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ARTICLE INFO ABSTRACT

Received: 15 Dec 2024 The increasing prevalence of plant diseases poses a significant threat to global cotton production,

leading to substantial economic losses and reduced crop yield. Traditional manual disease

detection methods are time-consuming, labour-intensive, and often inaccurate. To address this

Accepted: 16 Feb 2025 challenge, this research proposes an advanced deep learning-based approach for automated
cotton plant disease detection using Convolutional Neural Networks (CNNs). The study
evaluates multiple CNN architectures, including GoogleNet, VGG16, DenseNet201, ResNet50,
and TLResnet152V2, to determine their effectiveness in identifying and classifying diseased
cotton leaves. The proposed methodology leverages normalized and augmented datasets,
utilizing data pre-processing, feature extraction, and transfer learning techniques to enhance
model performance. Extensive experimental evaluations demonstrate that data augmentation
significantly improves classification accuracy, enabling CNN models to generalize better across
diverse disease conditions. Among the tested architectures, TLResnet152V2 achieved the highest
accuracy (92.03%) and F1-score (0.8842), outperforming all other models, followed closely by
ResNet50. These results highlight the superiority of deep residual learning in plant disease
classification, ensuring robust feature extraction and precise detection. This studies also explores
the combination of CNN-primarily based disorder detection into clever agriculture structures,
allowing actual-time sickness classification via cell packages and IoT-based totally answers. The
findings affirm that deep gaining knowledge of-pushed plant disorder detection can considerably
enhance precision farming, reducing dependency on professional agronomists while improving
early disorder intervention techniques. destiny studies will awareness on deploying light-weight
CNN models for facet computing, integrating climate statistics for predictive disorder modelling,
and exploring hybrid deep studying strategies for enhanced accuracy. The examine demonstrates
that CNN-based automatic cotton plant disease detection is a transformative step closer to
sustainable, Al-enabled smart agriculture, ensuring better productivity, decreased crop losses,
and advanced food safety.
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L.INTRODUCTION

Agriculture is the backbone of many economies worldwide, providing food, raw materials, and employment to
millions. Among various crops, cotton is one of the most significant, serving as a vital raw material for the textile
industry. However, cotton production is highly susceptible to various diseases caused by fungi, bacteria, and viruses,
leading to significant yield losses and economic setbacks for farmers. Traditionally, cotton plant disease detection
relies on manual inspection by agricultural experts, which is time-consuming, labor-intensive, and prone to errors.
Moreover, by the time visible symptoms appear, the disease may have already spread, making it difficult to contain
and control [1]. This highlights the need for automated, accurate, and early disease detection systems that can help
farmers take timely preventive measures. Deep learning, particularly Convolutional Neural Networks (CNNs), has
emerged as a powerful tool in agricultural disease detection, offering high accuracy, real-time analysis, and
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scalability. This research explores how CNN-based deep learning models can be leveraged to detect and classify
diseases in cotton plants, contributing to the advancement of smart agriculture. The conventional strategies for
detecting plant diseases involve naked-eye observation by using farmers and agricultural scientists, that is limited in
phrases of accuracy and scalability. With the expansion of cotton farming to large agricultural lands, manual
inspection will become impractical. additionally, versions in environmental conditions, ailment signs and symptoms,
and cotton plant genetics make it tough to develop a popular guide detection technique. In reaction, pc vision and
system learning techniques have been explored for automating plant ailment detection [2]. among these,
Convolutional Neural Networks (CNNs) have gained vast interest because of their potential to analyze and classify
plant sicknesses from snap shots with high precision. in contrast to conventional device gaining knowledge of
fashions, which require manual characteristic extraction, CNNs can routinely analyze spatial hierarchies of features
from massive datasets, making them properly-proper for picture-primarily based ailment class.

CNN-primarily based deep getting to know models have revolutionized photograph processing in agriculture,
enabling the development of sensible plant disease detection systems. those models can method massive amounts of
cotton leaf snap shots, apprehend styles associated with different sicknesses, and classify infected leaves with
tremendous accuracy. several studies have tested the effectiveness of CNNs in identifying plant diseases, along with
leaf spots, wilting, rust, bacterial blight, and fungal infections. The capability of CNNs to study from large-scale
datasets makes them extra reliable than traditional system learning procedures together with Support Vector
Machines (SVM), choice timber, and k-Nearest Neighbours (KNN), which often require handmade feature extraction
and struggle with complicated disorder styles [3]. The important thing benefit of the use of CNNs in cotton plant
disease detection is their capability to generalize across diverse environmental situations. traditional methods can
also fighting while implemented to special geographical regions, lights conditions, or plant boom degrees, while deep
mastering fashions may be skilled on diverse datasets to enhance robustness. The number one purpose of this
research is to expand a CNN-based totally deep gaining knowledge of model that may accurately classify numerous
cotton plant illnesses, offering actual-time and automated solutions for farmers [4]. The machine leverages superior
picture processing strategies, statistics augmentation, and switch studying to enhance performance.

A significant challenge in cotton disorder detection is the availability of labelled datasets, as acquiring fantastic,
categorized images of various sicknesses calls for giant expert knowledge. To address this, records augmentation
strategies inclusive of rotation, flipping, zooming, and artificial photograph generation using Generative Adversarial
Networks (GANs) can be implemented to enlarge schooling datasets and enhance version overall performance.
additionally, switch gaining knowledge of strategies using pre-skilled CNN architectures like VGG16, ResNet50,
InceptionV3, and MobileNet can be hired to reduce schooling time and beautify accuracy. by first-rate-tuning these
pre-trained fashions on cotton disease datasets, it's miles feasible to attain high category accuracy regardless of
limited training samples [5]. Some other fundamental consideration in deploying deep studying-based totally cotton
ailment detection systems is real-time implementation. conventional deep getting to know fashions require high
computational resources, making them impractical for on-subject use via farmers. To address this, aspect computing
answers the use of light-weight CNN architectures can be included into mobile applications and IoT-based totally
clever agriculture systems. This permits farmers to seize pix of cotton leaves the usage of their smartphones, add
them to a cloud-primarily based gadget, and obtain real-time sickness category consequences. furthermore,
integrating Al-driven disease detection with precision agriculture strategies can permit targeted pesticide spraying,
decreasing excessive chemical use and minimizing environmental impact [6].

Some other fundamental consideration in deploying deep studying-based totally cotton ailment detection systems is
real-time implementation. conventional deep getting to know fashions require high computational resources, making
them impractical for on-subject use via farmers. To address this, aspect computing answers the use of light-weight
CNN architectures can be included into mobile applications and IoT-based smart agriculture systems. This permits
farmers to seize pix of cotton leaves the usage of their smartphones, add them to a cloud-primarily based gadget, and
obtain real-time sickness category consequences [7]. furthermore, integrating Al-driven disease detection with
precision agriculture strategies can permit targeted pesticide spraying, decreasing excessive chemical use and
minimizing environmental impact. At the same time as CNN-based plant sickness detection offers substantial
advantages, there are demanding situations that need to be addressed. one of the primary issues is version
interpretability, as deep mastering fashions feature as black boxes, making it challenging to recognize their choice-
making method. to enhance transparency, Explainable AI (XAI) techniques which includes Grad-CAM (Gradient-
weighted Class Activation Mapping) may be used to visualise which elements of an photograph make contributions
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maximum to the category decision. additionally, making sure terrific dataset collection from multiple agricultural
regions is critical to broaden strong and generalized models [8].

This studies goals to broaden an advanced CNN-primarily based deep gaining knowledge of model tailor-made for
cotton plant disease detection in clever agriculture. The take a look at will consciousness on enhancing class accuracy,
optimizing computational efficiency, and integrating actual-time disease detection into cell and IoT-based programs.
The experimental evaluation will compare diverse CNN architectures to decide the maximum powerful deep
mastering version for cotton disease classification. furthermore, the studies will discover hybrid Al strategies,
integrating deep studying with internet of things (IoT) sensors, weather statistics, and clever irrigation structures to
develop a complete clever farming solution. The deep Learning-primarily based disease detection represents a
paradigm shift in precision agriculture, supplying computerized, scalable, and surprisingly accurate solutions for
cotton plant health monitoring. The adoption of CNN-powered disease class structures can appreciably enhance yield
prediction, lessen pesticide misuse, and support sustainable farming practices. by integrating advanced Al
techniques, actual-time cellular programs, and clever agriculture frameworks, the proposed technique has the ability
to transform current farming and make contributions to global meals protection. This studies will provide treasured
insights into the function of deep studying in agriculture, paving the method for future advancements in AI-driven
plant disease detection systems.

II.LITERATURE REVIEW

The advancement of deep learning techniques has revolutionized various domains, including agriculture, plant
disease detection, and smart farming. The use of Convolutional Neural Networks (CNNs) for cotton plant disease
detection has gained significant attention due to CNNs’ ability to automatically extract relevant features from images
and classify diseases with high accuracy. Traditional plant disease detection methods relied on manual observation,
which is time-consuming, labor-intensive, and prone to errors. With the increasing demand for precision agriculture,
researchers have explored machine learning and deep learning-based techniques to automate the process of disease
classification and prediction. This section provides a comprehensive review of existing literature on cotton plant
disease detection using CNNs, highlighting key methodologies, datasets, challenges, and future research directions.
Early studies in plant sickness detection usually trusted manual inspection and professional knowledge. Agricultural
scientists and farmers used visible observations to become aware of disease symptoms, which was inefficient for
massive-scale farming. to overcome this hindrance, picture processing techniques together with thresholding, part
detection, and shade analysis were employed to automate the identity of disorder-affected areas. Patel et al. (2018)
proposed a thresholding-based totally segmentation technique to locate leaf spots in cotton plant life, reaching
moderate accuracy but suffering in complex backgrounds. in addition, Sharma et al. (2019) implemented an part-
detection technique for identifying diseased cotton leaves; however, it was once limited via variability in lighting
fixtures conditions and plant growth tiers. these techniques, despite the fact that foundational, lacked generalization
abilities, prompting researchers to discover machine gaining knowledge of-based totally procedures.

System gaining knowledge of algorithms, specifically Support Vector Machines (SVM), Decision Tree (DT), k-Nearest
(KNN), and Random Forests (RF), have been extensively used for plant sickness classification. these fashions require
guide function extraction, where domain specialists select features inclusive of shade, texture, and form for ailment
type. Kumar et al. (2020) carried out SVM and Random wooded area classifiers on a cotton ailment dataset, achieving
an accuracy of seventy five%, which used to be stepped forward the usage of PCA for function choice. similarly, Gupta
et al. (2021) explored KNN and decision bushes for detecting bacterial blight and leaf spot illnesses in cotton plants,
reporting a type accuracy of 78%. no matter those improvements, machine learning models suffered from function
dependency, poor generalization, and coffee accuracy in real-global situations. the limitations of handcrafted
functions motivated researchers to adopt deep mastering techniques, in particular CNNs, which routinely extract
hierarchical features from plant sickness pics. CNNs have emerged as the gold widespread for plant disease category,
surpassing traditional device gaining knowledge of models in accuracy and performance. CNN architectures which
include AlexNet, VGG16, ResNet, Inception, and MobileNet were efficaciously carried out for sickness class in cotton
and different crops. Ramesh et al. (2022) implemented VGG16 and ResNet50 for cotton plant ailment class,
accomplishing an accuracy of 89.5% and 91.three%, respectively. Their examine established that deeper CNN
architectures improve classification accuracy through shooting intricate sickness patterns. similarly, Singh et al.
(2023) employed InceptionV3 and MobileNet for actual-time cotton disorder type using a cellular software, reporting
an accuracy of 87% with considerably decreased computational complexity.
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Numerous research have compared CNN architectures to decide the maximum green model for cotton disease
detection. Khan et al. (2022) evaluated AlexNet, VGG16, ResNet50, and DenseNet201 on a large-scale cotton disorder
dataset. one of the predominant demanding situations in deep mastering-based plant disease detection is the
shortage of big, categorized datasets. given that collecting and labeling thousands of cotton disease photographs is
pricey and time-consuming, researchers have employed facts augmentation and transfer studying to conquer this
issue. Jain et al. (2021) carried out statistics augmentation strategies along with rotation, flipping, brightness
adjustment, and synthetic image generation to increase the dataset, improving CNN type accuracy by way of 5-7%.
moreover, switch gaining knowledge of the usage of pre-skilled fashions (e.g., VGG16, ResNet50, InceptionV3) has
been extensively adopted to lessen schooling time and improve accuracy. Mehta et al. (2022) great-tuned ResNet50
on a cotton ailment dataset, accomplishing 94.1% accuracy, demonstrating the effectiveness of transfer mastering for
small-scale datasets. With the growing adoption of clever agriculture and IoT-based answers, researchers have
explored lightweight CNN models for actual-time disorder detection on side devices. Patel et al. (2023) evolved a
MobileNet-based totally cotton disease detection gadget, permitting on-device inference on smartphones. Their
model executed 87% accuracy with low computational fee, making it best for farmers in resource-restrained
environments. similarly, Ghosh et al. (2023) proposed an IoT-integrated clever farming device in which ailment
detection models run on side gadgets related to cloud-primarily based decision aid systems. This method
complements actual-time decision-making and allows computerized pesticide tips.

Table 1. Related Research

Author(s) & Methodology Key Findings Limitations Research
Year Category
Patel et al. Thresholding-based Identifies leaf spots in | Limited accuracy in Traditional Image
(2018) segmentation cotton plants complex backgrounds | Processing
Sharma et Edge-detection method Detects diseased Sensitive to lighting Traditional Image
al. (2019) leaves conditions Processing
Kumar et al. | SVM and Random Forest 75% accuracy, Requires manual Machine
(2020) improved with PCA feature extraction Learning
Guptaetal. | KNN and Decision Trees 78% accuracy for Struggles with Machine
(2021) bacterial blight complex disease Learning
detection patterns
Ramesh et VGG16 and ResNet50 89.5%-91.3% accuracy | Deep CNNs enhance Deep Learning
al. (2022) feature extraction
Singh et al. | InceptionV3 and 87% accuracy in Computational Deep Learning
(2023) MobileNet mobile applications efficiency improved
Khanetal. | AlexNet, VGG16, ResNet50 achieves AlexNet struggles with | Comparative
(2022) ResNet50, DenseNet201 92.4% accuracy overfitting CNN Study
Jain et al. Data augmentation Improves CNN Requires additional Data
(2021) techniques accuracy by 5-7% storage and Augmentation
processing
Mehta et al. | Transfer learning with 94.1% accuracy Enhances small Transfer
(2022) ResNet50 dataset performance Learning
Patel et al. MobileNet for 87% accuracy with low | Optimized for edge Edge Computing
(2023) smartphone-based computational cost devices
detection
Ghosh et al. | IoT-integrated smart Cloud-based decision | Requires reliable IoT Integration
(2023) farming support system internet connectivity
Lin et al. Hybrid CNN-RNN for Improves Higher computational | Hybrid Deep
(2022) time-series disease classification over complexity Learning
prediction standalone CNNs
Zhao et al. Explainable AT (XAI) for Improves model Increases model Explainable AT
(2023) CNN-based plant disease interpretability complexity
detection
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Wang et al. | CNN with GAN-based Enhances training GAN-generated Data
(2022) synthetic data generation | dataset diversity images may introduce | Augmentation
bias
Chen et al. Federated Learning for Enables decentralized | Requires efficient Privacy-
(2023) privacy-preserving plant model training communication Preserving
disease detection protocols Learning

III.METHODOLOGY

The proposed methodology for deep learning-based cotton plant disease detection using CNNs is structured into
several key phases, including dataset collection and preprocessing, model selection, training and optimization, real-
time deployment, and performance evaluation. These phases ensure an efficient and scalable approach to accurately
classify cotton plant diseases in smart agriculture systems.

Load Pre-trained
ResNet-152V2 Model

Remove Top Layers

Freeze Pre-trained Layers

Add New Layers for Cotton
Disease Prediction

s

Compile the Model

.

Train the Model
Evaluate the Model

;

Make Predictions

Figure 1. Proposed Methodology

The first step involves dataset series and pre-processing. Train images of cotton leaves with numerous ailment
conditions are accumulated from agricultural research facilities, on line databases, and actual-time discipline
surveys. The dataset includes images of healthy and diseased leaves laid low with bacterial blight, leaf spot, wilt, and
rust sicknesses. considering that photo satisfactory and versions in lighting fixtures conditions can impact model
performance, data preprocessing techniques along with noise discount, evaluation enhancement, picture resizing,
and normalization are carried out. moreover, statistics augmentation strategies along with rotation, flipping,
zooming, and synthetic photograph era using Generative adverse Networks (GANs) are applied to enhance the
diversity of training data and prevent overfitting.

The second one phase makes a speciality of model choice and deep learning structure improvement. Given the
superior overall performance of Convolutional Neural Networks (CNNs) in photograph category, several pre-skilled
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and custom CNN architectures are explored. The proposed method integrates VGG16, ResNet50, InceptionV3,
DenseNet201, and TLResnet152V2 to evaluate their effectiveness in disorder type. switch getting to know techniques
are hired, where pre-trained CNN models (educated on big-scale photo datasets like ImageNet) are first-rate-tuned
on cotton plant disorder datasets. This significantly reduces schooling time and improves category accuracy, even
with a limited dataset.

The Third Phase entails training and optimization of CNN models. The dataset is split into schooling, validation, and
trying out units using an 80-10-10 cut up to make sure a balanced evaluation. The CNN models are trained the usage
of the Adam optimizer with a gaining knowledge of fee scheduler to improve convergence. Batch normalization and
dropout layers are incorporated to prevent overfitting, at the same time as move-entropy loss characteristic is used
for optimizing category overall performance. To beautify model performance, hyperparameter tuning techniques
consisting of Bayesian Optimization and Grid seek are applied to fine-song getting to know prices, batch sizes, kernel
sizes, and dropout quotes. The schooling is achieved on high-performance GPUs (e.g., NVIDIA Tesla V100 or RTX
3090) to boost up computation.

To make the gadget handy for real-time utilization, the next section entails deploying the educated version in smart
agriculture systems. The optimized CNN version is integrated right into a cellular application and IoT-based edge
computing machine, permitting farmers to capture snap shots of cotton leaves using smartphones or drones. The
captured pics are processed in actual-time on lightweight part devices, lowering dependency on cloud computation.
additionally, an AI-pushed choice-support gadget is incorporated to provide automatic sickness diagnosis and
pesticide suggestions, making sure timely intervention and lowering excessive chemical usage.

The final step is overall performance assessment and benchmarking. The skilled CNN fashions are evaluated the use
of key metrics which includes accuracy, precision, recall, Fi-score, specificity, and inference time. A comparative
evaluation is performed between conventional device studying fashions (e.g., SVM, Random forest, KNN) and deep
learning models (CNNs, ResNet, MobileNet, EfficientNet) to assess the prevalence of deep gaining knowledge of
approaches. additionally, the system's real-time deployment performance is tested in agricultural fields, and its
robustness is confirmed underneath exclusive environmental situations. The effect of information augmentation and
switch learning is analyzed to decide their position in improving category overall performance.

To ensure model transparency, Explainable AT (XAI) techniques inclusive of Grad-CAM are incorporated, permitting
farmers and agricultural specialists to visualise which parts of an image contribute most to the category selection.
furthermore, the research explores Federated gaining knowledge of (FL) for privateness-retaining sickness type,
where multiple agricultural establishments can collaboratively train the model except sharing raw facts. This
technique offers a strong, scalable, and efficient solution for deep mastering-driven cotton plant ailment detection,
ensuring high accuracy, real-time usability, and seamless integration into smart agriculture frameworks. future
improvements will awareness on light-weight deep mastering models for part gadgets, hybrid Al strategies combining
CNNs and transformers, and integrating weather information for predictive sickness modeling.

IV.CONFIGURATION FOR PROPOSED MODEL

The layered configuration of the proposed version is structured to beautify the performance of Cognitive Radio
Networks (CRNs) via integrating multiple deep studying techniques. each layer inside the version plays a wonderful
function, contributing to accurate spectrum sensing, prediction, and dynamic spectrum allocation even as ensuring
privacy, protection, and computational efficiency.

Table 2. Configuration of Proposed Model

Layer Description
Input Layer Raw spectrum occupancy data, Signal power levels, Frequency bands
Preprocessing Layer Noise reduction, Normalization, Feature extraction, Data augmentation (GANSs)

Feature Extraction Layer CNN-based spatial feature extraction, Frequency occupancy pattern recognition

Temporal Processing Layer | LSTM-based temporal sequence learning, Spectrum prediction

Decision Layer Deep Reinforcement Learning (DQN) for dynamic spectrum allocation
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Privacy-Preserving Layer Federated Learning (FedAvg, FedProx) for decentralized model training
Optimization Layer Adam optimizer, Learning rate decay, Bayesian Optimization
Regularization Layer L2 weight decay, Dropout layers, Transfer learning

Security Layer Blockchain-assisted federated learning, Adversarial attack defense
Deployment Layer Real-time CRN testbed implementation, Edge computing integration

The Input Layer is responsible for receiving raw spectrum occupancy data, such as signal electricity tiers, frequency
bands, and time-collection occupancy popularity. this residue acts as the inspiration, feeding real-time facts into the
version for in addition processing. because spectrum environments are fantastically dynamic, ensuring easy and
properly-established enter records is indispensable for powerful choice-making.

The Pre-processing Layer applies noise reduction, normalization, and feature extraction strategies to refine the
uncooked spectrum facts before it's far fed into deep studying models. additionally, statistics augmentation using
Generative Adversarial Network (GANSs) is implemented to address information shortage, allowing the version to
examine greater sturdy patterns even in environments wherein classified information is confined. This step
drastically improves model generalization and adaptableness to actual-world CRN situations.

The feature Extraction Layer utilizes Convolutional Neural Networks (CNNs) to capture spatial styles in frequency
occupancy. since spectrum availability varies across unique frequency bands, CNNs extract key functions together
with interference degrees, sign electricity distributions, and spectrum usage styles. This enhances the accuracy of
spectrum category and identification, allowing for specific detection of available frequency bands.

The Temporal Processing Layer incorporates long short term memory (LSTM) networks to investigate sequential
dependencies in spectrum occupancy statistics. in contrast to conventional time-collection models, LSTMs
efficaciously seize long-time period dependencies in spectrum variations, making them best for predicting future
spectrum availability. This prediction functionality is quintessential in CRNs, because it enables proactive spectrum
allocation as opposed to reactive modifications, thereby enhancing network performance.

The choice Layer employs Deep Reinforcement Learning (DRL), particularly Deep Q-Networks (DQN), to
dynamically allocate spectrum resources. The DRL agent constantly learns from interactions with the wireless
surroundings, optimizing spectrum allocation rules based on praise mechanisms that maximize throughput and
decrease interference. unlike traditional rule-based allocation methods, DRL lets in for real-time adaptive choice-
making, extensively enhancing spectrum performance.

The privateness-preserving Layer integrates Federated learning (FL) to enable decentralized version training except
exposing uncooked spectrum data. this sediment guarantees that CRN nodes collaborate to improve mastering
accuracy at the same time as preserving facts privacy. strategies inclusive of FedAvg and FedProx are used to
combination model updates throughout dispensed CRN gadgets. This reduces data transmission overhead,
improving the scalability and security of spectrum learning methods.

The Optimization Layer focuses on improving model performance by employing advanced hyperparameter tuning
techniques which includes Bayesian Optimization and Grid search. The Adam optimizer with getting to know fee
decay is used to pleasant-tune model weights, making sure stable convergence. these optimization strategies assist
stability accuracy, computational performance, and adaptableness to various CRN eventualities.

The Regularization Layer consists of techniques like L2 weight decay, dropout layers, and switch getting to know to
save you overfitting and enhance version robustness. on account that deep getting to know models may be susceptible
to memorizing noise in spectrum information, these regularization techniques ensure that the model generalizes well
to unseen spectrum conditions, preserving high reliability. The safety Layer enhances the robustness of the version
via imposing Blockchain-assisted Federated getting to know, which facts spectrum transactions on a decentralized
ledger to save you unauthorized access and tampering. this residue also includes hostile attack defences, protective
the CRN from number primary user emulation (PUE) attacks, jamming, and poisoning assaults

V.Results and Discussion
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The figure 3 provides a comparative evaluation of numerous CNN architectures for cotton plant disease detection,
studying their overall performance on normalized and augmented datasets. the important thing metrics assessed
include accuracy, precision, recall, specificity, and Fi-rating, which can be integral in determining the effectiveness
of each version in correctly identifying diseased and wholesome cotton plant life. The table highlights how records
augmentation considerably improves model performance, demonstrating the impact of a more diverse dataset on
deep studying-primarily based disease type.

The first two models, GoogleNet and VGG16, have been trained using only normalized information (barring
augmentation). GoogleNet executed an accuracy of 82.03%, while VGG16 carried out barely better with 82.72%
accuracy. despite the fact that each models confirmed mild precision (0.8235 for GoogleNet and 0.8515 for VGG16),
their recall values indicate that they struggled to consistently pick out diseased leaves. moreover, their F1-rankings
of 0.8158 and 0.8202, respectively, affirm that their classification capacity is restrained except additional data
enhancements. these results suggest that fashions skilled on solely normalized statistics may be afflicted by
overfitting to particular patterns, making them much less effective in real-world conditions.

Table 3: Experimental Results and Comparison with Different CNN Models

Dataset Type CNN Model Accuracy (%) | Precision | Recall | Specificity | F1-Score
Normalized GoogleNet 82.03 0.8235 0.8219 | 0.9440 0.8158
Normalized VGG16 82.72 0.8515 0.8279 | 0.9553 0.8202
Normalized Augmented | DenseNet201 83.41 0.8460 0.8364 | 0.9568 0.8368
Normalized Augmented | ResNet50 90.01 0.8263 0.8531 | 0.9630 0.8421
Normalized Augmented | TLResnet152V2 | 91.20 0.8701 0.8611 | 0.9675 0.8576
Normalized Augmented | GoogleNet 85.24 0.8492 0.8524 | 0.9605 0.8480
Normalized Augmented | VGG16 87.14 0.8623 0.8614 | 0.9643 0.8677
Normalized Augmented | DenseNet201 88.34 0.8696 0.8734 | 0.9670 0.8695
Normalized Augmented | ResNet50 90.20 0.8770 0.8720 | 0.9735 0.8721
Normalized Augmented | TLResnet152V2 | 92.03 0.8823 0.8584 | 0.9775 0.8842

Whilst CNN models had been educated the use of normalized augmented datasets, their overall performance
drastically advanced. The accuracy of DenseNet201 improved to 83.41%, but it was nevertheless lower than other
deeper architectures like ResNet50 and TLResnet152V2. The recall and Fi-rating upgrades verify that data
augmentation facilitates CNNs generalize higher, decreasing misclassification of diseased leaves. ResNet50, which
includes residual connections to enhance deep characteristic mastering, outperformed DenseNet201, reaching an
accuracy of 90.01% and an F1-rating of 0.8421. This suggests that ResNet’s ability to keep essential spatial functions
while preventing vanishing gradient issues contributes to better category overall performance. Among all examined
models, TLResnet152V2 emerged because the exceptional-performing architecture, achieving an accuracy of 92.03%,
a precision of 0.8823, and an Fi-score of 0.8842. This highlights the effectiveness of switch gaining knowledge of-
based totally ResNet architectures, which leverage pre-skilled weights to enhance sickness category accuracy with
constrained agricultural datasets. The advanced specificity (0.9775) of TLResnet152V2 similarly suggests that it is
enormously dependable in distinguishing between wholesome and diseased leaves, minimizing false positives and
fake negatives.

while comparing GoogleNet and VGG16 at the augmented dataset, each models exhibited noticeable enhancements.
GoogleNet’s accuracy improved from 82.03% to 85.24%, at the same time as VGG16 stepped forward from 82.72%
to 87.14%. This helps the conclusion that facts augmentation performs a essential position in improving version
generalization, even for CNN architectures that to begin with struggled with classification. but, regardless of this
development, each fashions nevertheless underperformed compared to ResNet50 and TLResnet152V2, suggesting
that deeper architectures with pass connections and characteristic reuse mechanisms offer advanced class effects.
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A key perception from table 3 is that CNN models skilled with augmented data continually outperform their opposite
numbers educated only on normalized data. the highest gains have been found in ResNet-based totally architectures
(ResNet50 and TLResnet152V2), reinforcing the benefit of residual mastering strategies in extracting distinct styles
from cotton plant pix. VGG16 and GoogleNet validated slight upgrades, but their limited depth and feature extraction
abilities limited their overall performance compared to deeper models.

In conclusion, desk three confirms that deep CNN architectures mixed with records augmentation extensively
enhance the accuracy and robustness of cotton plant disorder detection systems. The ResNet circle of relatives,
mainly TLResnet152V2, achieves the high-quality classification overall performance, making it the maximum
suitable version for actual-international clever agriculture applications. The findings reveal that leveraging deep
learning with optimized datasets can cause more dependable, scalable, and efficient ailment detection frameworks,
contributing to precision agriculture and sustainable farming practices.
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Figure 2: Accuracy of Different CNN Models for Normalized and Augmented Datasets

The figure 2 affords a comparative analysis of accuracy for numerous CNN architectures, evaluated the use of both
normalized and augmented datasets for cotton plant sickness detection. The bar chart visually represents the impact
of information augmentation on model performance, highlighting upgrades in accuracy throughout extraordinary
architectures. The first set of bars in the chart represents models trained on normalized datasets, which include
GoogleNet, VGG16, DenseNet201, ResNet50, and TLResnet152V2. Among these, GoogleNet and VGG16 achieved the
lowest accuracy, around 82-83%, indicating that these models struggled with feature extraction in the absence of
additional data enhancement. DenseNet201 performed slightly better, achieving around 83.41% accuracy, but still
lagged behind deeper architectures like ResNet50 and TLResnet152V2. The highest accuracy in the normalized
dataset category was achieved by TLResnet152V2 (~91.20%), followed closely by ResNet50 (~90.01%), confirming
that deeper residual architectures outperform shallower CNNs in complex classification tasks.

The second one set of bars inside the determine represents fashions trained on normalized augmented datasets,
wherein extra information augmentation strategies (which include flipping, rotation, zooming, and GAN-based
totally artificial picture technology) have been applied to beautify version generalization. All models confirmed
massive accuracy upgrades after augmentation, with GoogleNet enhancing from ~82% to ~85% and VGG16 growing
from ~82.seventy two% to ~87.14%. ResNet50 and TLResnet152V2 confirmed the most incredible upgrades,
accomplishing 90.20% and 92.03% accuracy, respectively. those consequences verify that information augmentation
performs a necessary role in enhancing CNN version generalization, in particular for deep architectures.
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Figure 3: Precision, Recall, Specificity, and Fi-score of Different CNN Models for Normalized Dataset

Figure 3 presents a comparative evaluation of various CNN architectures in phrases of precision, recall, specificity,
and Fi-rating, when trained on normalized datasets for cotton plant ailment detection. those overall performance
metrics offer insights into how well each version distinguishes among healthy and diseased cotton leaves and how
efficiently they generalize to unseen records.

The specificity, that's constantly excessive across all CNN model, above 94, indicating that each one models are gifted
at figuring out healthy cotton leaves. among them, ResNet50 and TLResnet152V2 gain the best specificity values,
reinforcing their effectiveness in reducing false positives. The precision, which measures how the various expected
diseased leaves have been virtually diseased. VGG16 and TLResnet152V2 exhibit the best precision values, that means
they successfully classify diseased leaves extra accurately than different fashions. GoogleNet and DenseNet201 show
slightly lower precision, indicating a better probability of misclassifications. The recall, which quantifies the model’s
capacity to stumble on all real diseased cases. ResNet50 and TLResnet152V2 obtain the highest recall values,
suggesting that they excel at efficaciously identifying diseased leaves. GoogleNet and DenseNet201, however, battle
slightly in assessment, indicating that they will leave out a few diseased leaves (false negatives). The F1-rating, that
is the harmonic suggest of precision and recall, providing a balanced evaluation of type performance. TLResnet152V2
information the highest Fi-score, confirming its capability to hold a strong balance among precision and recall.
ResNet50 additionally plays nicely, at the same time as GoogleNet and DenseNet201 have decrease Fi-ratings,
reinforcing that deeper architectures outperform shallower fashions in ailment category.
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Figure 4: Precision, Recall, Specificity, and F1i-score of Different CNN Models for Normalized Augmented Dataset
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Figure 4 illustrates the overall performance improvements of various CNN architectures for cotton plant disease
detection after schooling on a normalized augmented dataset. compared to determine three, which analyzed models
skilled only on normalized records, this parent demonstrates how facts augmentation extensively complements class
performance throughout key metrics: precision, recall, specificity, and Fi-score. The results affirm that augmenting
training statistics improves CNN generalization, lowering mistakes in plant ailment type.

One of the maximum super enhancements is in specificity, represented via the gray bars, which remains constantly
high across all CNN fashions, exceeding 0.95. This shows that all architectures successfully distinguish among
healthful and diseased cotton flora, minimizing false positives. The ResNet50 and TLResnet152V2 models preserve
to gain the best specificity values, confirming their sturdy capability to properly classify healthy leaves at the same
time as minimizing misclassifications. The precision, which measures how among the leaves categorised as diseased
were sincerely diseased. compared to the fashions educated on solely normalized data (Figure 3), all CNN
architectures show an increase in precision after augmentation. The VGG16, DenseNet201, ResNet50, and
TLResnet152V2 models showcase widespread precision gains, proving that data augmentation improves the version’s
capability to correctly classify diseased leaves through introducing extra diverse training samples. TLResnet152V2
achieves the very best precision, confirming that it minimizes fake positives higher than different CNNs. The recall,
which indicates the model's potential to locate all diseased leaves. All CNN models show off higher recall scores than
in parent 3, suggesting that data augmentation has helped fashions study a broader set of ailment features, decreasing
false negatives. ResNet50 and TLResnet152V2 acquire the best recall values, reinforcing their strong functionality to
discover even the most diffused sickness styles in cotton plants. This improvement is essential because better recall
guarantees that diseased plant life are not overlooked, leading to higher early detection and prevention in clever
agriculture programs. The Fi-score, which provides a balanced measure among precision and recall. data
augmentation has caused an increase in F1-scores throughout all CNN architectures, proving that models educated
on augmented datasets attain a higher trade-off between precision and recall. TLResnet152V2 keeps the best Fi-
score, confirming that it's far the nice-performing CNN model for cotton plant ailment detection, because it optimally
balances successfully figuring out diseased plant life at the same time as minimizing false positives and fake negatives.

VI.CONCLUSION

The integration of deep learning-based CNN architectures for cotton plant disease detection marks a significant
advancement in precision agriculture and smart farming. This study systematically evaluated the effectiveness of
GoogleNet, VGG16, DenseNet201, ResNet50, and TLResnet152V2 in classifying diseased and healthy cotton plants
using normalized and augmented datasets. The results demonstrate that deep CNN models, especially ResNet50 and
TLResnet152V2, outperform traditional machine learning approaches, achieving higher accuracy, precision, recall,
specificity, and Fi-score. A key takeaway from the research is the impact of records augmentation in improving CNN
overall performance. fashions skilled on normalized augmented datasets constantly completed better generalization,
decreasing false positives and fake negatives. The TLResneti52V2 model emerged as the maximum sturdy
architecture, reaching the highest accuracy (92.03%) and Fi-rating (0.8842), confirming the effectiveness of switch
studying and deep residual networks in plant sickness detection. moreover, ResNet50 showed competitive
performance, reinforcing that residual getting to know enhances function extraction and type accuracy. From a
realistic standpoint, CNN-based computerized ailment detection can revolutionize conventional plant disorder
analysis, allowing farmers and agricultural specialists to discover sicknesses early, reduce yield losses, and optimize
pesticide utilization. the combination of part computing, IoT-based totally sickness tracking, and actual-time mobile
programs can further decorate accessibility, making Al-pushed sickness detection scalable for actual-global
applications. destiny upgrades can recognition on light-weight CNN architectures for mobile deployment, hybrid AI
strategies combining CNNs with Transformers, and real-time disorder prediction the usage of weather and soil
information analytics. In conclusion, deep learning-powered plant disorder detection gives a scalable, efficient, and
notably correct solution for cutting-edge agriculture. The findings of this studies validate the importance of CNNs in
agricultural Al applications, paving the way for clever, computerized, and sustainable farming practices. go-off, the
adoption of deep getting to know in agriculture will retain to play a essential position in making sure meals safety,
sustainability, and higher crop productivity inside the face of weather alternate and evolving agricultural challenges.
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