensive approach to optimizing workflow execution. By focusing on reducing
execution time, minimizing costs, and maintaining load balance, this study aims to enhance the performance and
efficiency of cloud-based scientific workflows, ultimately improving user satisfaction and resource utilization.

2. LITERATURE REVIEW

Cloud computing offers a flexible, scalable, and efficient platform for users to access services and resources. Task
scheduling plays a pivotal role in optimizing the allocation and utilization of these resources, ultimately improving
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the system's performance. Over the years, numerous task scheduling algorithms have been proposed, each
addressing various aspects of performance, resource utilization, cost, and energy efficiency. This literature review
provides a comprehensive analysis of these task scheduling algorithms and their methodologies.

The "Cost-Based Task Scheduling Algorithm" proposed by Garg [15] focuses on efficiently allocating tasks in a cloud
computing environment, particularly at the platform and infrastructure levels. Cloud computing environments
often face the challenge of assigning 'm' tasks to 'n' virtual machines (VMs) where 'm' exceeds 'n'. The algorithm
aims to optimize resource usage by evaluating the processing cost of each task on every VM using the Shortest Job
First (SJF) approach. The SJF algorithm allocates tasks to VMs based on the minimum processing load to ensure
optimal resource utilization. The process begins by reading the number of VMs (n) and tasks (m), then calculates
the processing cost for each task on the available VMs. Tasks are then assigned to the VM with the minimum
processing load iteratively until all tasks are scheduled. This method helps in reducing total processing costs and
optimizing task execution times. However, the primary limitation of this approach is that it assumes a known
processing cost for each task, making it less adaptable in dynamic and unpredictable cloud environments.

Nandhini, Radha, Pavithra, and Srikanth [17] presented a comprehensive "Survey on Task Scheduling Models
Using Optimization Techniques" to address task scheduling challenges in cloud computing. The study highlights
that the primary goal of a task scheduling algorithm is to minimize makespan (the total time required to complete a
set of tasks) and maximize resource utilization. Various algorithms, including Max-Min, Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Ant Colony Algorithm, and Bee Colony Algorithm, were discussed in their
paper. The survey introduces a Hybrid Cuckoo Algorithm that combines the advantages of the Genetic Algorithm
and Cuckoo Algorithm, aiming to improve energy efficiency, execution time, and resource utilization. This hybrid
approach effectively eliminates the need for traditional task scheduling algorithms, thereby reducing overall
scheduling time. Despite its advantages, the complexity of implementing hybrid algorithms and their
computational costs are noteworthy challenges that need to be considered in real-world cloud scenarios.

The "Enhanced Max-Min Task Scheduling Algorithm" proposed by Bhoi and Ramanuj [20] emphasizes the need for
reduced waiting times, reduced makespan, optimal resource utilization, and overall better system performance. The
proposed Scheduling Algorithm (SA) aims to enhance traditional scheduling approaches by improving the task
allocation process. Using the CloudSim framework for evaluation, the SA algorithm demonstrated superior
performance in comparison to the existing SJF algorithms. By consistently reducing processing times, the
algorithm showcased its potential in optimizing task scheduling within cloud environments. However, the
limitations of this approach include the lack of scalability in large-scale cloud systems and the assumption of
homogeneous resources.

Saxena, Chauhan, and Kait [21] introduced the "Dynamic Fair Priority Optimization Task Scheduling Algorithm,"
which implements the concept of "Weighted Fair Queuing” to enhance quality of service (QoS). This algorithm
addresses challenges related to resource allocation, task execution order, overhead minimization, VM monitoring,
and cost considerations in cloud task scheduling. The algorithm categorizes tasks into two groups: deadline-based
and reduced cost-based, using dynamic optimization and priority equity principles. It utilizes three priority queues
(high, mid, low) with assigned weights, implementing a round-robin approach. This algorithm's key benefit is its
ability to balance fairness and efficiency for both users and service providers. However, it introduces complexity
due to the classification and dynamic priority adjustments, which may lead to increased computational overhead.

The "Task Scheduling Algorithm with Improved Makespan Based on Prediction of Task Computation Time (PTCT)"
proposed by Al-Maytami, Fan, Hussain, Baker, and Liatsis [23] introduces a novel approach using Directed Acyclic
Graphs (DAGs) and Principal Component Analysis (PCA). The PTCT algorithm focuses on enhancing task
scheduling performance and minimizing computational costs in cloud environments. By leveraging PCA to
minimize matrix size, PTCT efficiently optimizes resource allocation and considers QoS constraints. It was
compared to other state-of-the-art scheduling algorithms like Min-Min, Max-Min, QoS-Guide, and Min-Max,
demonstrating superior performance in terms of speedup, efficiency, and schedule length ratio. Despite its
advantages, PTCT's fixed approach may limit flexibility in highly dynamic cloud environments, and its reliance on
historical data for prediction may not always guarantee optimality.

The "Dynamic Priority Scheduling Algorithm Based on Heapsort," proposed by Meng, Zhu, and Xia [25], introduces
a new method that accounts for task deadlines, values, and energy consumption. Using the hierarchy process
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(FAHP) to prioritize tasks, the algorithm employs heapsort to efficiently sort tasks in order of priority. This
algorithm is particularly suited for real-time systems and industrial control applications, where reducing the
frequency of missed deadlines is crucial. The experimental results indicate a decrease in missed deadlines by an
average of 0.1789, thereby enhancing overall scheduling performance. However, this algorithm's reliance on
heapsort can become a bottleneck in environments with rapidly changing task priorities, impacting real-time
performance.

2.1 Comparison of Methodologies and Drawbacks

To provide a more structured overview of these methodologies, a comparison table (Table 1) is provided below. This
table outlines each algorithm, its methodology, and its key drawbacks/limitations.

Table 1: Comparison of Related Work and Methodologies

Author Paper Title Methodology Drawbacks/Limitations
Improvement of the Dynamic Heapsort. Dvnamic Bottleneck in real-time
Meng, S., et.al [25] Priority Scheduling Algorithm Pri psort, Jyhan environments, High
riority Scheduling . .
Based on a Heapsort computational complexity
Elastic Resource Provisioning for . Limited to budget and
Seientific Workflow Scheduline i Budget-Constrained deadli Cts L
Shi, J., et.al. [26] cientific Workflow Scheduling in Scheduling, Elastic eadline constraints, Less
> Cloud Under Budget and Deadline e adaptable to real-time
. Resource Provisioning
Constraints changes.
A Hybrid Genetic Algorithm for . . High computational overhead,
. A .. Hybrid Genetic X . .
Aziza, et.al [27] Scientific Workflow Scheduling in Aleori Requires fine-tuning of
. gorithm
Cloud Environment parameters
DCHG-TS: A Deadline-Constrained Hybrid Genetic
Iranmanesh, et.al and Cost-Effective Hybrid Genetic Algorithm, Deadline- High complexity, Scalability
[28] Algorithm for Scientific Workflow Constrained concerns.
Scheduling in Cloud Computing. Scheduling.
Scientific Workflow Scheduling in . .
. X . Hybrid Multi- .. .
Mohammadzadeh, Multi-Cloud Computing Using a Obiective Limited real-world validation,
A, et.al[29] Hybrid Multi-Objective 0 ISV High computational cost.
. e . ptimization
Optimization Algorithm.
Choudhary, et.al Energy-Aware Scientific Workflow Energy-Aware Complex implementation,
Iy, et. gy-awa . Scheduling, Workflow | Limited flexibility in dynamic
[30] Scheduling in Cloud Environment. Optimizati .
ptimization. environments.
Multi-Objective Optimization for Multi-Objective Limited applicability to large-
Khaleel, et.al [31] Scientific Workflow Scheduling Optimization, scale cloud environments,
»etalls Based on Performance-to-Power Performance-to-Power Requires accurate power-
Ratio in Fog—Cloud Environments. Ratio. performance models.
Al-Moalmi, et.al. A Whale Optlml.Z ation Sys?em for Whale Optimization ng.h corpp_utatmnal .
Energy-Efficient Container . complexity, Limited evaluation
[32] . Algorithm Lo .
Placement in Data Centers in diverse scenarios

In summary, task scheduling in cloud computing has been extensively explored using various algorithms and
techniques. Each approach brings unique advantages while facing its own set of challenges. The evolution from
traditional cost-based scheduling to more dynamic and optimized algorithms signifies the continuous effort to
improve cloud resource management. The next step in this research involves comparing the proposed Dynamic
Group and Prioritize Scheduling (DGPS) approach with these traditional methodologies to identify potential
enhancements in performance, resource utilization, and overall efficiency.

3. PROPOSED METHODOLOGY

The proposed methodology aims to address workflow scheduling issues in cloud computing environments with
dynamic resource availability. Given the cloud’s vast network of servers and the continuous influx of user tasks,
scheduling needs to be optimized to ensure that each task receives adequate resources promptly. The methodology
focuses on dynamically grouping tasks based on their characteristics, prioritizing them, and allocating the most
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suitable Virtual Machine (VM) for execution. This systematic approach enhances resource utilization, minimizes
response time, and efficiently manages the execution of diverse tasks.

3.1. Task Grouping Based on Attributes

The first step of the proposed methodology involves grouping incoming tasks based on specific attributes such as
deadlines, cost requirements, or resource demands. This dynamic grouping reduces the complexity of scheduling by
categorizing tasks with similar characteristics, allowing for more targeted resource management. The attribute-
based clustering helps in the effective distribution of tasks, optimizing their placement and resource usage across
the cloud environment. The key aspects of this phase include:

a) Dynamic Identification of Attributes: Each task is analyzed to identify attributes like execution time,
cost sensitivity, and urgency (e.g., deadline constraints).

b) Attribute-Based Clustering: Tasks are then dynamically grouped based on these attributes. For
example, tasks with strict deadlines are grouped separately from those that are cost-sensitive, while tasks
requiring high computational resources are clustered based on resource demand.

3.2. Task Prioritization within Groups

After grouping, the methodology involves prioritizing tasks within each group. This prioritization ensures that the
most critical tasks receive attention first, thereby optimizing response times and resource allocation. The
prioritization is based on a scoring mechanism that incorporates various task attributes:

a) Priority Score Calculation:
A priority score is assigned to each task using a weighted combination of its attributes:
Priority Score = w1 x Deadline Urgency + w2 x Execution Time + w3 x Cost Sensitivity 1)
Where:
> wi, w2, and w3 are adjustable weights based on system requirements
» Deadline Urgency represents deadline proximity
> Execution Time represents task duration
» Cost Sensitivity represents resource usage
b) Sorting by Priority:
Tasks within each group are sorted in descending order of their priority scores, ensuring:
a) Most critical tasks are addressed promptly
b) Efficient management of other tasks
By prioritizing tasks based on their attributes, this methodology optimizes resource allocation and response times.
3.3. Dynamic Resource Allocation to Virtual Machines

The final step involves dynamically allocating tasks to the available VMs based on their capabilities and current
load status. The cloud environment typically consists of multiple VMs, each with varying resource capacities. The
methodology selects the optimal VM for each task, considering both task priority and VM status:

a) VM Selection: The system continuously monitors the available VMs, evaluating their response times and
resource capacities. For each task, the VMs capable of handling it are identified, and the one with the
minimum response time is selected for execution.

b) Task Assignment and Execution: The selected VM is then assigned the task, and its status is updated
to reflect the new workload. This dynamic assignment helps maintain an optimal balance across the cloud
infrastructure, preventing overloading of individual VMs and improving overall system performance.
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¢) Feedback Mechanism: The methodology includes a feedback mechanism that continuously monitors
VM performance. If any inefficiencies or delays are detected, adjustments are made to future task
assignments, ensuring ongoing optimization of resource usage and response times.

3.3 Proposed Algorithm: Dynamic Group-Prioritized Scheduling (DGPS) Algorithm

To design a dynamic task scheduling algorithm that optimizes workflow management by grouping tasks based on
specific attributes, prioritizing them, and allocating dynamic resources (VMs) in a cloud environment to minimize
response time and maximize resource utilization.

Steps of the Algorithm:

1. Input:

- Set of incoming tasks: T ={T1, T2, ..., Tn}

- Set of available Virtual Machines (VMs): V ={V1, V2, ..., Vm}

- Task attributes: deadlines, cost requirements, resource demands
- VM attributes: response time, current load, resource capacity
2, Initialize:

- Create empty groups G = {G1, G2, ..., Gk} based on task attributes (e.g., deadlines, cost requirements)
- Initialize a priority queue for each group
3. Task Grouping:

- For each incoming task Tiin T:

- Identify its attributes (e.g., deadline, cost)

- Assign Ti to the appropriate group Gj based on its attributes
4. Task Prioritization:

- For each group Gj in G:

- Calculate a priority score for each task Ti in Gj using the formula:
Priority Score = w1 x Deadline Urgency + w2 x Execution Time + w3 x Cost Sensitivity
- Sort tasks in Gj based on their priority scores in descending order
5. VM Selection and Task Assignment:

- For each task Ti in the priority queue of group Gj:

- Identify the set of VMs V' € V that have the capacity to execute Ti

- Select the VM Vmin € V’ with the minimum response time
- Assign Ti to Vmin for execution

- Update the status and load of Vmin to reflect the addition of Ti

6. Feedback and Adjustment:

- Continuously monitor the performance of each VM

- Adjust task groupings, priorities, and VM selections based on real-time feedback to optimize future scheduling
7. Output:

- An optimal schedule of tasks assigned to VMs
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8. End of Algorithm

This proposed methodology ensures an adaptive and efficient approach to workflow scheduling in cloud
environments. By dynamically grouping tasks, prioritizing them, and allocating resources based on real-time
system status, it addresses the complexities of handling dynamic resources in cloud computing. The feedback
mechanism further enables ongoing optimization, improving system performance and user experience.

4. Implementation

In our study, we implemented and tested four scheduling algorithms to evaluate their performance in a simulated
cloud computing environment. The experimental setup included:

» Number of Virtual Machines (VMs): 5
> Number of Tasks: 50

The tasks were characterized by varying execution times and deadlines to create a realistic workload. The four
algorithms under evaluation were:

1. Dynamic Group and Prioritize Scheduling (DGPS)
2. First-Come-First-Served (FCFS)

3. Shortest Job First (SJF)

4. Round Robin (RR)

Each algorithm was implemented and applied to the same set of tasks across the 5 VMs. The tasks were scheduled
according to the specific rules of each algorithm, and their performance was measured based on the average
response time and standard deviation of response times.

4.1 Algorithm Implementation Details:

a) DGPS: Tasks were first grouped based on deadlines and then prioritized within each group by execution
time. Each task was assigned to the VM with the minimum load, aiming for efficient resource utilization
and timely task completion.

b) FCFS: Tasks were processed in the order they arrived. Each task was assigned to the VM with the least
current load, without considering task priorities or deadlines.

¢) SJF: Tasks were prioritized based on their execution times, with shorter tasks processed before longer
ones. This method aimed to minimize the average response time by handling shorter tasks first.

d) RR: Tasks were allocated to VMs in a cyclic manner with fixed time slices. This ensured each VM received
an equal share of CPU time, though it might not be optimal for tasks with varying lengths.

5. RESULTS

The performance of each scheduling algorithm was assessed by measuring the average response time and standard
deviation of response times. The results are summarized in the table below:

Algorithm Avet:age Response .Stz}ndard .
Time (units) Deviation (units)
DGPS 57.61 4.13
FCFS 57.06 5.88
SJF 42.26 4.78
Round Robin (RR) 144.37 22.08
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5.1 Performance Analysis:

a)

b)

c)

d)

DGPS: This algorithm provided a balanced performance with an average response time of 57.61 units and
a low standard deviation of 4.13 units. The low standard deviation indicates consistent task handling and
stable performance across various scenarios.

FCFS: The FCFS algorithm achieved a marginally better average response time of 57.06 units compared to
DGPS. However, it had a higher standard deviation of 5.88 units, reflecting greater variability in response
times and less consistency in scheduling.

SJF: The SJF algorithm excelled in minimizing the average response time, achieving the lowest value of
42.26 units. Despite its superior average response time, SJF had a moderate standard deviation of 4.78
units, indicating some variability in task completion times.

RR: The Round Robin algorithm resulted in the highest average response time of 144.37 units and the
highest standard deviation of 22.08 units. This indicates that RR was the least efficient, with significant
delays and variability in task completion.

To visualize the performance differences among the algorithms, the following graphs illustrate the average response
times and standard deviations.

Average Response Time (units)

Round Robin (RR)
Algorithm

Figure 2: Average Response Time Comparison

The graph shows that SJF has the lowest average response time, followed by DGPS and FCFS. RR has the highest
average response time.

Round Robin (RR)

Algorithm

u
10 15 20
Standard Deviation {units)

Figure 3: Standard Deviation Comparison
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This graph highlights the consistency of the algorithms. DGPS and SJF have lower standard deviations compared to
FCFS and RR, indicating more stable performance.

The comparative analysis reveals that the DGPS algorithm offers a good balance between response time and
consistency, making it suitable for environments where stable performance is crucial. The SJF algorithm, while
providing the best average response time, introduces some variability in response times. The FCFS algorithm,
although slightly better than DGPS in response time, suffers from higher variability. The RR algorithm, with its
high response times and standard deviation, proves to be less effective in optimizing scheduling performance.

6. CONCLUSION AND FUTURE SCOPE

Efficient workflow scheduling is crucial in cloud computing for optimizing resource use and minimizing response
times. This study introduced the Dynamic Group and Prioritize Scheduling (DGPS) algorithm and compared its
performance with traditional methods like First-Come-First-Served (FCFS), Shortest Job First (SJF), and Round
Robin (RR). DGPS proved effective by providing balanced and stable response times, with SJF showing the lowest
average response time but higher variability, and FCFS performing slightly better than DGPS in response time but
with increased inconsistency. Round Robin resulted in the highest response times and variability. Future work
could enhance DGPS by integrating machine learning for dynamic task management, testing in larger-scale or
heterogeneous cloud environments, and incorporating energy-efficient mechanisms to address data center energy
consumption.
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