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In this paper, a mathematical model of Cervical Cancer is formulated. The equilibrium analysis 

is performed. The boundedness and positiveness of cervical cancer model are evaluated. The 

local and global stability is studied using R.H. criteria and Lyapunov’s approach. Numerical 

simulations are performed to show the flow the variables using MATLAB. 
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1. INTRODUCTION 

In order to predict long-term health outcomes, mathematical models can be utilized to translate short-term results 

from prevention and reduction experiments. Cervical Cancer is the form of cancer that develops in cervix cells. The 

bottom part of the uterus, known as the cervix is attached to the vagina. An irregular development of cells into the 

cervix is the basic cause of Cervical Cancer which may grow towards the nearby parts of the body. An infection with 

the Human Papillomavirus (HPV) is a common cause of Cervical Cancer. Adenocarcinoma and Squamous cell 

Carcinoma are two types of Cervical Cancer. Adenocarcinoma type of cancer begins as a column-shaped glandular 

cells which forms a in the outer part of cervix. Squamous Cell Carcinoma type cancer begins in the thin flat cells 

(Squamous cells) lining the outer part of the cervix, which projects into the vagina. Most Cervical Cancer are 

Squamous cell carcinomas. 

There are no telltale signs of cervical cancer in its early stages. Pelvic pain, irregular vaginal bleeding, and 

uncomfortable sex are some of the signs that are discovered as the disease progresses violently over time. Having 

multiple sexual partners, having set at an early age, weak immune system, smoking are risk factors for Cervical 

Cancer. Next to breast cancer, Cervical Cancer is the most common cancer that affects women globally. Radiation 

therapy, surgery and chemotherapy are the known treatment for cervical cancer. 

Many authors illustrated mathematical models for Cervical Cancer. Shermita L. Lee [9] studied a mathematical 

model on Human Papilloma virus and its impact of Cervical Cancer in the United States. Helen C Johnson [6] 

developed a dynamical model and analyzed the effect of HPV vaccination of Cervical Cancer screening in England. 

Wenting Wu [10] formulated a mathematical model for Human Papilloma virus and Cervical tumorigenesis. 

Abdulsamad Engida Sado [1] studied a mathematical model for cervical cancer with vaccination and transmission. 

Eminugroha Ratna Sari [2] formulated a mathematical model of SIPC age-structured model for Cervical Cancer. E. 

D. Gurmu [4] developed a mathematical model which showed the impact of COVID-19 on Outcomes of patients with 

Cervical Cancer in India. In this paper, a model for Cervical Cancer is developed. 

2. EQUATIONS OF CERVICAL CANCER MODEL 

The system of ODE symbolizes the Cervical Cancer model: 

 

dS

dt
= ωN − (β + µ)𝑆 

                                                                     
𝑑𝐼𝐸

dt
= βS − (δ + 𝛾1 + µ)𝐼𝐸   
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𝑑𝐼𝐿

dt
= δ𝐼𝐸 − (σ + 𝛾2 + µ)𝐼𝐿                                                        (1)                                                                                                                                                                 

𝑑𝐼𝐴
𝑑𝑡
= σ 𝐼𝐿 − (µ + d)𝐼𝐴 

                                                                        
dR

dt
= 𝛾1𝐼𝐸 + 𝛾2𝐼𝐿 − µ𝑅 

                                      With S(t), 𝐼𝐸(t), 𝐼𝐿(t), 𝐼𝐴(t), R(t) ≥ 0.  

                                          Also β, µ, δ, σ, ω, 𝛾1, 𝛾2 > 0. 

Where S(t), 𝐼𝐸(t), 𝐼𝐿(t), 𝐼𝐴(t), R(t) are the Susceptible, Infected at early stage, Infected at locally advanced stage, 

Infected at advanced stage and Recovery state respectively. 

ω – Mean natality rate of female, µ - Mean mortality rate of female, β - Initial infectious rate, δ - Secondary infectious 

rate, σ - Final infectious rate, 𝛾1- recovery rate from Initial infectious stage, 𝛾2- recovery rate from Secondary 

infectious stage and N(t) - Female Population. 

                                                              N(t) = S(t)+ 𝐼𝐸(t)+ 𝐼𝐿(t)+𝐼𝐴(t)+R(t) 

The figure shows the Cervical Cancer model:

 

Figure 1: Cervical Cancer Model 

3 POSITIVENESS OF THE MODEL 

From (1)  

                                                                           
dS

dt
≥ −(β + µ)S                                             (3)                                                                                                               

                                                                            
𝑑𝐼𝐸

dt
≥ −(δ + 𝛾1 + µ)IE                                  (4) 

                                                                            
𝑑𝐼𝐿

dt
≥ −(σ + 𝛾2 + µ)IL                              (5)                                                                                                                                                                                                                   

                                                                               
𝑑𝐼𝐴

𝑑𝑡
≥ (µ + d)IA                                     (6) 

                                                                                 
dR

dt
≥ −µ𝑅                                             (7) 

From (3),  
1

S
dS ≥ −(β + µ)𝑑𝑡 

Integrating,  

∫
1

S
dS

𝑡

0

≥ −(β + µ) ∫dt

𝑡

0
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𝑙𝑜𝑔 𝑆(𝑡)  −  𝑙𝑜𝑔 𝑆(0)  ≥  (𝛽 + µ)(𝑡 −  0)  

𝑙𝑜𝑔
𝑆(𝑡)

𝑆(0)
≥  (𝛽 + µ)𝑡 

𝑆(𝑡)

𝑆(0)
≥ 𝑒−(𝛽+µ)𝑡 

                                                                              S(t) ≥ S(0) 𝑒−(𝛽+µ)𝑡 

                                                                S(t) ≥ 0 as S(0) ≥ 0 

From (4),  

1

𝐼𝐸
d𝐼𝐸 ≥ (δ + 𝛾1 + µ) − 𝑑𝑡 

Integrating,  

∫
1

𝐼𝐸
d𝐼𝐸

𝑡

0

≥ −(δ + 𝛾1 + µ) ∫dt

𝑡

0

 

𝑙𝑜𝑔 𝐼𝐸(𝑡)  −  𝑙𝑜𝑔 𝐼𝐸(0)  ≥  (δ + 𝛾1 + µ)(𝑡 −  0)  

𝑙𝑜𝑔
𝐼𝐸(𝑡)

𝐼𝐸(0)
≥  (δ + 𝛾1 + µ)𝑡 

𝐼𝐸(𝑡)

𝐼𝐸(0)
≥ 𝑒−(δ+𝛾1+µ)𝑡 

                                                                              𝐼𝐸 (t) ≥ 𝐼𝐸 (0) 𝑒−(δ+𝛾1+µ)𝑡 

                                                                𝐼𝐸 (t) ≥ 0 as 𝐼𝐸 (0) ≥ 0 

From (5),  

1

𝐼𝐿
d𝐼𝐿 ≥ (σ + 𝛾2 + µ) − 𝑑𝑡 

Integrating,  

∫
1

𝐼𝐿
d𝐼𝐿

𝑡

0

≥ −(σ + 𝛾2 + µ) ∫dt

𝑡

0

 

𝑙𝑜𝑔 𝐼𝐿(𝑡)  −  𝑙𝑜𝑔 𝐼𝐿(0)  ≥  (σ + 𝛾2 + µ)(𝑡 −  0)  

𝑙𝑜𝑔
𝐼𝐿(𝑡)

𝐼𝐿(0)
≥ (σ + 𝛾2 + µ)𝑡 

𝐼𝐿(𝑡)

𝐼𝐿(0)
≥ 𝑒−(σ+𝛾2+µ)𝑡 

                                                                              𝐼𝐿 (t) ≥ 𝐼𝐿 (0) 𝑒−(σ+𝛾2+µ)𝑡 

                                                                𝐼𝐿 (t)≥0 as 𝐼𝐿 (0)≥0 

 

From (5),  

1

𝐼𝐴
d𝐼𝐴 ≥ (µ + d) − 𝑑𝑡 

Integrating,  

∫
1

𝐼𝐴
d𝐼𝐴

𝑡

0

≥ −(µ + d) ∫dt

𝑡

0

 

𝑙𝑜𝑔 𝐼𝐴(𝑡)  −  𝑙𝑜𝑔 𝐼𝐴(0)  ≥  (µ + d)(𝑡 −  0)  

𝑙𝑜𝑔
𝐼𝐴(𝑡)

𝐼𝐴(0)
≥ (µ + d)𝑡 
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𝐼𝐴(𝑡)

𝐼𝐴(0)
≥ 𝑒−(µ+d)𝑡 

                                                                              𝐼𝐴 (t) ≥ 𝐼𝐴 (0) 𝑒−(µ+d)𝑡 

                                                                𝐼𝐴 (t) ≥ 0 as 𝐼𝐴 (0)≥0 

 From (7),  

1

R
dR ≥ − µ 𝑑𝑡 

Integrating,  

∫
1

R
dR

𝑡

0

≥ −µ ∫dt

𝑡

0

 

𝑙𝑜𝑔 𝑅(𝑡)  −  𝑙𝑜𝑔 𝑅(0)  ≥  − µ (𝑡 −  0)  

𝑙𝑜𝑔
𝑅(𝑡)

𝑅(0)
≥  µ 𝑡 

𝑅(𝑡)

𝑅(0)
≥ 𝑒−µ𝑡 

                                                                              R(t) ≥ R(0) 𝑒−µ𝑡 

                                                                R(t) ≥ 0 as R(0) ≥ 0 

Hence, positiveness is proved. 

4. BOUNDEDNESS OF THE MODEL  

Differentiate (2),  

𝑑𝑁

𝑑𝑡
=
𝑑𝑆

𝑑𝑡
+
𝑑𝐼𝐸
𝑑𝑡
+
𝑑𝐼𝐿
𝑑𝑡
+
𝑑𝐼𝐴
𝑑𝑡
+
𝑑𝑅

𝑑𝑡
 

𝑑𝑁

𝑑𝑡
= (𝜔 − µ)𝑁 

1

𝑑𝑡
𝑑𝑁 =  (𝜔 − µ)𝑑𝑡 

Integrating, 

∫
1

𝑁
d𝑁

𝑡

0

≥ ∫(ω − µ) dt

𝑡

0

 

⇒ 𝑁(𝑡) ≤  𝑁(0) 𝑒−(𝜔−µ)𝑡 

⇒N(t) is bounded with a positive integer. 

S(t),  𝐼𝐸(t), 𝐼𝐿(t), 𝐼𝐴(t) and R(t) are bounded. 

5. EQUILIBRIUM ANALYSIS 

Disease free equilibrium:  G1(S̃, 0,0,0,0) 

S̃ be considered as the positive solution of 
dS

dt
= 0 

Using (1), 

S̃ =
ωN

(β + µ)
 

G1(S̃, 0,0,0,0) = (
ωN

β + µ
, 0,0,0,0) 

Endemic equilibrium: G1(S
∗,IE

∗, IL
∗, IA

∗, R∗), 
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 Let the positive solutions of  
dS

dt
= 0,

dIE

dt
= 0,

dIL

dt
= 0 ,

dIA

dt
= 0,

dR

dt
= 0 be  S∗, IE

∗, IL
∗, IA

∗ and R∗ 

Using (1), 

S∗ = 
ωN

β + µ
 

IE
∗ = 

ωNβ

(β + µ)(δ + 𝛾1 + µ)
 

IL
∗ = 

ωNβδ

(β + µ)(δ + 𝛾1 + µ)(σ + 𝛾2 + µ)
 

IA
∗ = 

ωNβδσ

(β + µ)(µ + d)(δ + 𝛾1 + µ)(σ + 𝛾2 + µ)
 

                                                        R∗ = (
𝜔𝑁β

µ(β+µ)(δ+𝛾1+µ)
) (

𝛿𝛾2+𝛾1(σ+𝛾2+µ)

(σ+𝛾2+µ)
) 

∴ the cervic equilibrium, 

 G1(S
∗,IE

∗, IL
∗, IA

∗, R∗) =  (
𝜔𝑁

β+µ
,

ωNβδ

(β+µ)(δ+𝛾1+µ)(σ+𝛾2+µ)
,

ωNβδσ

(β+µ)(µ+d)(δ+𝛾1+µ)(σ+𝛾2+µ)
, 

𝜔𝑁β

µ(β + µ)(δ + 𝛾1 + µ)
 (
𝛿𝛾2 + 𝛾1(σ + 𝛾2 + µ)

(σ + 𝛾2 + µ)
)) 

 ∴ G1 is positive. 

6. STABILITY: LOCAL BEHAVIOR 

The Jacobian of (1) is 

                                     

(

 
 

−(β + µ) 0 0 0 0
β −(δ + γ1 + µ) 0 0 0
0 δ −(σ + γ2 + µ) 0 0
0 0 σ −(µ + d) 0
0 γ1 γ2 0 −µ)

 
 

                                         (8)    

 

At the interior equilibrium 

                                                         

(

 
 
 
 
 
 

−
ωN

S
0 0 0 0

β −
βS

IE
0 0 0

0 δ −
δIE

IL
0 0

0 0 0 −
σIE

IA
0

0 γ1 γ2 0 −
γ1IE+γ2IL

R )

 
 
 
 
 
 

                                                                     (9) 

The characteristic equation of (9) is 
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|

|

|
−
ωN

S
− 𝜆 0 0 0 0

β −
βS

IE
− 𝜆 0 0 0

0 δ −
δIE
IL
− 𝜆 0 0

0 0 0 −
σIE
IA
− 𝜆 0

0 γ1 γ2 0 −
γ1IE + γ2IL

R
− 𝜆

|

|

|

= 0 

λ5 + (
ωN

S
+
𝛽𝑆

IE
+
δIE
IL
+
σIL
IA
+
γ1IE + γ2IL

R
)λ4 + (

𝜔𝑁𝛽

IE
+
𝜔𝑁

𝑆
[
γ1IE + γ2IL

R
] +

𝜔𝑁𝜎IL
𝑆IA

+
𝜔𝑁𝛿I𝐸
SIL

+
𝛽𝑆

IE
[
γ1IE + γ2IL

R
] +

𝛽𝜎𝑆IL
IEIA

+
𝛽𝛿𝑆

IL
+
𝛿IE
IL
[
γ1IE + γ2IL

R
] +

𝜎IL
IA
[
γ1IE + γ2IL

R
] +

𝜎𝛿IE
IA
)λ3 + (

𝜔𝑁𝛽

IE
[
γ1IE + γ2IL

R
] +

𝜔𝑁𝛽𝜎IL
IEIA

+
𝜔𝑁𝛽𝛿

IL

+
𝜔𝑁𝛿IE
𝑆IL

[
γ1IE + γ2IL

R
] +

𝜔𝑁𝛿𝜎IE
𝑆IA

+
𝜔𝑁𝜎IL
𝑆IA

[
γ1IE + γ2IL

R
] +

𝛽𝛿𝑆

IA
[
γ1IE + γ2IL

R
] +

𝛽𝛿𝜎𝑆IE
IA

+
𝛽𝜎𝑆IL
IEIA

+
𝛿𝜎IE
IA
])λ2 + (

𝜔𝑁𝛽𝛿

IL
[
γ1IE + γ2IL

R
] +

𝜔𝑁𝛽𝛿𝜎IE
IA

+
𝜔𝑁𝛽𝜎IL
IEIA

[
γ1IE + γ2IL

R
] +

𝜔𝑁𝛿𝜎IE
IA

[
γ1IE + γ2IL

R
]

+
𝛽𝛿𝜎𝑆

IA
[
γ1IE + γ2IL

R
])𝜆 +

𝜔𝑁𝛽𝜎𝛿

IA
[
γ1IE + γ2IL

R
] = 0 

This is in the form of λ5 + G1λ
4 + G2λ

3 + G3λ
2 + G4λ + G5 = 0 

Where 

G1 = 
ωN

S
+
𝛽𝑆

IE
+
δIE

IL
+
σIL

IA
+
γ1IE+γ2IL

R
 

G2 = 
𝜔𝑁𝛽

IE
+
𝜔𝑁

𝑆
[
γ1IE+γ2IL

R
] +

𝜔𝑁𝜎IL

𝑆IA
+
𝜔𝑁𝛿I𝐸

SIL
+
𝛽𝑆

IE
[
γ1IE+γ2IL

R
] +

𝛽𝜎𝑆IL

IEIA
+
𝛽𝛿𝑆

IL
+
𝛿IE

IL
[
γ1IE+γ2IL

R
] +

𝜎IL

IA
[
γ1IE+γ2IL

R
] +

𝜎𝛿IE

IA
 

G3 =  
𝜔𝑁𝛽

IE
[
γ1IE+γ2IL

R
] +

𝜔𝑁𝛽𝜎IL

IEIA
+
𝜔𝑁𝛽𝛿

IL
+
𝜔𝑁𝛿IE

𝑆IL
[
γ1IE+γ2IL

R
] +

𝜔𝑁𝛿𝜎IE

𝑆IA
+
𝜔𝑁𝜎IL

𝑆IA
[
γ1IE+γ2IL

R
] +

𝛽𝛿𝑆

IA
[
γ1IE+γ2IL

R
] +

𝛽𝛿𝜎𝑆IE

IA
+
𝛽𝜎𝑆IL

IEIA
+

𝛿𝜎IE

IA
 

G4 = 
𝜔𝑁𝛽𝛿

IL
[
γ1IE+γ2IL

R
] +

𝜔𝑁𝛽𝛿𝜎IE

IA
+
𝜔𝑁𝛽𝜎IL

IEIA
[
γ1IE+γ2IL

R
] +

𝜔𝑁𝛿𝜎IE

IA
[
γ1IE+γ2IL

R
] +

𝛽𝛿𝜎𝑆

IA
[
γ1IE+γ2IL

R
] 

G5 = 
𝜔𝑁𝛽𝜎𝛿

IA
[
γ1IE+γ2IL

R
] 

Here   

 G1> 0; G2 >0; G1G2 − G3> 0; G3(G1G2 − G3) − G1
2G4) > 0; 

 G4[(G1
2G4 − G5G1) − G5(G2

2G1 − G3G5) − G1G4 − G5)]  >  0  and  

when 
ωNβδσ

(β+µ)(µ+d)(δ+𝛾1+µ)(σ+𝛾2+µ)
>

1

(β+µ)(δ+𝛾1+µ)(σ+𝛾2+µ)
. 

Here, the model is stable locally by R.H. Criteria. 

7. STABILITY: GLOBAL BEHAVIOR 

Let 

V(S,IE, IL, IA, R)= ((S - S∗)- ln
S

S∗
)) + l1((IE − IE

∗)- IE
∗ln

IE

IE
∗)) + l2((IL-IL

∗)- IL
∗ln

IL

IL
∗))+ l3((IA-IA

∗)- IA
∗ln

IA

IA
∗))         +l4((R- R∗)- 

R∗ln
R

R∗
))                                                                                             }10                      

Differentiate (10), 

 
𝑑𝑉

𝑑𝑡
= (

𝑆−𝑆∗

S
)
dS

dt
+ (

I𝐸− IE
∗

I𝐸
)
𝑑I𝐸

𝑑𝑡
+ (

IL− IL
∗

IL
)
𝑑I𝐿

𝑑𝑡
+ (

IA− IA
∗

IA
)
𝑑I𝐴

𝑑𝑡
+ (

𝑅−𝑅∗

𝑅
)
𝑑𝑅

𝑑𝑡
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Using (1), 

𝑑𝑉

𝑑𝑡
= (
S − 𝑆∗

𝑆
) (ωN − (β + µ)𝑆) + (

I𝐸 − IE
∗

I𝐸
) (βS − (δ + 𝛾1 + µ)𝐼𝐸) + (

IL − IL
∗

IL
) (δ𝐼𝐸 − (σ + 𝛾2 + µ)𝐼𝐿)

+ (
IA − IA

∗

IA
) (σ 𝐼𝐿 − (µ + d)) + (

𝑅 − 𝑅∗

𝑅
) (𝛾1𝐼𝐸 + 𝛾2𝐼𝐿 − µ𝑅) 

 

dV

dt
= (S − S∗) (

𝜔𝑁

S
− (βS + µS)) + l1(IE − IE

∗) (
βS

IE
− (δ + γ1 + µ)) + l2(IL − IL

∗) (
𝛿𝐼𝐸
𝐼𝐿
− (𝜎 + µ + 𝛾2))

+ l3(IA − IA
∗) (

𝜎𝐼𝐿
𝐼𝐴
− (µ + 𝑑)) + l4(R − 𝑅

∗) (
γ1IE + γ2IL

R
− µ) 

At (S, 𝐼𝐸, 𝐼𝐿, 𝐼𝐴, R) , 

dV

dt
= (𝑆 − 𝑆∗) [

𝜔𝑁

𝑆
− (
𝜔𝑁

𝑆∗
)] + 𝑙1(IE − IE

∗) [
𝛽𝑆

𝐼𝐸
− (
𝛽𝑆∗

IE
∗ )] + 𝑙2(IL − IL

∗) [
𝛿𝐼𝐸
𝐼𝐿
− (

𝛿IE
∗

IL
∗ )] + 𝑙3(IA − IA

∗) [
𝜎𝐼𝐿
𝐼𝐴
− (

𝜎IL
∗

IA
∗ )]

+ 𝑙4(𝑅 − 𝑅
∗) [
𝛾1𝐼𝐸 + 𝛾2𝐼𝐿

𝑅
−
𝛾1IE

∗ + 𝛾2IE
∗

𝑅∗
] 

dV

dt
= (𝑆 − 𝑆∗)𝜔𝑁 (

1

𝑆
−
1

𝑆∗
) + l1(IE − IE

∗)𝛽 (
𝑆

𝐼𝐸
−
𝑆∗

IE
∗) + l2(IL − IL

∗)𝛿 (
IE
𝐼𝐿
−
IE
∗

IL
∗) + l3(IA − IA

∗)𝜎 (
IL
𝐼𝐴
−
IL
∗

IA
∗)

+ l4(𝑅 − 𝑅
∗) (𝛾1[

IE
𝑅
−
IE
∗

R∗
] + 𝛾2 [

IL
𝑅
−
IL
∗

R∗
]) 

Choosing l1 =
1

β
, l2 =

1

δ
 , l3 =

1

σ
, l4 =

1

γ1γ2
    

dV

dt
=
−𝜔𝑁(𝑆 − 𝑆∗)2

𝑆𝑆∗
+ (IE − IE

∗) (
IE
∗𝑆 − 𝑆∗IE
IEIE

∗ ) + (IL − IL
∗) (

IEIL
∗ − ILIE

∗

ILIL
∗ ) + (IA − IA

∗) (
ILIA

∗ − IAIL
∗

IAIA
∗ )

+
(𝑅 − 𝑅∗)

γ1
(
IER

∗ − RIE
∗

RR∗
) +

(𝑅 − 𝑅∗)

γ2
(
ILR

∗ − RIL
∗

RR∗
) 

dV

dt
=
−𝜔𝑁(𝑆 − 𝑆∗)2

𝑆𝑆∗
+

1

IEIE
∗ [IE

∗𝐼𝐸𝑆 − 𝑆IE
2 − 𝑆IE

∗2 + 𝐼𝐸IE
∗S∗] +

1

ILIL
∗ [IL

∗𝐼𝐿IE − IEIL
2 − IEIL

∗2 + 𝐼𝐿IL
∗IE

∗] 

+
1

IAIA
∗ [IA

∗𝐼𝐴IL − ILIA
2 − ILIA

∗2 + 𝐼𝐴IA
∗IL

∗] +
1

𝛾1𝑅𝑅
∗
[𝐼𝐸𝑅

∗𝑅 − IE
∗𝑅∗2 −  𝐼𝐸𝑅

2 + IE
∗𝑅𝑅∗] 

+
1

𝛾2𝑅𝑅
∗
[𝐼𝐿𝑅

∗𝑅 − IL
∗𝑅∗2 −  𝐼𝐿𝑅

2 + IL
∗𝑅𝑅∗] 

dV

dt
=
−𝜔𝑁(𝑆−𝑆∗)2

𝑆𝑆∗
+ [𝑆 −

 𝐼𝐸𝑆
∗

 𝐼𝐸
∗ −

 𝐼𝐸
∗𝑆

 𝐼𝐸
 + 𝑆∗]+(𝐼𝐸 −

 𝐼𝐿 𝐼𝐸
∗

 𝐼𝐿
∗ −

 𝐼𝐿
∗𝐼𝐸

 𝐼𝐿
 +𝐼𝐸

∗) + (𝐼𝐿 −
 𝐼𝐴 𝐼𝐿

∗

 𝐼𝐴
∗ −

 𝐼𝐴
∗𝐼𝐿

 𝐼𝐴
 +𝐼𝐿

∗) 

+
1

𝛾1
(𝐼𝐸 −

 𝑅 𝐼𝐸
∗

 𝑅∗
−
 𝑅∗𝐼𝐸

 𝑅
 +𝐼𝐸

∗) + 
1

𝛾2
(𝐼𝐿 −

 𝑅 𝐼𝐿
∗

 𝑅∗
−
 𝑅∗𝐼𝐿

 𝑅
 +𝐼𝐿

∗) 

dV

dt
=
−𝜔𝑁(𝑆−𝑆∗)2

𝑆𝑆∗
+ [(𝑆 + 𝑆∗) − (

 𝐼𝐸𝑆
∗

 𝐼𝐸
∗ +

 𝐼𝐸
∗𝑆

 𝐼𝐸
 )]+[( 𝐼𝐸 + 𝐼𝐸

∗) − (
 𝐼𝐿 𝐼𝐸

∗

 𝐼𝐿
∗ +

 𝐼𝐿
∗𝐼𝐸

 𝐼𝐿
 )]+[ (𝐼𝐿 + 𝐼𝐿

∗) − (
 𝐼𝐴 𝐼𝐿

∗

 𝐼𝐴
∗ −

 𝐼𝐴
∗𝐼𝐿

 𝐼𝐴
  )]+ 

1

𝛾1
[(𝐼𝐸 +

𝐼𝐸
∗) − (

 𝑅 𝐼𝐸
∗

 𝑅∗
−
 𝑅∗𝐼𝐸

 𝑅
 )] + 

1

𝛾2
[(𝐼𝐿 + 𝐼𝐿

∗) − (
 𝑅 𝐼𝐿

∗

 𝑅∗
−
 𝑅∗𝐼𝐿

 𝑅
) ] 

Therefore 
dV

dt
<  0, when 

𝑆

𝐼𝐸
<

𝑆∗

𝐼𝐸
∗  ,

𝐼𝐸

IL
<
𝐼𝐸
∗

IL
∗  ,

IL

IA
<

IL
∗

IA
∗  ,

IE

R
<
IE
∗

R∗
 ,
IL

R
<
IL
∗

R∗
    

Here, the model is stable globally by Lyapunov’s approach. 

8. NUMERICAL SIMULATIONS 

We have chosen the parameter values are taken as δ = 0.30, ω = 0.092, µ = 0.018, β = 0.75, 𝛾1 = 0.04, 𝛾2=0.004. 
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Figure 2: Cervical Cancer Model                                                       Figure 3: Different values of δ in I_E 

Figure (2) represents the three stages namely, Infected at early stage, Infected at Locally advanced stage and 

Infected at Advanced stage class of the Cervical Cancer model. 

 Figure (3) shows the number of women of Infected at early stage class with various values of secondary infectious 

rate. The number of women decreases in the Infected at early stage class whenever the secondary infectious rate δ 

increases. 

 

Figure 4: Different values of σ in IL                                                        Figure 5: Different values of σ in IA 

Figure (4) shows the number of women of Infected at locally advanced stage class with various values of final 

infectious rate σ. In Infected at locally advanced stage class, the number of women decreases whenever the final 

infectious rate σ increases. 

Figure (5) represents that the flow of number of individuals of Infected at advanced stage class with different values 

of final infectious rate σ. In the Infected at advanced stage class, the final infectious rate σ increases the Infected at 

advanced stage individuals increases. 

 

Figure 6: Different values of 𝛾1                                               Figure 7: Different values of 𝛾2 

Figure (6) shows the number of women recovered class for various values of recovery rate of Initial infectious stage 

class and the number of women of recovered class increases whenever the recovery rate of women of Infected at early 

stage 𝛾1 increases. 
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Figure (7) represents the number of women of recovered class for various values of recovery rate of secondary 

infectious stage class and the number of women of recovered class increases whenever the recovery rate of Infected 

at locally advanced stage 𝛾2 increases. 

9. CONCLUSION 

This paper narrates the dynamical behaviour of a mathematical model of Cervical Cancer with five compartments 

namely Susceptible, Infected at early stage, Infected at locally advanced stage, Infected at advanced stage and 

Recovered class. The positivity and boundedness of the model are derived. The disease free equilibrium and endemic 

equilibrium points are found. The system is found to be locally asymptotically stable around the endemic equilibrium 

through the R.H. criteria and globally asymptotically stable under a particular condition using Lyapunov theorem. 

Numerical simulations show the flow of dynamical behaviour of different parameters such as initial infectious rate β, 

secondary infectious rate δ, final infectious rate σ, recovery rate from Infected at early stage class 𝛾1 and recovery rate 

from Infected at locally advanced stage class 𝛾2. The number of individuals increases in the Infected at early stage, 

when the secondary infection rate δ decreases. When final infectious rate σ increases, the number of individuals in 

Infected at locally advanced stage decreases. Recovery is possible only in Infected at early stage and Infected at locally 

advanced stage. There is no recovery in Infected at advanced stage.  
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