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The increasing prevalence of plant diseases poses a significant threat to global cotton production, 

leading to substantial economic losses and reduced crop yield. Traditional manual disease 

detection methods are time-consuming, labour-intensive, and often inaccurate. To address this 

challenge, this research proposes an advanced deep learning-based approach for automated 

cotton plant disease detection using Convolutional Neural Networks (CNNs). The study 

evaluates multiple CNN architectures, including GoogleNet, VGG16, DenseNet201, ResNet50, 

and TLResnet152V2, to determine their effectiveness in identifying and classifying diseased 

cotton leaves. The proposed methodology leverages normalized and augmented datasets, 

utilizing data pre-processing, feature extraction, and transfer learning techniques to enhance 

model performance. Extensive experimental evaluations demonstrate that data augmentation 

significantly improves classification accuracy, enabling CNN models to generalize better across 

diverse disease conditions. Among the tested architectures, TLResnet152V2 achieved the highest 

accuracy (92.03%) and F1-score (0.8842), outperforming all other models, followed closely by 

ResNet50. These results highlight the superiority of deep residual learning in plant disease 

classification, ensuring robust feature extraction and precise detection. This studies also explores 

the combination of CNN-primarily based disorder detection into clever agriculture structures, 

allowing actual-time sickness classification via cell packages and IoT-based totally answers. The 

findings affirm that deep gaining knowledge of-pushed plant disorder detection can considerably 

enhance precision farming, reducing dependency on professional agronomists while improving 

early disorder intervention techniques. destiny studies will awareness on deploying light-weight 

CNN models for facet computing, integrating climate statistics for predictive disorder modelling, 

and exploring hybrid deep studying strategies for enhanced accuracy. The examine demonstrates 

that CNN-based automatic cotton plant disease detection is a transformative step closer to 

sustainable, AI-enabled smart agriculture, ensuring better productivity, decreased crop losses, 

and advanced food safety. 

Keywords: Deep Learning, CNN, Cotton Plant Disease Detection, Smart Agriculture, Data 

Augmentation, Transfer Learning, Precision Farming, AI in Agriculture. 

 

I.INTRODUCTION 

Agriculture is the backbone of many economies worldwide, providing food, raw materials, and employment to 

millions. Among various crops, cotton is one of the most significant, serving as a vital raw material for the textile 

industry. However, cotton production is highly susceptible to various diseases caused by fungi, bacteria, and viruses, 

leading to significant yield losses and economic setbacks for farmers. Traditionally, cotton plant disease detection 

relies on manual inspection by agricultural experts, which is time-consuming, labor-intensive, and prone to errors. 

Moreover, by the time visible symptoms appear, the disease may have already spread, making it difficult to contain 

and control [1]. This highlights the need for automated, accurate, and early disease detection systems that can help 

farmers take timely preventive measures. Deep learning, particularly Convolutional Neural Networks (CNNs), has 

emerged as a powerful tool in agricultural disease detection, offering high accuracy, real-time analysis, and 
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scalability. This research explores how CNN-based deep learning models can be leveraged to detect and classify 

diseases in cotton plants, contributing to the advancement of smart agriculture. The conventional strategies for 

detecting plant diseases involve naked-eye observation by using farmers and agricultural scientists, that is limited in 

phrases of accuracy and scalability. With the expansion of cotton farming to large agricultural lands, manual 

inspection will become impractical. additionally, versions in environmental conditions, ailment signs and symptoms, 

and cotton plant genetics make it tough to develop a popular guide detection technique. In reaction, pc vision and 

system learning techniques have been explored for automating plant ailment detection [2]. among these, 

Convolutional Neural Networks (CNNs) have gained vast interest because of their potential to analyze and classify 

plant sicknesses from snap shots with high precision. in contrast to conventional device gaining knowledge of 

fashions, which require manual characteristic extraction, CNNs can routinely analyze spatial hierarchies of features 

from massive datasets, making them properly-proper for picture-primarily based ailment class. 

CNN-primarily based deep getting to know models have revolutionized photograph processing in agriculture, 

enabling the development of sensible plant disease detection systems. those models can method massive amounts of 

cotton leaf snap shots, apprehend styles associated with different sicknesses, and classify infected leaves with 

tremendous accuracy. several studies have tested the effectiveness of CNNs in identifying plant diseases, along with 

leaf spots, wilting, rust, bacterial blight, and fungal infections. The capability of CNNs to study from large-scale 

datasets makes them extra reliable than traditional system learning procedures together with Support Vector 

Machines (SVM), choice timber, and k-Nearest Neighbours (KNN), which often require handmade feature extraction 

and struggle with complicated disorder styles [3]. The important thing benefit of the use of CNNs in cotton plant 

disease detection is their capability to generalize across diverse environmental situations. traditional methods can 

also fighting while implemented to special geographical regions, lights conditions, or plant boom degrees, while deep 

mastering fashions may be skilled on diverse datasets to enhance robustness. The number one purpose of this 

research is to expand a CNN-based totally deep gaining knowledge of model that may accurately classify numerous 

cotton plant illnesses, offering actual-time and automated solutions for farmers [4]. The machine leverages superior 

picture processing strategies, statistics augmentation, and switch studying to enhance performance. 

A significant challenge in cotton disorder detection is the availability of labelled datasets, as acquiring fantastic, 

categorized images of various sicknesses calls for giant expert knowledge. To address this, records augmentation 

strategies inclusive of rotation, flipping, zooming, and artificial photograph generation using Generative Adversarial 

Networks (GANs) can be implemented to enlarge schooling datasets and enhance version overall performance. 

additionally, switch gaining knowledge of strategies using pre-skilled CNN architectures like VGG16, ResNet50, 

InceptionV3, and MobileNet can be hired to reduce schooling time and beautify accuracy. by first-rate-tuning these 

pre-trained fashions on cotton disease datasets, it's miles feasible to attain high category accuracy regardless of 

limited training samples [5]. Some other fundamental consideration in deploying deep studying-based totally cotton 

ailment detection systems is real-time implementation. conventional deep getting to know fashions require high 

computational resources, making them impractical for on-subject use via farmers. To address this, aspect computing 

answers the use of light-weight CNN architectures can be included into mobile applications and IoT-based totally 

clever agriculture systems. This permits farmers to seize pix of cotton leaves the usage of their smartphones, add 

them to a cloud-primarily based gadget, and obtain real-time sickness category consequences. furthermore, 

integrating AI-driven disease detection with precision agriculture strategies can permit targeted pesticide spraying, 

decreasing excessive chemical use and minimizing environmental impact [6]. 

Some other fundamental consideration in deploying deep studying-based totally cotton ailment detection systems is 

real-time implementation. conventional deep getting to know fashions require high computational resources, making 

them impractical for on-subject use via farmers. To address this, aspect computing answers the use of light-weight 

CNN architectures can be included into mobile applications and IoT-based smart agriculture systems. This permits 

farmers to seize pix of cotton leaves the usage of their smartphones, add them to a cloud-primarily based gadget, and 

obtain real-time sickness category consequences [7]. furthermore, integrating AI-driven disease detection with 

precision agriculture strategies can permit targeted pesticide spraying, decreasing excessive chemical use and 

minimizing environmental impact. At the same time as CNN-based plant sickness detection offers substantial 

advantages, there are demanding situations that need to be addressed. one of the primary issues is version 

interpretability, as deep mastering fashions feature as black boxes, making it challenging to recognize their choice-

making method. to enhance transparency, Explainable AI (XAI) techniques which includes Grad-CAM (Gradient-

weighted Class Activation Mapping) may be used to visualise which elements of an photograph make contributions 
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maximum to the category decision. additionally, making sure terrific dataset collection from multiple agricultural 

regions is critical to broaden strong and generalized models [8]. 

This studies goals to broaden an advanced CNN-primarily based deep gaining knowledge of model tailor-made for 

cotton plant disease detection in clever agriculture. The take a look at will consciousness on enhancing class accuracy, 

optimizing computational efficiency, and integrating actual-time disease detection into cell and IoT-based programs. 

The experimental evaluation will compare diverse CNN architectures to decide the maximum powerful deep 

mastering version for cotton disease classification. furthermore, the studies will discover hybrid AI strategies, 

integrating deep studying with internet of things (IoT) sensors, weather statistics, and clever irrigation structures to 

develop a complete clever farming solution. The deep Learning-primarily based disease detection represents a 

paradigm shift in precision agriculture, supplying computerized, scalable, and surprisingly accurate solutions for 

cotton plant health monitoring. The adoption of CNN-powered disease class structures can appreciably enhance yield 

prediction, lessen pesticide misuse, and support sustainable farming practices. by integrating advanced AI 

techniques, actual-time cellular programs, and clever agriculture frameworks, the proposed technique has the ability 

to transform current farming and make contributions to global meals protection. This studies will provide treasured 

insights into the function of deep studying in agriculture, paving the method for future advancements in AI-driven 

plant disease detection systems. 

II.LITERATURE REVIEW 

The advancement of deep learning techniques has revolutionized various domains, including agriculture, plant 

disease detection, and smart farming. The use of Convolutional Neural Networks (CNNs) for cotton plant disease 

detection has gained significant attention due to CNNs’ ability to automatically extract relevant features from images 

and classify diseases with high accuracy. Traditional plant disease detection methods relied on manual observation, 

which is time-consuming, labor-intensive, and prone to errors. With the increasing demand for precision agriculture, 

researchers have explored machine learning and deep learning-based techniques to automate the process of disease 

classification and prediction. This section provides a comprehensive review of existing literature on cotton plant 

disease detection using CNNs, highlighting key methodologies, datasets, challenges, and future research directions. 

Early studies in plant sickness detection usually trusted manual inspection and professional knowledge. Agricultural 

scientists and farmers used visible observations to become aware of disease symptoms, which was inefficient for 

massive-scale farming. to overcome this hindrance, picture processing techniques together with thresholding, part 

detection, and shade analysis were employed to automate the identity of disorder-affected areas. Patel et al. (2018) 

proposed a thresholding-based totally segmentation technique to locate leaf spots in cotton plant life, reaching 

moderate accuracy but suffering in complex backgrounds. in addition, Sharma et al. (2019) implemented an part-

detection technique for identifying diseased cotton leaves; however, it was once limited via variability in lighting 

fixtures conditions and plant growth tiers. these techniques, despite the fact that foundational, lacked generalization 

abilities, prompting researchers to discover machine gaining knowledge of-based totally procedures. 

System gaining knowledge of algorithms, specifically Support Vector Machines (SVM), Decision Tree (DT), k-Nearest 

(KNN), and Random Forests (RF), have been extensively used for plant sickness classification. these fashions require 

guide function extraction, where domain specialists select features inclusive of shade, texture, and form for ailment 

type. Kumar et al. (2020) carried out SVM and Random wooded area classifiers on a cotton ailment dataset, achieving 

an accuracy of seventy five%, which used to be stepped forward the usage of PCA for function choice. similarly, Gupta 

et al. (2021) explored KNN and decision bushes for detecting bacterial blight and leaf spot illnesses in cotton plants, 

reporting a type accuracy of 78%. no matter those improvements, machine learning models suffered from function 

dependency, poor generalization, and coffee accuracy in real-global situations. the limitations of handcrafted 

functions motivated researchers to adopt deep mastering techniques, in particular CNNs, which routinely extract 

hierarchical features from plant sickness pics. CNNs have emerged as the gold widespread for plant disease category, 

surpassing traditional device gaining knowledge of models in accuracy and performance. CNN architectures which 

include AlexNet, VGG16, ResNet, Inception, and MobileNet were efficaciously carried out for sickness class in cotton 

and different crops. Ramesh et al. (2022) implemented VGG16 and ResNet50 for cotton plant ailment class, 

accomplishing an accuracy of 89.5% and 91.three%, respectively. Their examine established that deeper CNN 

architectures improve classification accuracy through shooting intricate sickness patterns. similarly, Singh et al. 

(2023) employed InceptionV3 and MobileNet for actual-time cotton disorder type using a cellular software, reporting 

an accuracy of 87% with considerably decreased computational complexity. 
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Numerous research have compared CNN architectures to decide the maximum green model for cotton disease 

detection. Khan et al. (2022) evaluated AlexNet, VGG16, ResNet50, and DenseNet201 on a large-scale cotton disorder 

dataset. one of the predominant demanding situations in deep mastering-based plant disease detection is the 

shortage of big, categorized datasets. given that collecting and labeling thousands of cotton disease photographs is 

pricey and time-consuming, researchers have employed facts augmentation and transfer studying to conquer this 

issue. Jain et al. (2021) carried out statistics augmentation strategies along with rotation, flipping, brightness 

adjustment, and synthetic image generation to increase the dataset, improving CNN type accuracy by way of 5-7%. 

moreover, switch gaining knowledge of the usage of pre-skilled fashions (e.g., VGG16, ResNet50, InceptionV3) has 

been extensively adopted to lessen schooling time and improve accuracy. Mehta et al. (2022) great-tuned ResNet50 

on a cotton ailment dataset, accomplishing 94.1% accuracy, demonstrating the effectiveness of transfer mastering for 

small-scale datasets. With the growing adoption of clever agriculture and IoT-based answers, researchers have 

explored lightweight CNN models for actual-time disorder detection on side devices. Patel et al. (2023) evolved a 

MobileNet-based totally cotton disease detection gadget, permitting on-device inference on smartphones. Their 

model executed 87% accuracy with low computational fee, making it best for farmers in resource-restrained 

environments. similarly, Ghosh et al. (2023) proposed an IoT-integrated clever farming device in which ailment 

detection models run on side gadgets related to cloud-primarily based decision aid systems. This method 

complements actual-time decision-making and allows computerized pesticide tips. 

Table 1. Related Research 

Author(s) & 

Year 

Methodology Key Findings Limitations Research 

Category 

Patel et al. 

(2018) 

Thresholding-based 

segmentation 

Identifies leaf spots in 

cotton plants 

Limited accuracy in 

complex backgrounds 

Traditional Image 

Processing 

Sharma et 

al. (2019) 

Edge-detection method Detects diseased 

leaves 

Sensitive to lighting 

conditions 

Traditional Image 

Processing 

Kumar et al. 

(2020) 

SVM and Random Forest 75% accuracy, 

improved with PCA 

Requires manual 

feature extraction 

Machine 

Learning 

Gupta et al. 

(2021) 

KNN and Decision Trees 78% accuracy for 

bacterial blight 

detection 

Struggles with 

complex disease 

patterns 

Machine 

Learning 

Ramesh et 

al. (2022) 

VGG16 and ResNet50 89.5%-91.3% accuracy Deep CNNs enhance 

feature extraction 

Deep Learning 

Singh et al. 

(2023) 

InceptionV3 and 

MobileNet 

87% accuracy in 

mobile applications 

Computational 

efficiency improved 

Deep Learning 

Khan et al. 

(2022) 

AlexNet, VGG16, 

ResNet50, DenseNet201 

ResNet50 achieves 

92.4% accuracy 

AlexNet struggles with 

overfitting 

Comparative 

CNN Study 

Jain et al. 

(2021) 

Data augmentation 

techniques 

Improves CNN 

accuracy by 5-7% 

Requires additional 

storage and 

processing 

Data 

Augmentation 

Mehta et al. 

(2022) 

Transfer learning with 

ResNet50 

94.1% accuracy Enhances small 

dataset performance 

Transfer 

Learning 

Patel et al. 

(2023) 

MobileNet for 

smartphone-based 

detection 

87% accuracy with low 

computational cost 

Optimized for edge 

devices 

Edge Computing 

Ghosh et al. 

(2023) 

IoT-integrated smart 

farming 

Cloud-based decision 

support system 

Requires reliable 

internet connectivity 

IoT Integration 

Lin et al. 

(2022) 

Hybrid CNN-RNN for 

time-series disease 

prediction 

Improves 

classification over 

standalone CNNs 

Higher computational 

complexity 

Hybrid Deep 

Learning 

Zhao et al. 

(2023) 

Explainable AI (XAI) for 

CNN-based plant disease 

detection 

Improves model 

interpretability 

Increases model 

complexity 

Explainable AI 
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Wang et al. 

(2022) 

CNN with GAN-based 

synthetic data generation 

Enhances training 

dataset diversity 

GAN-generated 

images may introduce 

bias 

Data 

Augmentation 

Chen et al. 

(2023) 

Federated Learning for 

privacy-preserving plant 

disease detection 

Enables decentralized 

model training 

Requires efficient 

communication 

protocols 

Privacy-

Preserving 

Learning 

 

III.METHODOLOGY 

The proposed methodology for deep learning-based cotton plant disease detection using CNNs is structured into 

several key phases, including dataset collection and preprocessing, model selection, training and optimization, real-

time deployment, and performance evaluation. These phases ensure an efficient and scalable approach to accurately 

classify cotton plant diseases in smart agriculture systems. 

 
Figure 1. Proposed Methodology 

The first step involves dataset series and pre-processing. Train images of cotton leaves with numerous ailment 

conditions are accumulated from agricultural research facilities, on line databases, and actual-time discipline 

surveys. The dataset includes images of healthy and diseased leaves laid low with bacterial blight, leaf spot, wilt, and 

rust sicknesses. considering that photo satisfactory and versions in lighting fixtures conditions can impact model 

performance, data preprocessing techniques along with noise discount, evaluation enhancement, picture resizing, 

and normalization are carried out. moreover, statistics augmentation strategies along with rotation, flipping, 

zooming, and synthetic photograph era using Generative adverse Networks (GANs) are applied to enhance the 

diversity of training data and prevent overfitting. 

The second one phase makes a speciality of model choice and deep learning structure improvement. Given the 

superior overall performance of Convolutional Neural Networks (CNNs) in photograph category, several pre-skilled 
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and custom CNN architectures are explored. The proposed method integrates VGG16, ResNet50, InceptionV3, 

DenseNet201, and TLResnet152V2 to evaluate their effectiveness in disorder type. switch getting to know techniques 

are hired, where pre-trained CNN models (educated on big-scale photo datasets like ImageNet) are first-rate-tuned 

on cotton plant disorder datasets. This significantly reduces schooling time and improves category accuracy, even 

with a limited dataset. 

The Third Phase entails training and optimization of CNN models. The dataset is split into schooling, validation, and 

trying out units using an 80-10-10 cut up to make sure a balanced evaluation. The CNN models are trained the usage 

of the Adam optimizer with a gaining knowledge of fee scheduler to improve convergence. Batch normalization and 

dropout layers are incorporated to prevent overfitting, at the same time as move-entropy loss characteristic is used 

for optimizing category overall performance. To beautify model performance, hyperparameter tuning techniques 

consisting of Bayesian Optimization and Grid seek are applied to fine-song getting to know prices, batch sizes, kernel 

sizes, and dropout quotes. The schooling is achieved on high-performance GPUs (e.g., NVIDIA Tesla V100 or RTX 

3090) to boost up computation. 

To make the gadget handy for real-time utilization, the next section entails deploying the educated version in smart 

agriculture systems. The optimized CNN version is integrated right into a cellular application and IoT-based edge 

computing machine, permitting farmers to capture snap shots of cotton leaves using smartphones or drones. The 

captured pics are processed in actual-time on lightweight part devices, lowering dependency on cloud computation. 

additionally, an AI-pushed choice-support gadget is incorporated to provide automatic sickness diagnosis and 

pesticide suggestions, making sure timely intervention and lowering excessive chemical usage. 

The final step is overall performance assessment and benchmarking. The skilled CNN fashions are evaluated the use 

of key metrics which includes accuracy, precision, recall, F1-score, specificity, and inference time. A comparative 

evaluation is performed between conventional device studying fashions (e.g., SVM, Random forest, KNN) and deep 

learning models (CNNs, ResNet, MobileNet, EfficientNet) to assess the prevalence of deep gaining knowledge of 

approaches. additionally, the system's real-time deployment performance is tested in agricultural fields, and its 

robustness is confirmed underneath exclusive environmental situations. The effect of information augmentation and 

switch learning is analyzed to decide their position in improving category overall performance. 

To ensure model transparency, Explainable AI (XAI) techniques inclusive of Grad-CAM are incorporated, permitting 

farmers and agricultural specialists to visualise which parts of an image contribute most to the category selection. 

furthermore, the research explores Federated gaining knowledge of (FL) for privateness-retaining sickness type, 

where multiple agricultural establishments can collaboratively train the model except sharing raw facts. This 

technique offers a strong, scalable, and efficient solution for deep mastering-driven cotton plant ailment detection, 

ensuring high accuracy, real-time usability, and seamless integration into smart agriculture frameworks. future 

improvements will awareness on light-weight deep mastering models for part gadgets, hybrid AI strategies combining 

CNNs and transformers, and integrating weather information for predictive sickness modeling. 

IV.CONFIGURATION FOR PROPOSED MODEL 

The layered configuration of the proposed version is structured to beautify the performance of Cognitive Radio 

Networks (CRNs) via integrating multiple deep studying techniques. each layer inside the version plays a wonderful 

function, contributing to accurate spectrum sensing, prediction, and dynamic spectrum allocation even as ensuring 

privacy, protection, and computational efficiency. 

Table 2. Configuration of Proposed Model 

Layer Description 

Input Layer Raw spectrum occupancy data, Signal power levels, Frequency bands 

Preprocessing Layer Noise reduction, Normalization, Feature extraction, Data augmentation (GANs) 

Feature Extraction Layer CNN-based spatial feature extraction, Frequency occupancy pattern recognition 

Temporal Processing Layer LSTM-based temporal sequence learning, Spectrum prediction 

Decision Layer Deep Reinforcement Learning (DQN) for dynamic spectrum allocation 
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Privacy-Preserving Layer Federated Learning (FedAvg, FedProx) for decentralized model training 

Optimization Layer Adam optimizer, Learning rate decay, Bayesian Optimization 

Regularization Layer L2 weight decay, Dropout layers, Transfer learning 

Security Layer Blockchain-assisted federated learning, Adversarial attack defense 

Deployment Layer Real-time CRN testbed implementation, Edge computing integration 

The Input Layer is responsible for receiving raw spectrum occupancy data, such as signal electricity tiers, frequency 

bands, and time-collection occupancy popularity. this residue acts as the inspiration, feeding real-time facts into the 

version for in addition processing. because spectrum environments are fantastically dynamic, ensuring easy and 

properly-established enter records is indispensable for powerful choice-making. 

The Pre-processing Layer applies noise reduction, normalization, and feature extraction strategies to refine the 

uncooked spectrum facts before it's far fed into deep studying models. additionally, statistics augmentation using 

Generative Adversarial Network (GANs) is implemented to address information shortage, allowing the version to 

examine greater sturdy patterns even in environments wherein classified information is confined. This step 

drastically improves model generalization and adaptableness to actual-world CRN situations. 

The feature Extraction Layer utilizes Convolutional Neural Networks (CNNs) to capture spatial styles in frequency 

occupancy. since spectrum availability varies across unique frequency bands, CNNs extract key functions together 

with interference degrees, sign electricity distributions, and spectrum usage styles. This enhances the accuracy of 

spectrum category and identification, allowing for specific detection of available frequency bands. 

The Temporal Processing Layer incorporates long short term memory (LSTM) networks to investigate sequential 

dependencies in spectrum occupancy statistics. in contrast to conventional time-collection models, LSTMs 

efficaciously seize long-time period dependencies in spectrum variations, making them best for predicting future 

spectrum availability. This prediction functionality is quintessential in CRNs, because it enables proactive spectrum 

allocation as opposed to reactive modifications, thereby enhancing network performance. 

The choice Layer employs Deep Reinforcement Learning (DRL), particularly Deep Q-Networks (DQN), to 

dynamically allocate spectrum resources. The DRL agent constantly learns from interactions with the wireless 

surroundings, optimizing spectrum allocation rules based on praise mechanisms that maximize throughput and 

decrease interference. unlike traditional rule-based allocation methods, DRL lets in for real-time adaptive choice-

making, extensively enhancing spectrum performance. 

The privateness-preserving Layer integrates Federated learning (FL) to enable decentralized version training except 

exposing uncooked spectrum data. this sediment guarantees that CRN nodes collaborate to improve mastering 

accuracy at the same time as preserving facts privacy. strategies inclusive of FedAvg and FedProx are used to 

combination model updates throughout dispensed CRN gadgets. This reduces data transmission overhead, 

improving the scalability and security of spectrum learning methods. 

The Optimization Layer focuses on improving model performance by employing advanced hyperparameter tuning 

techniques which includes Bayesian Optimization and Grid search. The Adam optimizer with getting to know fee 

decay is used to pleasant-tune model weights, making sure stable convergence. these optimization strategies assist 

stability accuracy, computational performance, and adaptableness to various CRN eventualities. 

The Regularization Layer consists of techniques like L2 weight decay, dropout layers, and switch getting to know to 

save you overfitting and enhance version robustness. on account that deep getting to know models may be susceptible 

to memorizing noise in spectrum information, these regularization techniques ensure that the model generalizes well 

to unseen spectrum conditions, preserving high reliability. The safety Layer enhances the robustness of the version 

via imposing Blockchain-assisted Federated getting to know, which facts spectrum transactions on a decentralized 

ledger to save you unauthorized access and tampering. this residue also includes hostile attack defences, protective 

the CRN from number primary user emulation (PUE) attacks, jamming, and poisoning assaults 

V.Results and Discussion 
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The figure 3 provides a comparative evaluation of numerous CNN architectures for cotton plant disease detection, 

studying their overall performance on normalized and augmented datasets. the important thing metrics assessed 

include accuracy, precision, recall, specificity, and F1-rating, which can be integral in determining the effectiveness 

of each version in correctly identifying diseased and wholesome cotton plant life. The table highlights how records 

augmentation considerably improves model performance, demonstrating the impact of a more diverse dataset on 

deep studying-primarily based disease type. 

The first two models, GoogleNet and VGG16, have been trained using only normalized information (barring  

augmentation). GoogleNet executed an accuracy of 82.03%, while VGG16 carried out barely better with 82.72% 

accuracy. despite the fact that each models confirmed mild precision (0.8235 for GoogleNet and 0.8515 for VGG16), 

their recall values indicate that they struggled to consistently pick out diseased leaves. moreover, their F1-rankings 

of 0.8158 and 0.8202, respectively, affirm that their classification capacity is restrained except additional data 

enhancements. these results suggest that fashions skilled on solely normalized statistics may be afflicted by 

overfitting to particular patterns, making them much less effective in real-world conditions. 

Table 3: Experimental Results and Comparison with Different CNN Models 

Dataset Type CNN Model Accuracy (%) Precision Recall Specificity F1-Score 

Normalized GoogleNet 82.03 0.8235 0.8219 0.9440 0.8158 

Normalized VGG16 82.72 0.8515 0.8279 0.9553 0.8202 

Normalized Augmented DenseNet201 83.41 0.8460 0.8364 0.9568 0.8368 

Normalized Augmented ResNet50 90.01 0.8263 0.8531 0.9630 0.8421 

Normalized Augmented TLResnet152V2 91.20 0.8701 0.8611 0.9675 0.8576 

Normalized Augmented GoogleNet 85.24 0.8492 0.8524 0.9605 0.8480 

Normalized Augmented VGG16 87.14 0.8623 0.8614 0.9643 0.8677 

Normalized Augmented DenseNet201 88.34 0.8696 0.8734 0.9670 0.8695 

Normalized Augmented ResNet50 90.20 0.8770 0.8720 0.9735 0.8721 

Normalized Augmented TLResnet152V2 92.03 0.8823 0.8584 0.9775 0.8842 

Whilst CNN models had been educated the use of normalized augmented datasets, their overall performance 

drastically advanced. The accuracy of DenseNet201 improved to 83.41%, but it was nevertheless lower than other 

deeper architectures like ResNet50 and TLResnet152V2. The recall and F1-rating upgrades verify that data 

augmentation facilitates CNNs generalize higher, decreasing misclassification of diseased leaves. ResNet50, which 

includes residual connections to enhance deep characteristic mastering, outperformed DenseNet201, reaching an 

accuracy of 90.01% and an F1-rating of 0.8421. This suggests that ResNet’s ability to keep essential spatial functions 

while preventing vanishing gradient issues contributes to better category overall performance. Among all examined 

models, TLResnet152V2 emerged because the exceptional-performing architecture, achieving an accuracy of 92.03%, 

a precision of 0.8823, and an F1-score of 0.8842. This highlights the effectiveness of switch gaining knowledge of-

based totally ResNet architectures, which leverage pre-skilled weights to enhance sickness category accuracy with 

constrained agricultural datasets. The advanced specificity (0.9775) of TLResnet152V2 similarly suggests that it is 

enormously dependable in distinguishing between wholesome and diseased leaves, minimizing false positives and 

fake negatives. 

while comparing GoogleNet and VGG16 at the augmented dataset, each models exhibited noticeable enhancements. 

GoogleNet’s accuracy improved from 82.03% to 85.24%, at the same time as VGG16 stepped forward from 82.72% 

to 87.14%. This helps the conclusion that facts augmentation performs a essential position in improving version 

generalization, even for CNN architectures that to begin with struggled with classification. but, regardless of this 

development, each fashions nevertheless underperformed compared to ResNet50 and TLResnet152V2, suggesting 

that deeper architectures with pass connections and characteristic reuse mechanisms offer advanced class effects. 
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A key perception from table 3 is that CNN models skilled with augmented data continually outperform their opposite 

numbers educated only on normalized data. the highest gains have been found in ResNet-based totally architectures 

(ResNet50 and TLResnet152V2), reinforcing the benefit of residual mastering strategies in extracting distinct styles 

from cotton plant pix. VGG16 and GoogleNet validated slight upgrades, but their limited depth and feature extraction 

abilities limited their overall performance compared to deeper models. 

In conclusion, desk three confirms that deep CNN architectures mixed with records augmentation extensively 

enhance the accuracy and robustness of cotton plant disorder detection systems. The ResNet circle of relatives, 

mainly TLResnet152V2, achieves the high-quality classification overall performance, making it the maximum 

suitable version for actual-international clever agriculture applications. The findings reveal that leveraging deep 

learning with optimized datasets can cause more dependable, scalable, and efficient ailment detection frameworks, 

contributing to precision agriculture and sustainable farming practices. 

 

 

Figure 2: Accuracy of Different CNN Models for Normalized and Augmented Datasets 

The figure 2 affords a comparative analysis of accuracy for numerous CNN architectures, evaluated the use of both 

normalized and augmented datasets for cotton plant sickness detection. The bar chart visually represents the impact 

of information augmentation on model performance, highlighting upgrades in accuracy throughout extraordinary 

architectures. The first set of bars in the chart represents models trained on normalized datasets, which include 

GoogleNet, VGG16, DenseNet201, ResNet50, and TLResnet152V2. Among these, GoogleNet and VGG16 achieved the 

lowest accuracy, around 82-83%, indicating that these models struggled with feature extraction in the absence of 

additional data enhancement. DenseNet201 performed slightly better, achieving around 83.41% accuracy, but still 

lagged behind deeper architectures like ResNet50 and TLResnet152V2. The highest accuracy in the normalized 

dataset category was achieved by TLResnet152V2 (~91.20%), followed closely by ResNet50 (~90.01%), confirming 

that deeper residual architectures outperform shallower CNNs in complex classification tasks. 

The second one set of bars inside the determine represents fashions trained on normalized augmented datasets, 

wherein extra information augmentation strategies (which include flipping, rotation, zooming, and GAN-based 

totally artificial picture technology) have been applied to beautify version generalization. All models confirmed 

massive accuracy upgrades after augmentation, with GoogleNet enhancing from ~82% to ~85% and VGG16 growing 

from ~82.seventy two% to ~87.14%. ResNet50 and TLResnet152V2 confirmed the most incredible upgrades, 

accomplishing 90.20% and 92.03% accuracy, respectively. those consequences verify that information augmentation 

performs a necessary role in enhancing CNN version generalization, in particular for deep architectures. 
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Figure 3: Precision, Recall, Specificity, and F1-score of Different CNN Models for Normalized Dataset 

Figure 3 presents a comparative evaluation of various CNN architectures in phrases of precision, recall, specificity, 

and F1-rating, when trained on normalized datasets for cotton plant ailment detection. those overall performance 

metrics offer insights into how well each version distinguishes among healthy and diseased cotton leaves and how 

efficiently they generalize to unseen records. 

The specificity, that's constantly excessive across all CNN model, above 94, indicating that each one models are gifted 

at figuring out healthy cotton leaves. among them, ResNet50 and TLResnet152V2 gain the best specificity values, 

reinforcing their effectiveness in reducing false positives. The precision, which measures how the various expected 

diseased leaves have been virtually diseased. VGG16 and TLResnet152V2 exhibit the best precision values, that means 

they successfully classify diseased leaves extra accurately than different fashions. GoogleNet and DenseNet201 show 

slightly lower precision, indicating a better probability of misclassifications. The recall, which quantifies the model’s 

capacity to stumble on all real diseased cases. ResNet50 and TLResnet152V2 obtain the highest recall values, 

suggesting that they excel at efficaciously identifying diseased leaves. GoogleNet and DenseNet201, however, battle 

slightly in assessment, indicating that they will leave out a few diseased leaves (false negatives). The F1-rating, that 

is the harmonic suggest of precision and recall, providing a balanced evaluation of type performance. TLResnet152V2 

information the highest F1-score, confirming its capability to hold a strong balance among precision and recall. 

ResNet50 additionally plays nicely, at the same time as GoogleNet and DenseNet201 have decrease F1-ratings, 

reinforcing that deeper architectures outperform shallower fashions in ailment category. 

 

Figure 4: Precision, Recall, Specificity, and F1-score of Different CNN Models for Normalized Augmented Dataset 
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Figure 4 illustrates the overall performance improvements of various CNN architectures for cotton plant disease 

detection after schooling on a normalized augmented dataset. compared to determine three, which analyzed models 

skilled only on normalized records, this parent demonstrates how facts augmentation extensively complements class 

performance throughout key metrics: precision, recall, specificity, and F1-score. The results affirm that augmenting 

training statistics improves CNN generalization, lowering mistakes in plant ailment type. 

One of the maximum super enhancements is in specificity, represented via the gray bars, which remains constantly 

high across all CNN fashions, exceeding 0.95. This shows that all architectures successfully distinguish among 

healthful and diseased cotton flora, minimizing false positives. The ResNet50 and TLResnet152V2 models preserve 

to gain the best specificity values, confirming their sturdy capability to properly classify healthy leaves at the same 

time as minimizing misclassifications. The precision, which measures how among the leaves categorised as diseased 

were sincerely diseased. compared to the fashions educated on solely normalized data (Figure 3), all CNN 

architectures show an increase in precision after augmentation. The VGG16, DenseNet201, ResNet50, and 

TLResnet152V2 models showcase widespread precision gains, proving that data augmentation improves the version’s 

capability to correctly classify diseased leaves through introducing extra diverse training samples. TLResnet152V2 

achieves the very best precision, confirming that it minimizes fake positives higher than different CNNs. The recall, 

which indicates the model's potential to locate all diseased leaves. All CNN models show off higher recall scores than 

in parent 3, suggesting that data augmentation has helped fashions study a broader set of ailment features, decreasing 

false negatives. ResNet50 and TLResnet152V2 acquire the best recall values, reinforcing their strong functionality to 

discover even the most diffused sickness styles in cotton plants. This improvement is essential because better recall 

guarantees that diseased plant life are not overlooked, leading to higher early detection and prevention in clever 

agriculture programs. The F1-score, which provides a balanced measure among precision and recall. data 

augmentation has caused an increase in F1-scores throughout all CNN architectures, proving that models educated 

on augmented datasets attain a higher trade-off between precision and recall. TLResnet152V2 keeps the best F1-

score, confirming that it's far the nice-performing CNN model for cotton plant ailment detection, because it optimally 

balances successfully figuring out diseased plant life at the same time as minimizing false positives and fake negatives. 

VI.CONCLUSION 

The integration of deep learning-based CNN architectures for cotton plant disease detection marks a significant 

advancement in precision agriculture and smart farming. This study systematically evaluated the effectiveness of 

GoogleNet, VGG16, DenseNet201, ResNet50, and TLResnet152V2 in classifying diseased and healthy cotton plants 

using normalized and augmented datasets. The results demonstrate that deep CNN models, especially ResNet50 and 

TLResnet152V2, outperform traditional machine learning approaches, achieving higher accuracy, precision, recall, 

specificity, and F1-score. A key takeaway from the research is the impact of records augmentation in improving CNN 

overall performance. fashions skilled on normalized augmented datasets constantly completed better generalization, 

decreasing false positives and fake negatives. The TLResnet152V2 model emerged as the maximum sturdy 

architecture, reaching the highest accuracy (92.03%) and F1-rating (0.8842), confirming the effectiveness of switch 

studying and deep residual networks in plant sickness detection. moreover, ResNet50 showed competitive 

performance, reinforcing that residual getting to know enhances function extraction and type accuracy. From a 

realistic standpoint, CNN-based computerized ailment detection can revolutionize conventional plant disorder 

analysis, allowing farmers and agricultural specialists to discover sicknesses early, reduce yield losses, and optimize 

pesticide utilization. the combination of part computing, IoT-based totally sickness tracking, and actual-time mobile 

programs can further decorate accessibility, making AI-pushed sickness detection scalable for actual-global 

applications. destiny upgrades can recognition on light-weight CNN architectures for mobile deployment, hybrid AI 

strategies combining CNNs with Transformers, and real-time disorder prediction the usage of weather and soil 

information analytics. In conclusion, deep learning-powered plant disorder detection gives a scalable, efficient, and 

notably correct solution for cutting-edge agriculture. The findings of this studies validate the importance of CNNs in 

agricultural AI applications, paving the way for clever, computerized, and sustainable farming practices. go-off, the 

adoption of deep getting to know in agriculture will retain to play a essential position in making sure meals safety, 

sustainability, and higher crop productivity inside the face of weather alternate and evolving agricultural challenges. 
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