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An advanced optical methodology known as photoplethysmography(PPG) is employed to 

assess fluctuations in blood-volume within dermal tissues. Heart rate monitoring is commonly 

integrated into wearable devices. PPG’s popularity derives from its cost effectiveness and 

convenience where continuous monitoring on the move is essential, such as in a disaster 

situation. PPG is prone to motion artifacts, though, which might skew the signals that are 

gathered. However, in comparison, the information that Electrocardiography (ECG) provides is 

the gold standard in tracking heart electrical activity — highly precise data on cardiac rhythm. 

ECG has a wide scope of applications in the clinical environment for the acquisition of heart 

rate and abnormality detection, to further elucidate details of cardiac performance. Autonomic 

control of the heart is a crucial indicator that is taken from PPG and ECG data and is used to 

show the Heart Rate Variability (HRV) or Phase I Workload status. The condition is 

fundamental in the diagnosis of heart problems, including hypertension, arrhythmias and 

cardiac diseases. This has led to the growing importance of analysis of HRV for early 

identification and prognosis of heart related health related issues. This review provides and 

compares HRV analysis using PPG and ECG for their predictive ability in the assessment of 

heart conditions. It then examines the properties of HRV data from both modalities informed 

by Signal Processing (SP) techniques to improve reliability. It reviews their contributions to 

improving the monitoring of heart conditions and to the more general landscape of HRV 

analysis in health care. 

Keywords: Photoplethysmography(PPG), Electrocardiography (ECG), Heart rate variability 

(HRV), Pulse Rate variability (PRV), Signal Processing (SP). 

 

1. Introduction: 

Heart Rate Variability emerged as an important parameter not just for assessing the cardiovascular state but also 

for the operational status of the individual concerning the autonomic nervous system. An increase in the range of 

variability of the time intervals between heartbeats is indicative of enhanced adaptability, lower levels of stress, or 

stability in cardiovascular functioning as gauged by measurements of HRV. Additionally, several diseases including 

arrhythmias, hypertension, and cardiovascular death have also been correlated with abnormalities in HRV 

[1][2][29]. Over the years, the analysis of HRV has become essential for predicting cardiac disorders and both 

conditions of health and sickness. In recent times, studies on HRV have been highly intensified through 

electrocardiography and photoplethysmography. ECG, being the gold standard, measures the direct electrical 

activity of the heart, providing high-resolution heart rate data with exceptional sensitivity but the usage is very 

much constrained within controlled environments mainly due to its strict requirements for electrode placement 

[5][7][23]. On the other hand, PPG is a non-invasive optical technique for measuring blood volume changes under 

the skin, thus ideal for wearable technologies. It enables continuous and real-time monitoring of HRs in daily 

settings. However, PPG is more prone to motion artifacts and environmental noise that can easily degrade its 

accuracy when undertaking physical activities. Recent advances in signal processing and machine learning are 

enhancing the reliability of HRV assessments derived from PPG signals, further expanding its applications [12, 17, 

24]. Both ECG and PPG offer complementary insights into HRV. ECG captures direct electrical signals from the 

heart, while PPG reflects peripheral blood flow changes which are directly affected by heart rate and vascular tone. 
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Combining these modalities raises the predictive accuracy of cardiac health assessments, and combined with 

advanced techniques such as deep learning for mental stress detection, hyperbaric HRV analysis, or topological 

feature learning using Graph Neural Networks (GNNs) [6][11][18]. Whereas clinical diagnostics is exclusively in the 

hands of ECG, PPG has revolutionized the notion of continuous, non-invasive monitoring through wearable 

devices. Strengths in both lend credence to the combined utilization of both settings-clinical and non-clinical 

settings-for a comprehensive approach towards analyzing HRV. This paper explores recent advancements in HRV 

analysis using ECG and PPG, highlighting how machine learning can address current limitations and discussing 

future opportunities to enhance HRV monitoring and cardiac health prediction [27][31]. 

2. Literature Review: 

PPG is an invasive, low-cost method to determine the status of cardiovascular systems, including HRV, 

hypertension, and stress, which new developments in wears and signal processing improve its accuracy for 

continued and long-term monitoring. This variability in pulse rate measured by PPG is useful to understand the 

system. In application, it has proven useful in detecting variations otherwise hard to measure in wearables, in 

monitoring PRV during exercise through mobile and webcams [1] and also supplementing the estimation of HRV 

using a 1D CNN model based on wearable sensors for high-motion environments [2]. Indices of PPG related to 

reactivity in depressed subjects toward mental well-being and changes in ANS [3]. Due to recent works like models 

using machine learning algorithms that may provide improved accuracy and standardized measurements, 

measuring blood pressure using PPG is becoming of increasing interest as a cuffless substitute [4][15][18]. Some 

research has shown non-invasive glucose monitoring [5], while others are looking into the arterial stiffness and 

pulse wave velocity for diagnostics, AS and PWV [18]. More recently, PPG is applied in mental health monitoring. 

Deep learning supports fast stress and emotional state assessment using PPG and HRV analysis [10][13]. Wearable 

PPG smartwatches promote energy efficiency and accuracy by employing multi-wavelength illumination and signal 

compression for remote monitoring [7][11][25]. However, they also possess problems like motion artifacts, 

environmental noise, and sensor placement. As such, advances are already made to integrate PPG with other 

modalities, such as ballistocardiography, to enhance its usability under certain conditions [14]. ECG is the chosen 

method for HRV evaluation since it records cardiac activity directly but PPG is more suitable and adaptable for 

real-time usage and integration into wearables 9 14. Conclusion The applications of PPG include cardiology; there is 

more than that; it also manages to assess mental stress besides non-invasive glucose monitoring. Improve the 

robustness of the signals, standardize methods of calculation, and make these indices more applicable in health 

care. 

3. Methodology: 

Photoplethysmography (PPG) represents a noninvasive and economically feasible technique utilized for the 

evaluation of cardiovascular health, heart rate variability associated with hypertension, arterial stiffness (AS), and 

stress levels [3][5][8]. Notable advancements in wearable technologies and signal processing methodologies have 

significantly enhanced the precision of both short-term and continuous monitoring, facilitating accurate 

assessments of blood pressure and pulse rate [2][12][15]. It adapts to the resource-constrained environment by 

using mobile devices for monitoring HRV and to high-motion environments by deep learning like 1D CNNs 

[6][10][18]. It supports mental health monitoring, especially for stress and mood evaluations through autonomic 

reactivity and even blood pressure estimation with advanced features like higher-order derivatives [9][17][24]. PPG 

is used outside of cardiovascular applications, such as monitoring of blood glucose, mechanical alternans with video 

compression support for remote monitoring [19][25][29]. Signal noise and motion artifacts are still major concerns 

apart from sensor locations; multi-wavelength illumination and integration of ballistocardiography have been 

proposed to be utilized for better reliability [7][11][20]. PPG is near ECG accuracy with developments in machine 

learning and signal processing but has made efforts into signal robustness and standardized protocols for a much 

wider clinical application [1][14][26]. 

3.1. PPG Signal Acquisition 

Photoplethysmography, or PPG, is an optical technique that measures the variation in blood volume within the 

peripheral vascular system [4][6][11]. It works on the principle of a light source, typically an LED, and a 

photodetector positioned on the skin. Light emitted from the LED travels through the skin, where increased blood 

volume in the underlying vessels either absorbs or reflects light back to the photodetector [8][10]. PPG captures the 
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pulsatile part of blood flow, attributed to heartbeats, allowing for heart rate and HRV estimation [7][ 9][15]. The 

non-invasive nature and potential for continuous monitoring make PPG widely used in wearable devices like 

smartwatches and fitness trackers [3][5][16]. PPG sensors can be placed on different body parts, such as the wrists, 

earlobes, or fingertips, offering flexibility in ambulatory settings [12][13]. However, PPG signals are prone to 

interference from motion and ambient light, both of which can compromise signal quality. Signal processing 

techniques, including filtering and motion artifact reduction, are critical for reliable PPG-based HRV analysis 

[14][18][20].  

        

Fig. 1. Raw PPG signal 

3.2.  ECG Signal Acquisition 

A traditional technique for recording electrical activity of the heart is electrocardiography (ECG), which involves the 

placement of electrodes on the skin to detect electrical impulses generated with each heartbeat, resulting from the 

depolarization and repolarization of cardiac muscles [1][3][7]. ECG produces a time-series signal representing heart 

activity over a period, which can utilize single-channel or multiple-channel systems, where electrode placement is 

optimized to capture electrical heart signals more accurately [2][9]. The HR and HRV information derived from 

ECG signals are highly accurate and widely used in clinical diagnostics for conditions such as arrhythmias, 

myocardial infarction, and other cardiac disorders [4][8][11]. While ECG remains one of the most reliable methods 

for obtaining HRV data, its use in ambulatory cardiac telemonitoring can be inconvenient compared to PPG due to 

the need for skin contact and precise electrode positioning [6][10][14]. Advances such as portable ECG devices and 

wearable ECG monitors have made it easier to collect high-quality data outside of hospital settings, thereby 

expanding the feasibility of continuous cardiac monitoring [5][12][15]. 

 

Fig. 2. Raw ECG signal 

3.3.  HR Estimation from PPG 

Photoplethysmography (PPG) is a completely non-invasive technique that relies on detecting changes in blood 

volume within the microvascular bed of tissue [17][19][23]. Using an optical sensor, typically placed on peripheral 

body sites like the fingertip or wrist, PPG monitors blood flow changes by tracking variations in light absorption, 

which correlate closely with the cardiac cycle waveform. This allows for heart rate estimation by calculating the 

intervals between successive pulse peaks [16][21][24]. 

Pulse Interval Calculation: In PPG, the time interval between two consecutive peaks is termed the pulse 

interval, a key metric for determining heart rate (HR). Pulse interval reflects the temporal distance between pulse 

peaks, which is sequentially measured in the PPG waveform [18][22][25]: 

PPI[i]=t[i+1]−t[i] 

where t[i] is the time at which the i-th peak occurs. 

Heart Rate Calculation:  HR can be derived by taking the reciprocal of the average pulse interval (PPI) and 

converting it to beats per minute (BPM). Typically, this average PPI is computed over a brief period, such as 10 

seconds, to maintain accuracy in HR estimation [20][26][27]. 
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𝐻𝑅 =   
60

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑃𝐼
 

Heart Rate Variability (HRV) from PPG:  Beyond HR estimation, PPG signals are widely used to calculate 

HRV, which measures time-based variations between successive heartbeats and provides insights into autonomic 

nervous system (ANS) regulation. Common HRV metrics derived from PPG analysis include time-domain, 

frequency-domain, and nonlinear indices [22][28][30]: 

● SDNN (Standard Deviation of Normal-to-Normal intervals):  

𝑆𝐷𝑁𝑁 = √
1

𝑁 − 1
 ∑

𝑁

𝑖=1

(𝑃𝑃𝐼[𝑖] − 𝑃𝑃𝐼 ) 2 

● RMSSD (Root Mean Square of Successive Differences):  

𝑹𝑴𝑺𝑺𝑫 = √
𝟏

𝑵 − 𝟏
 ∑

𝑵−𝟏

𝒊=𝟏

(𝑷𝑷𝑰[𝒊 + 𝟏] − 𝑷𝑷𝑰[𝒊]) 𝟐 

The determination of heart rate from PPG offers a simple and effective approach for real-time cardiovascular 

monitoring. This process involves pulse interval detection, noise reduction, and the application of mathematical 

models to enhance HR accuracy. Additionally, analyzing HRV from PPG provides valuable insights into ANS 

function, supporting continuous health monitoring in both clinical and everyday settings [23][29][31]. 

3.4.  HR Estimation from ECG 

Heart rate (HR) is one of the more reliable measurements for ascertaining cardiovascular health using 

electrocardiography. [2][4][10]. ECG provides highly detailed information on the heart's electrical activity during 

each beat, with the R-peak being a crucial component of the ECG waveform, indicating ventricular contraction 

[3][5][12]. HR determination can be precisely performed by calculating the time intervals between successive R-

peaks, known as R-R intervals, which measure the time between two consecutive heartbeats [6][9][13]. The HR 

determination process from ECG begins with signal acquisition, where electrodes placed on the skin record the 

heart's electrical activity over time. An electrocardiogram (ECG) signal is constructed from the P-wave, QRS 

complex, and T-wave, and the R-peak, positioned at the apex of the QRS complex, serves as the most outstanding 

feature for heart rate (HR) estimation. [8][14][15]. Several techniques are implemented in detecting the R-peak in 

order to correctly compute heart rate, starting from the Pan-Tompkins algorithm and transform-based wavelet 

techniques, which may be used to detect the R-peaks even when signals or data become noisy or altered. [7][11][16]. 

Once the R-peaks are identified, the next step is to determine the R-R interval, which is the time between two 

consecutive R-peaks. Since heart rate (HR) is inversely related to the R-R interval, this measure is used as an 

estimate for HR [4][7][12]. The HR can be mathematically calculated from the R-R interval using the formula: 

𝐻𝑅 =  
60

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅 − 𝑅 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠)
 ­­ 

This formula calculates the average R-R interval over a defined period, such as a 10-second window, resulting in 

HR measured in beats per minute (BPM). Averaging the R-R intervals over time helps to smooth out physiological 

fluctuations in HR, providing a more stable estimate [9][13][16]. R-R intervals can also be used to assess Heart 

Rate Variability (HRV), which reflects the time variation between successive heartbeats. HRV analysis gives 

insights into the activity of the autonomic nervous system (ANS), as it reflects the balance between sympathetic and 

parasympathetic influences on heart function [3][5][11]. Key HRV measures include the standard deviation of the 

normal-to-normal intervals (SDNN) and the root mean square of successive differences (RMSSD), both of which 

are essential metrics for evaluating the autonomic balance and cardiovascular health [6][8][14]. 

3.5. HRV Estimation: 

Heart Rate Variability (HRV), a key metric for assessing the autonomic nervous system (ANS) and cardiovascular 

health, can be measured using ECG or PPG signals, depending on the application. ECG has been used in hyperbaric 
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environments to analyze cardiovascular responses to pressure changes, with R-R intervals calculated for time and 

frequency-domain HRV metrics, confirming parasympathetic activity under higher pressures. A comparison with 

PPG-derived Pulse Rate Variability (PRV) validated PPG as a non-invasive alternative [1][3][5]. Meanwhile, deep 

learning methods, combining CNN-LSTM architectures, have enhanced PPG-based HR monitoring for wearable 

devices, achieving high accuracy in real-time settings with a mean absolute error of 6.02 BPM on the PPG-DaLiA 

dataset [4][6][7]. These approaches highlight the complementary roles of ECG and PPG in advancing 

cardiovascular health monitoring [8][14]. 

Paper Algorithm Signal Preprocessing 

Post 

Processing Results 

[1] 

Graph 

Isomorphis

m Network 

(GIN) 

Electrocardiogram 

(ECG) 

Beat extraction, 

normalization, R-

peak detection None specified 

Accuracies: 99.38% 

(NVG), 98.76% 

(HVG), 91.93% 

(QG-24) 

[3] POS iPPG Detrending 

Peak 

Detection High Agreement 

[14] 

Wavelet-

based 

detection 

and 

frequency 

modulation 

model ECG and PPG 

Low-pass filtering, 

down-sampling, 

artifact detection 

HRV and PRV 

analysis, 

estimation, 

oxygen 

saturation 

calculation 

Characterized ANS 

response, increased 

respiratory rate with 

pressure, stable 

oxygen saturation 

[12] 

Deep 

Learning PPG Filtering Classification Accurate 

[21] NAS-PPG PPG FFT Tuning 6.02 BPM 

Table 1.  HRV Estimation  

3.6. Disease Diagnosis Using PPG: 

PPG is another crucial non-invasive estimation of the cardiovascular state, particularly with smartwatches. It also 

provides an estimation of a rough measure of the change in blood volume along with an indication of heart rate and 

PRV. PRV is an indicator of activity in the autonomic nervous system and cardiovascular function; alterations are 

indicative of heart failure or stress-related pathology [9,19]. Medium PRV indices can be sampled at a lower rate of 

50 Hz, optimized through selection of the fiducial point, for instance: the medium interpolate point for battery-

efficient wearables [19][24]. Also, apex and up-slope optimized selection of the fiducial point enhances further the 

robustness of PRV when applied on different PPG morphologies and user conditions. Continuous wrist-PPG 

monitoring is applied for early diagnosis of hypertension and arrhythmia. The enforcement of long-term health 

monitoring compliance in any setting promotes its popularization. Development of signal processing of PPG in 

nonstationary conditions will facilitate its use in real time health-care and remote monitoring [7][10][13]. 

3.7. Disease Diagnosis Using ECG 

One of the key apparatuses determining cardiac health is ECG, giving important information in understanding the 

way the heart functions, thus allowing the diagnosis in many disorders that involve the heart, including 

arrhythmias and myocardial infarction. However, due specifically to complexity and variability in heartbeat, ECG 

signal analysis is time-consuming by manual means. New developments of Graph Neural Networks, for instance, 

Graph Isomorphism Network, may lead to a new perspective in the automatic classification of ECG signals, and 

significant improvement has been done to improve the efficiency and accuracy toward the diagnosis of diseases. 

Three techniques, namely, NVG, HVG, and QG, are used on time-series ECG data transformed into graph 

representations in the article [1]. These changes allow the treatment of the ECG data as a network of interconnected 

points, with each technique extracting a distinctive feature of the ECG signal. The GIN model classifies the ECG 

graphs by iteratively updating each node's feature representation through neighborhood aggregation, thus being 

able to capture complex relationships in the data. The update rule for the nodes of GIN is: 
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ℎ 𝑣
(𝑘)

 =  𝑀𝐿𝑃 𝑘 ((1 + 𝜖 𝑘)ℎ 𝑛
(𝑘−1)

+ ∑

𝑢𝜖𝑁(𝑣)

ℎ 𝑢
(𝑘−1)

) 

where ℎ 𝑣
(𝑘)

is the feature vector of node v at the k-th iteration, N(v) represents the set of neighboring nodes, and 

𝜖 𝑘  is a learnable parameter. This update function enables GIN to iteratively refine each node’s features, 

enhancing the model’s ability to differentiate between healthy and abnormal ECG patterns. Experimental results 

also indicate that GNN-based methods could attain high classification accuracies on ECG data. In that, NVG 

achieved 99.38%, HVG reached 98.76%, and QG with 24 quantiles achieved 91.93%. Graph-based GNN approaches 

could hence be thought to be a reliable and efficient method for diagnosing cardiac conditions. This will imply that 

the techniques will be successful if GNNs are adopted as a vital instrument for clinical diagnosis and application to 

make healthcare professionals diagnose cardiovascular diseases with better accuracy, assuming further tuning is 

made [1]. 

4. Results:  

The reviewed studies represent significant strides in physiological signal analysis and healthcare applications. 

Estimation models for blood pressure, such as those presented by Gupta et al. [17] and Byfield et al. [22], achieved 

high accuracy, with errors of −0.07 ± 4.47 mmHg for systolic BP and conformity to international standards like 

ESH-IP2 and BHS. HRV analysis highlighted the impact of preprocessing and tachogram length, as explored by 

Marzbanrad et al. [15] and Kajisa et al. [32], while genotype-specific T2DM variations were underlined in studies 

like Kamimura and Tamura [31]. The use of infrared PPG signals, as shown by Pelaez-Coca et al. [19], effectively 

reduced noise and improved accuracy when sampling rates were lowered. Wristwatch-type PPG sensors, developed 

by Lee et al. [28], demonstrated over 91% similarity with standard probes. Techniques such as PRV estimation from 

optical sensors, studied by Rodrigues et al. [16], exhibited high reliability, achieving 95% agreement with ECG-

derived HRV. Furthermore, advanced graph-based methods for ECG classification, such as those proposed by 

Zeinalipour and Gori [1], achieved exceptional accuracies, often exceeding 99%. Features like the Poincaré plot and 

RMSSD, as used in Wang and Wu [12], delivered near-perfect accuracy in mental stress classification based on PPG 

signals. These findings underscore the potential of innovative algorithms, sensor designs, and data fusion 

approaches to advance non-invasive monitoring and personalized healthcare. 

5. Discussion 

Therefore, monitoring of heart rate variation and cardiovascular monitoring is quite challenging with PPG and 

ECG. Moreover, removal of motion artifacts is a severe task since accelerometer-based methods cannot deal with 

the fine movement like tapping wrist. Thus, gyroscopes or optical solutions will be required [3] [16]. Also, it seems 

that availability of limited datasets for healthy and CVD patients limits the generalizability of the algorithms which 

makes the need to acquire more data in both [22] [27]. Intensive methods don't have an application in real-time 

wearable technology. Lightweight methods provide alternatives that may be less complex but reasonably accurate 

[4][18]. Signal quality is a crucial criterion for dynamic activities and reliable PPG systems, as clinical validation 

standards are also important [7][21][26][30]. PPG with ECG may be promising to enhance monitoring but 

multimodal methods are still not very well-explored [14][24]. Monitoring over a long term through wearable 

electronics provides additional challenges like deformation of skin and perspiration which deteriorates signal 

quality; hence further research is warranted [11][17]. Further, resolution of the problems related to poor 

conditioning of sampling rates and fiducial point detection, which should be standardized to result in dependable 

findings, is required for the analysis of PRV data [10][13][20][25]. Fiducial point-based BP estimation algorithms 

have been adversely affected by the low quality of signals coming from physiological exercises and would have 

greater accuracy with higher-order derivatives of PPG [15][29]. Further perfect algorithms, appropriate signal 

processing, and clinical validation can further enhance PPG and ECG-based cardiovascular monitoring systems 

[12][31]. 

6. Conclusion: 

This survey has increasingly revealed that integration of PPG and ECG can be of great benefit in cardiovascular 

monitoring, especially in case of HRV and initial signs of cardiac pathology. Real time and continuous monitoring 

has become more possible due to machine learning techniques incorporated in wearable devices though certain 
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difficulties are noted and include Motion artifact removal and signal quality assessment, and developing machine 

learning algorithms that can be implemented on resource-limited devices. However, there remains a lack of clinical 

trials, inconsistent protocol regarding fiducial point identification, and a dearth of comprehensive datasets 

available to the public. Real-world, long-term assessments of the utility of PPG-based wearables, however, require 

different methodologies: longitudinal and model individual variations. Moreover, increasing the variety of acquired 

physiological signals to ECG and blood oxygen saturation will enhance the reliability and informativeness of such 

systems. In conclusion, significant efforts have been made to use PPG for cardiovascular monitoring as a 

replacement for conventional sensors; however, several issues need to be addressed in future research projects as 

mentioned above and defining a clinically proven and patient-oriented cardiovascular monitoring system that can 

be integrated using PPG data. These limitations can therefore be offset by PPG technology in offering better 

wearable health monitoring to cater for diverse people. 

References:  

[1] K. Zeinalipour and M. Gori, "Graph Neural Networks for Topological Feature Extraction in ECG Classification," 

2023. [Online]. Available: Springer Nature. 

[2] M. Song and S.-B. Lee, "Comparative study of time-frequency transformation methods for ECG signal 

classification," 2024. 

[3]M. M. Shoushan, B. A. Reyes, A. M. Rodriguez, and J. W. Chong, "Contactless Monitoring of Heart Rate 

Variability During Respiratory Maneuvers," IEEE Sensors Journal, vol. 22, no. 5, pp. 4458-4466, Mar. 2022. 

[4] E. K. Naeini, F. Sarhaddi, I. Azimi, P. Liljeberg, N. Dutt, and A. M. Rahmani, "A Deep Learning-Based PPG 

Quality Assessment Approach for Heart Rate and Heart Rate Variability," ACM Transactions on Computing 

for Healthcare, vol. 3, no. 2, pp. 1-21, 2023. 

[5] M. Elgendi, F. Haugg, R. Fletcher, J. Allen, H.-S. Shin, A. Alian, and C. Menon, "Recommendations for 

Evaluating Photoplethysmography-Based Algorithms for Blood Pressure Assessment," Communications 

Medicine, vol. 4, no. 1, pp. 50-62, 2024. 

[6] Y. Chen, X. Yang, R. Song, X. Liu, and J. Zhang, "Predicting Arterial Stiffness from Single-Channel 

Photoplethysmography Signal: A Feature Interaction-Based Approach," IEEE Journal of Biomedical and 

Health Informatics, vol. 28, no. 1, pp. 45-54, 2024. 

[7] S. Kontaxis, E. Gil, V. Marozas, J. Lazaro, E. Garcia, M. Posadas-de Miguel, S. Siddi, M. L. Bernal, J. Aguilo, J. 

M. Haro, C. de la Cámara, P. Laguna, and R. Bailon, "Photoplethysmographic Waveform Analysis for 

Autonomic Reactivity Assessment in Depression," IEEE Transactions on Biomedical Engineering, vol. 68, no. 

11, pp. 3217-3228, 2021. 

[8] T. Besleaga, S. Badiani, G. Lloyd, N. Toschi, A. Canichella, A. Demosthenous, P. D. Lambiase, and M. Orini, 

"Non-Invasive Detection of Mechanical Alternans Utilizing Photoplethysmography," IEEE Journal of 

Biomedical and Health Informatics, vol. 23, no. 5, pp. 2010-2020, 2019. 

[9] D. Biswas, N. Simões-Capela, C. Van Hoof, and N. Van Helleputte, "Heart Rate Estimation From Wrist-Worn 

Photoplethysmography: A Review," IEEE Sensors Journal, vol. 19, no. 12, pp. 4500-4513, 2019. 

[10] S. Chen, F. Qin, X. Ma, J. Wei, Y.-T. Zhang, and E. Jovanov, "Multi-View Cross-Fusion Transformer Based on 

Kinetic Features for Non-Invasive Blood Glucose Measurement Using PPG Signal," IEEE Journal of 

Biomedical and Health Informatics, vol. 28, no. 5, pp. 1392-1402, 2024. 

[11]X. Zheng, V. M. Dwyer, L. A. Barrett, M. Derakhshani, and S. Hu, "Rapid Vital Sign Extraction for Real-Time 

Opto-Physiological Monitoring at Varying Physical Activity Intensity Levels," IEEE Journal of Biomedical and 

Health Informatics, vol. 27, no. 9, pp. 1234-1245, 2023. 

[12] Z.-H. Wang and Y.-C. Wu, "A Novel Rapid Assessment of Mental Stress by Using PPG Signals Based on Deep 

Learning," IEEE Sensors Journal, vol. 22, no. 3, pp. 678-689, 2022. 

[13] Z. Ebrahimi and B. Gosselin, "Ultra-Low Power Photoplethysmography (PPG) Sensors: A Methodological 

Review," IEEE Sensors Journal, vol. 23, no. 5, pp. 1456-1469, 2023. 

[14] A. Hernando, M. D. Pelaez-Coca, M. T. Lozano, M. Aiger, D. Izquierdo, A. Sanchez, M. I. Lopez-Jurado, I. 

Moura, J. Fidalgo, J. Lazaro, and E. Gil, "Autonomic Nervous System Measurement in Hyperbaric 

Environments Using ECG and PPG Signals," IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 

6, pp. 1450-1460, 2019. 

[15] F. Marzbanrad, A. H. Khandoker, B. D. Hambly, E. Ng, M. Tamayo, Y. Lu, S. Matthews, C. Karmakar, M. 

Palaniswami, H. F. Jelinek, and C. S. McLachlan, "Methodological Comparisons of Heart Rate Variability 



35  

 
J INFORM SYSTEMS ENG, 10(24s) 

Analysis in Patients With Type 2 Diabetes and Angiotensin Converting Enzyme Polymorphism," IEEE Journal 

of Biomedical and Health Informatics, vol. 20, no. 2, pp. 456-467, 2016. 

[16] M. J. Rodrigues, O. Postolache, and F. Cercas, "Unobtrusive Cardio-Respiratory Assessment for Different 

Indoor Environmental Conditions," IEEE Sensors Journal, vol. 22, no. 4, pp. 789-799, 2022. 

[17] S. Gupta, A. Singh, A. Sharma, and R. K. Tripathy, "Higher Order Derivative-Based Integrated Model for Cuff-

Less Blood Pressure Estimation and Stratification Using PPG Signals," IEEE Sensors Journal, vol. 22, no. 6, 

pp. 1250-1261, 2022. 

[18] P. Yao, N. Xue, S. Yin, C. You, Y. Guo, Y. Shi, T. Liu, L. Yao, and J. Zhou, "Multi-Dimensional Feature 

Combination Method for Continuous Blood Pressure Measurement Based on Wrist PPG Sensor," IEEE 

Journal of Biomedical and Health Informatics, vol. 26, no. 11, pp. 2700-2710, 2022. 

[19] M. D. Pelaez-Coca, A. Hernando, J. Lazaro, and E. Gil, "Impact of the PPG Sampling Rate in the Pulse Rate 

Variability Indices Evaluating Several Fiducial Points in Different Pulse Waveforms," IEEE Journal of 

Biomedical and Health Informatics, vol. 25, no. 4, pp. 950-961, 2021. 

[20] K. Natarajan, R. C. Block, M. Yavarimanesh, A. Chandrasekhar, and L. K. Mestha, "Photoplethysmographic 

Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in 

Humans," IEEE Transactions on Biomedical Engineering, vol. 69, no. 2, pp. 420-429, 2022. 

[21] S. B. Song, J. W. Nam, and J. H. Kim, "NAS-PPG: PPG-Based Heart Rate Estimation Using Neural 

Architecture Search," IEEE Sensors Journal, vol. 21, no. 7, pp. 1420-1430, 2021. 

[22] R. Byfield, M. Miller, J. Miles, G. Guidoboni, and J. Lin, "Towards Robust Blood Pressure Estimation From 

Pulse Wave Velocity Measured by Photoplethysmography Sensors," IEEE Sensors Journal, vol. 22, no. 8, pp. 

2130-2140, 2022. 

[23] B. Sun and Z. Zhang, "Photoplethysmography-Based Heart Rate Monitoring Using Asymmetric Least Squares 

Spectrum Subtraction and Bayesian Decision Theory," in IEEE Sensors Journal, vol. 15, no. 12, pp. 7161-7168, 

Dec. 2015, doi: 10.1109/JSEN.2015.2473697. 

[24] J. Sohn, H. Shin, and J. Lee, "Validation of Electrocardiogram Based Photoplethysmogram Generated Using 

U-Net Based Generative Adversarial Networks," Journal of Healthcare Informatics Research, vol. 8, pp. 140–

157, 2024. doi: 10.1007/s41666-023-00156-z. 

[25] B. Sun and Z. Zhang, "Photoplethysmography-Based Heart Rate Monitoring Using Asymmetric Least Squares 

Spectrum Subtraction and Bayesian Decision Theory," in IEEE Sensors Journal, vol. 15, no. 12, pp. 7161-7168, 

Dec. 2015, doi: 10.1109/JSEN.2015.2473697. 

[26] J. -X. Wu, C. -M. Li, Y. -R. Ho, M. -J. Wu, P. -T. Huang and C. -H. Lin, "Bilateral Photoplethysmography 

Analysis for Peripheral Arterial Stenosis Screening With a Fractional-Order Integrator and Info-Gap Decision-

Making," in IEEE Sensors Journal, vol. 16, no. 8, pp. 2691-2700, April 15, 2016, doi: 

10.1109/JSEN.2015.2513899. 

[27] C. Zhao, W. Chen, C. -L. Lin and X. Wu, "Physiological Signal Preserving Video Compression for Remote 

Photoplethysmography," in IEEE Sensors Journal, vol. 19, no. 12, pp. 4537-4548, 15 June 15, 2019, doi: 

10.1109/JSEN.2019.2899102. 

[28] Y. K. Lee, J. Jo and H. S. Shin, "Development and Evaluation of a Wristwatch-Type Photoplethysmography 

Array Sensor Module," in IEEE Sensors Journal, vol. 13, no. 5, pp. 1459-1463, May 2013, doi: 

10.1109/JSEN.2012.2235424. 

[29] M. de A. Costa, F. G. Gonçalves, R. Ferreira-Garcia, F. de Moraes, R. G. de Nonohay, and G. G. Manfro, "Heart 

rate variability as a predictor of improvement in emotional interference in Generalized Anxiety Disorder," 

Journal of Psychiatric Research, vol. 143, pp. 409-415, 2021. doi: 10.1016/j.jpsychires.2021.05.059. 

[30] N. Pilz, V. Heinz, T. Ax, L. Fesseler, A. Patzak, and T. L. Bothe, "Pulse Wave Velocity: Methodology, Clinical 

Applications, and Interplay with Heart Rate Variability," Reviews in Cardiovascular Medicine, vol. 25, no. 7, 

2024. doi: 10.31083/j.rcm2507266. 

[31] D. Kamimura and K. Tamura, "Resting heart rate as a possible biomarker and target to prevent future 

cardiovascular disease in type 2 diabetes patients," Hypertension Research, vol. 46, pp. 1160–1162, 2023. doi: 

10.1038/s41440-023-01171-4. 

[32] T. Kajisa, T. Kuroi, H. Hara, and T. Sakai, "Correlation analysis of heart rate variations and glucose 

fluctuations during sleep," Sleep, 2023. doi: 10.1016/j.sleep.2023.11.038. 


