
Journal of Information Systems Engineering and Management 
2025, 10(20s) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/ Research Article  

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Multimodal Biometric Systems: Combining 

Electroencephalogram and Facial Recognition for 

Robust Individual Identification and Verification 

ShaluVerma1, Sanjeevindora2, RohtashDhiman3 

1ResearchScholar,Department of computer science and engineering ,Deenbandhu, ChhotuRam 

University of Science and Technology,Murthal,Sonepat,Haryana,(India) 

2Associate Professor, Department of computer science and engineering, Deenbandhu, ChhotRam 

University  ofScienceandTechnology,Murthal,Sonepat,Haryana,(India) 

.3Assistant Professor, Department of electrical engineering, Deenbandhu,ChhotuRam University of 

Science and Technology,Murthal,Sonepat,Haryana,(India) 

CorrespondingEmail:19001901010shalu@dcrustm.org 

ARTICLE INFO ABSTRACT 

Received: 22 Dec 2024 

Revised: 30 Jan 2025 

Accepted: 18 Feb 2025 

The primary factor driving the growing interest in novel biometric features is the 

vulnerability of traditional methods like fingerprint and facial recognition to forgery. 

This study focuses on a multimodal biometric identification system that integrates 

data from electroencephalograms (EEG) and facial features. To derive valuable 

insights from EEG data, we apply signal processing techniques such as filtering, 

segmentation, and feature extraction, alongside Daubechies-4 (DB4) wavelet analysis 

with five decomposition levels. The enhanced facial video features include entropy 

calculations and tracking of facial measurements. Six classifiers Gaussian Naïve Bayes, 

K-Nearest Neighbour, Random Forest, AdaBoost, Support Vector Machine, and 

Multilayer Perceptron were trained utilizing the combined EEG and facial data. 

Findings reveal that AdaBoost and Random Forest emerged as the most effective 

classifiers for this application, achieving accuracies of 99.87±0.13% and requiring EEG 

recording times of 2s and 1.5s, respectively, showcasing excellent precision. 

Keywords: Identification, Electroencephalogram (EEG), Biometric systems, Wavelet 

decomposition, Machine learning algorithms 

1 INTRODUCTION 

In recent years, technology has increasingly permeated various sectors, including banking, retail, 

online payments, law enforcement, healthcare, border control, and business operations. The security 

and privacy of these applications have become a paramount concern. Consequently, there is a rising 

demand for resilient and enduring solutions [1]. Although existing security systems are already 

operational, there is a persistent push for enhancements in numerous aspects related to security and 

privacy. Authentication is vital for identifying or verifying an individual, ultimately deciding whether 

to permit or deny access to resources and services. Its objective is to assess whether individuals should 

be allowed access or not [1]. Typically, authentication techniques are based on “something you 

possess,” such as certificates, tokens, and smart cards; “something you know,” like passwords; or 

“something you are,” such as biometrics [2]. Every authentication approach carries its own set of 

advantages and drawbacks [3]. Traditionally, a person’s identity is verified through items they have, 

such as a token or card, or through information they know, such as passwords or identification 

numbers. While conventional methods are prone to loss, theft, or exposure, biometrics, in contrast, 

rely on characteristics inherently belonging to an individual. These characteristics can include both 

physiological and behavioral traits [4]. Physiological attributes encompass physical traits of the 

human body, including the face, eyes, fingerprints, and retina scans, among other things. On the other 

hand, behavioral biometrics concentrate on the manner in which a user carries out specific activities 
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[5]. Furthermore, the bio-electrical signals from the brain (EEG), heart (ECG), and muscles (EMG), 

when combined with human attributes, have garnered significant interest in biometric technology. 

These signals are distinctive to each individual and fulfill critical criteria (i.e., they demonstrate 

uniqueness, universality, and liveness detection) [6]. Each person has unique traits, making them 

different from one another concerning facial features, fingerprints, mouse dynamics, voice dynamics, 

keystroke dynamics, and signature verification [7]. Many studies have been carried out to pinpoint 

effective and suitable biometric modalities. A reliable biometric should adhere to four main criteria 

[8]: 1) Universality: every individual should possess biometric traits; 2) Uniqueness: every individual 

should have a characteristic that is not duplicated by anyone else; 3) Permanence: the biometric trait 

should remain constant over time; and 4) Collectability: the biometric trait should be easily obtainable 

by a sensor and processed efficiently. Additionally, an effective biometric system should demonstrate 

high accuracy, be user-friendly, and maintain low rates of false negatives and false positives. EEG-

based biometric systems are becoming increasingly popular due to their resistance to replication in 

hazardous environments, while alternative systems like iris and fingerprint recognition can be easily 

compromised in threatening situations [9]. Recognizing the growing challenges in various areas where 

security is crucial, significant advancements have been achieved with biometric systems, particularly 

those utilizing EEG signals [10]. The neuronal activity of the brain generates a variety of signals that 

are difficult to replicate since each individual’s brain signals have unique characteristics [11]. Among 

the four aforementioned characteristics that enhance biometric systems, EEG seamlessly meets the 

most essential criterion, which is uniqueness, as it has been noted that each person exhibits a distinct 

EEG pattern [12]. Despite its resistance to spoofing attacks, EEG still encounters issues concerning 

collectability and permanence. The permanence of EEG signals collected from the skull [13] is affected 

by their variability across different sessions and their low signal-to-noise ratio (SNR) [14].This paper 

aims to address these specific challenges by proposing a novel hybrid paradigm using face images and 

EEG signals.Facial images are among the easiest modalities to collect and are more convenient than 

other biometric methods. When combined with EEG signals, they offer greater security. Each 

individual has distinct facial features paired with unique EEG signals. Consequently, each user 

generates a specific set of features. Compared to other modalities, facial characteristics show 

increased permanence due to their generally stable nature. However, one limitation of facial 

recognition is its reduced resistance to spoofing, as impostors can potentially use the face of a 

legitimate user. To mitigate this issue, the aim is to bolster security through a multimodal system. The 

use of deep learning and machine learning in various wearable biomedical applications is becoming 

increasingly popular. Several EEG biometric systems and face unimodal biometric systems utilizing 

machine learning have been introduced previously. Implementing a system based on a single trait 

always carries the risk of system decline. To create a resilient biometric system, a hybrid approach that 

integrates both modalities is necessary for effective operation. In the past, hybrid systems have been 

developed that combine human characteristics with EEG signals to enhance system strength. 

1.1 Motivation 

This investigation focuses on the two distinct characteristics that comprise a multimodal system: 

brain signals and facial features. Facial recognition is one of the most reliable methods for identifying 

individuals. These characteristics depend on extracting features from images with low entropy. A 

more robust biometric system is necessary, as facial recognition alone is susceptible to issues related 

to aging and masking. The challenge of addressing these vulnerabilities while enhancing security is 

the primary motivation behind the creation of a multimodal system. By integrating EEG signals with 

facial features, the system can be strengthened, ensuring data confidentiality, reducing the risk of 

signal replication, and preventing data breaches. This research aims to improve user identification 

and verification in a comprehensive manner by utilizing these two distinct attributes. By harnessing 

both of these traits, the study intends to enhance the overall process of user identification and 

verification. 

1.2 Significance of the Paper 

The proposed multimodal framework contributes in the following ways:   
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1. This scheme presents two innovative contributions. Firstly, it integrates two biometric traits, 

specifically facial data and EEG signals. This integration is crucial to the approach put forward. 

Individual traits can be vulnerable to spoofing and attacks. Therefore, combining the EEG signal with 

facial recognition increases the system's resilience against unauthorized access. Capturing facial 

images while recording EEG signals will diminish the interference that may arise if alternative traits 

are utilized. In our opinion, this represents the inaugural hybrid methodology that merges these two 

traits.   

2. The second key contribution of this study emphasizes an improvement in the accuracy of user 

identification and verification through the amalgamation of these biometric characteristics and the 

application of various classifiers.   

The document is organized as follows: Section 2 offers a review of relevant literature. The proposed 

methodology is detailed in the Materials and Methods section, which is Section 3. Results and their 

corresponding discussions are presented in Section 4. Finally, the paper concludes in Section 5. 

2 LITERATURE REVIEW 

The current body of research on biometrics can be divided into two primary categories: facial 

recognition systems and electroencephalogram (EEG)-based biometric systems. These systems 

emphasize the use of either facial recognition or EEG as distinct traits for both identification and 

verification. Furthermore, several studies investigate the integration of these traits with additional 

biometric features to develop multimodal systems. 

2.1 EEG Based biometric systems 

Numerous applications have made use of EEG brain signals, such as sentiment analysis and 

prediction, across various categories of brain signals. Dustin et al. explored the factors influencing the 

efficacy of EEG biometrics. The convolutional neural dense connection network (CADCNN) technique, 

created by Zhang et al., employs a channel attention mechanism to enhance the performance of 

affective EEG-based individual recognition. In their assessment, they compared this method with 

other cutting-edge EEG classifiers and models utilized in EEG biometrics studies. Wang et al. 

introduced a connective graph for EEG biometric identification, which deepens the understanding of 

human uniqueness by analyzing six aspects, including inter-state stability, computational expense, 

connectivity metrics, frequency bands, global feature integration, and node centrality. Maiorana's 

deep learning approach utilizes Siamese convolutional neural networks to extract features for EEG-

based biometric verification that remains task-independent. On the other hand, Chen et al. developed 

a highly secure EEG-based authentication system using RSVP stimuli and dry electrodes. This system 

employed a knowledge-based method for user validation rather than depending on the extraction of 

particular intrinsic factors as features from EEG, a common practice in many previous methods. 

Damasevicius et al. created a biometric cryptosystem based on EEG signals, which they tested using 

data gathered from 42 participants. Wu et al. devised an innovative identity recognition system that 

uses EEG with RSVP, incorporating both non-self and self-face images, demonstrating improved 

accuracy alongside anti-deception features. 

2.2 Face Biometric Systems 

The identification of human faces in videos has led to the creation of a framework focused on 

convolutional neural networks (CNN). Ding et al. presented a CNN-based framework designed to 

address issues related to image blurriness and occlusions. Their proposed model, called the Trunk 

branch ensemble convolutional neural network, is dedicated to capturing relevant details from facial 

images. Kharchevnikova et al. aimed to enhance frame quality and developed a lightweight CNN that 

offers a more efficient frame selection method compared to traditional approaches. Baert et al. 

formulated a new unsupervised method for assessing face quality to choose images of high quality. 

This approach prioritizes obtaining high-quality facial crops from video material without revealing the 

identities of individuals. Kudithalert et al. introduced an innovative extreme learning matching 

classification technique for verification tasks, named the Siamese extreme learning machine, which 
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effectively handles parallel inputs. Facial images exhibit numerous variations, including changes in 

pose, expression, and lighting, which can negatively impact the effectiveness of biometric recognition 

systems. To tackle these issues, Maafiri et al. proposed a novel feature extraction method for face 

recognition that integrates local binary pattern with wavelet kernel PCA. This strategy aims to extract 

strong and distinctive features, thereby enhancing performance in face recognition tasks through a 

non-linear projection method known as RKPCA. 

2.3 Multimodal systems 

A multimodal biometric system is seen as a more efficient option than an unimodal biometric system 

since it combines various human attributes or more than two biometric modalities to improve its 

reliability. Chakladar et al. [32] employed a multimodal Siamese neural network to integrate two 

different biometric traits—offline signature and EEG signal—for the purpose of user validation. The 

network captures both spatial and temporal features from the EEG encoder and the image encoder. 

After the input data is combined into a single feature space, a distance metric is used to evaluate the 

similarities and differences of the features to generate the verification results. [33] introduces a 

multimodal deep key-based biometric authentication system that employs EEG signals along with gait 

signals to tackle the increasing threat of biometric spoofing through devices such as contact lenses, 

fingerprint films, anti-surveillance masks, and vocoders. Saini et al. [7] presented an innovative 

method for multimodal user identification by integrating two related traits: signatures and brain 

signals. Each person's brain shows a unique response while they are signing. Features from both traits 

are extracted and input into a model that uses a Hidden Markov Model (HMM)-based sequential 

classifier. In [27], the combination of EEG and ECG is investigated using several classifiers including 

KNN, ESAVM, and LDA. The two traits are fused at the feature level, followed by a decision-level 

fusion of the classifiers. Several studies have concentrated on employing EEG and facial recognition 

systems as unimodal biometric systems. To our knowledge, there has been no research that combines 

EEG data with video footage of a person’s face. This study suggests a multimodal biometric system 

that synergizes EEG signal features with facial image features derived from a video of a subject. 

3.MATERIALS AND METHODS 

3.1 Dataset Description 

In this paper, a method is introduced that utilizes a comprehensive dataset to develop a system. This 

dataset [1][2]was specifically created for recognizing emotions and has been employed in various 

research efforts. It is a multimodal dataset that comprises recorded electroencephalogram (EEG) and 

physiological signals from 32 individuals while they were viewing forty-one-minute music videos. 

Additionally, the dataset includes rating values for valence, dominance, arousal, familiarity, and both 

liking and disliking of different emotions showcased by participants during the video viewing. A 

thorough summary of the data will be provided in the subsequent sections.   

1. The sampling frequency of the data was reduced to 128 Hz.   

2. Artefacts from the electrooculogram (EOG) were removed.   

3. A band-pass filter was applied with a frequency range from 4.0 Hz to 45.0 Hz.   

4. The data was normalized by averaging it to a common reference point. 

5. After removing the baseline 3-s trial, the data was divided into 60-s trials. Most of the researchers 

have been using this dataset for human emotion classification. However, this dataset is utilized in this 

work to study EEG-based person identification.  
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Fig.1: 3D view of EEG data 

3.2 Proposed Methodology 

This approach identifies prominent characteristics and accurately categorizes them by utilizing brain 

activity and facial expression information obtained from EEG signal processing and facial video 

analysis. For time-frequency assessment, EEG data is divided into manageable time segments and 

converted using wavelet transform into various frequency bands. Analyzing the signals yields 

statistical measures (mean, variance, skewness, kurtosis), wavelet coefficients, and wavelet energy, 

which indicate the signal strength across different frequency ranges. The analysis of facial video 

begins with selecting frames and detecting faces to focus on the area of interest, followed by the 

extraction of facial features such as basic emotional metrics (e.g., emotional intensity, neutral 

expression, macro-expressions) and wavelet-derived characteristics for detailed evaluation. 

Integrating and normalizing the features from both modalities ensures that their scale contributions 

are balanced. For categorizing emotions, states, and other targets specific to each subject, a machine 

learning or deep learning approach employs this combined feature vector. The reliability of this 

classification is ensured by accuracy, precision, and memory. By merging complementary EEG and 

facial data with wavelet processing and feature integration, this method effectively captures the 

neurological and expressive elements essential for recognizing emotions, monitoring cognitive status, 

and analyzing behavior. 
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Fig.2: EEG and Face biometric system 

3.3 EEG Data Pre-processing 

The DEAP dataset comprises records from 32 participants [27]. Each participant's dataset contains 

EEG information that has been down-sampled to a frequency of 128Hz and has gone through pre-

processing. Artifacts, including EOG signals, have been eliminated. A bandpass filter was utilized with 

a frequency range from 4.0 to 45.0. Before averaging the data and segmenting it into 60-second 

segments, a 3-second pre-trial baseline was excluded. The original sequence of the trials was 

rearranged to correspond with the video sequence. Because EEG signals are non-stationary, discrete 

wavelet transform (DWT) techniques are applied to harness the insightful features of this 

transformation. Discrete wavelet transforms consist of a series of discrete scales defined by integer 
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multiples of two. Essentially, the initial time-domain signal is divided into two components using a 

low-pass and a high-pass filter, followed by down-sampling. The coefficients obtained from 

convolving the original signal with the low-pass filter are called approximation coefficients, while 

those from the high-pass filter are referred to as detail coefficients. Given that the EEG signal is 

sampled at 128Hz, the maximum frequency in the signal is 64Hz. Consequently, when the signal is 

down-sampled by a factor of 2, each node provides a representation that is smaller than the original 

signal. The EEG signal contains various significant frequency bands, including delta, theta, alpha, 

beta, and gamma, with specific ranges that may differ among various references. Wavelet analysis is 

used to illustrate the EEG signal, which entails decomposing the signal into a linear combination of 

particular wavelets. Various families of wavelets exist, such as the mother wavelet, Morlet, Paul2, 

Haar, Symlet, and biorthogonal. For this research, the Daubechies-4 wavelet was selected due to its 

smoothing characteristics, which aid in identifying variations in the signal. The DWT of the function 

f(t) can be mathematically expressed through the following equation [17]. 

 

                                    Fig.3: Five levels of decomposition using Discrete wavelet transform[3] 

 DWTΨ(j,k)= ∫ 𝑓(𝑡)Ψ𝑗,𝑘
∞

−∞
(t)dt                                                               (1) 

Five levels of signal decomposition were used in this work to obtain the various frequency bands. 

3.4 Face Image Pre-processing 

The handling of images includes identifying faces, applying modifications, and implementing 

smoothing effects. Various subjects are selected for analysis in the images. The first step in the image 

pre-processing procedure is face detection. This step pinpoints the area of interest in the input images, 

which will then be passed on to the next stage shown in Figure 4. Numerous studies have employed 

the Viola-Jones face detection algorithm [29] to recognize human faces. This technique utilizes 

AdaBoost as a learning method, choosing a small number of key features from a large pool of potential 

features. 
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Fig.4:Region of interest includes facial features[2] 

3.5 EEG Feature Extraction 

An array of research studies has focused on extracting features and classifying EEG signals. A recent 

study by Carrion-Ojeda has proposed a novel feature called Relative Wavelet Energy, which has 

demonstrated promise across various EEG applications. This feature has been advantageous in 

enhancing the analysis and interpretation of EEG signals, offering potential benefits in multiple 

domains of EEG research. In this investigation, several EEG features are extracted from the signal, 

such as wavelet energy, relative wavelet energy, mean, standard deviation, skewness, and entropy. 

Each of these features is computed for every frequency band using distinct equations up to the fifth 

level of decomposition. 

3.6 Face Feature Extraction 

Once the pre-processing stage is complete, relevant features can be extracted. As the quality of 

features significantly influences the accuracy of the system, computer vision has developed numerous 

techniques. By capturing facial images from videos featuring 22 individuals, both frame entropy and 

MSE were computed. MSE, or "Mean Squared Error," quantifies the average difference between two 

signals specifically, between the original facial landmarks and the smoothed landmarks created using 

a moving average filter. This moving average filter is effective in reducing high-frequency noise within 

the facial landmark signals, which can lead to a decrease in the MSE between the original and 

smoothed signals. Theoretically, a larger moving average window will produce a smoother signal, 

subsequently resulting in a lower MSE. Entropy measures the randomness or unpredictability present 

within a signal. Regarding facial landmarks, the frame's entropy indicates the extent of variation in 

the positions of facial features. The moving average filter contributes to the smoothing of high-

frequency fluctuations in the facial landmarks, thereby reducing the signal’s entropy. Theoretically, a 

larger moving average window would lead to a smoother signal, which would produce lower entropy. 

The frame with the lowest entropy is chosen. This study presents a method for identifying facial 

regions, which are divided into several parts, such as the pair of eyes, mouth, and nose, to extract 

features from each segment. 
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Fig.5: (a) Mean Squared error of signal(b) Frame with minimum entropy 

Algorithm 1: Face Frame Selection and Facial Feature Extraction 

Require: V (Video of Subject), M(Moving Average Length) 

Ensure: FF(Facial Features) 

1: Procedure Facial Feature Extraction(V , M) 

2: For each frame F ∈ V do  

3: Detect face in F 

4: If F has a face then 

5: Calculate and store the entropy of F as Ex  

6: Calculate and store the MSE (Mean Squared Error) of F as Mx 

7: end If  

8: end For  

9: Calculate moving averages of the entropy values and store them as E¯  

10: Calculate moving averages of the MSE values and store them as M¯ 

11: Select the frame ID with the lowest moving average values of entropy (E¯) and MSE (M¯ ) 

and store them as F ID  

12: Calculate and return Ex, E¯, Mx, M¯ ,Wfrontal face, Hf rontal face, Deyes, Heyes, Wnose, 

Hnose, Wmouth, Hmouth 

13: end Procedure 

 

4 RESULTS AND DISCUSSION 

4.1 User identification result 

The EEG signal was segmented into multiple time intervals, specifically 0.25, 0.5, 0.75, 1, 1.25, 1.5, 

1.75, 2, 2.25, and 2.5 seconds. To mimic potential variations that could occur between recordings in a 

real-world scenario, the segmentation started at random points. The results produced by the 

classifiers were assessed based on sensitivity, specificity, and accuracy for each of the time segments. 

The outcomes reveal that when five levels of decomposition are used, starting from the 2-second 

mark, there are no notable changes in the classifiers' performance. For identifying subjects, a 5-fold 

cross-validation method was employed, utilizing 80% of the dataset for training while reserving 20% 

for testing. With a recording duration of 1.5 seconds and five levels of wavelet decomposition, 
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AdaBoost excelled compared to the other classifiers evaluated, achieving sensitivity, specificity, and 

estimated accuracy of 100%, as illustrated in Table 1. Each set of rows corresponds to a specific time 

segment with an assigned time value. Within each set, rows represent different algorithms (KNN, 

SVM, etc.). The values listed in each row indicate the performance metrics (Precision, Recall, etc.) of 

that specific algorithm on the particular segment at the designated time value. This data facilitates a 

comparison of how each classification algorithm performs across various datasets and time intervals. 

By analyzing the recorded performance metrics, one can determine the appropriateness of different 

algorithms for various time values. The analysis uncovers intriguing insights regarding the 

performance of these algorithms across datasets with differing time intervals. In the dataset with a 

time value of 0.50, both KNN and SVM exhibited exceptional performance. They achieved high 

Precision, Recall, and Accuracy scores, highlighting their effectiveness with this specific dataset. RF 

consistently produced excellent results across a range of time values, attaining nearly perfect 

Precision, Recall, and Accuracy. Its Specificity remained consistently high, demonstrating its 

capability to accurately identify negative cases. KNB and AdaBoost also showed impressive results, 

especially in cases with time values of 1.25, 1.50, and 1.75, consistently achieving high scores in 

Precision, Recall, and Accuracy, making them strong candidates for these datasets. MLP maintained a 

commendable performance, but its scores were slightly lower compared to the other algorithms in this 

evaluation. It delivered competitive results but displayed minor fluctuations in performance across 

different datasets and time intervals. It is important to acknowledge that these findings offer useful 

insights for selecting algorithms but should be viewed in relation to the specific problem and dataset 

at hand. 

4.2.1 UserIdentification Algorithm   

Algorithm 2: EEG and Face-Based Subject Identification 

Require: DEAP Dataset (EEG and Videos of Subjects), S (SegmentSize), Ψ (Wavelet Function), L 

(Decomposition Level), M (Moving Average Length)  

Ensure: ACC(Accuracy) 

1: Procedure SubjectIdentification(DEAP Dataset, S, Ψ, L, M) 

 2: For each subject n in DEAP Dataset do 

 3: For each trial t of the subject in the dataset do 

 4: FF (Facial Features) ← Extract Facial Features using Algorithm 1 

 5: EEG (Segmented EEG Data) ← Load and Segment EEG data with SegmentSize S  

6: Decoded EEG ← Decode the EEG using the specified wavelet function Ψ up to Decomposition Level 

L  

7: AW (Alpha Waves), BW (Beta Waves), and DW (Delta Waves) ← Extract Alpha, Beta, and Delta 

Waves from the decoded EEG  

8: Mean (µ), Standard Deviation (σ), Kurtosis (κ), Skewness (γ), and Entropy (ϵ) ← Extract Mean, 

Standard Deviation, Kurtosis, Skewness, and Entropy from the EEG 

 9: RWE (Relative Wavelet Energy’s) ← Extract Relative Wavelet Energy’s from the EEG  

10: EEG Features ← Fuse AW, BW, DW, µ, σ, κ, γ, ϵ, and RWE of the EEG  

11: F used Features ← Fuse the Facial Features alongside EEG Features  

12: Assign Subject as class y to each feature instance  

13: end For 

14: end For 

15: Use F used Features and class y to train the classifier: Y ← Classifier(Features, y)  



630  
 

J INFORM SYSTEMS ENG, 10(20s) 

16: To obtain predicted subject class Y  

17: Evaluate Accuracy (ACC) using true class y and predicted class Y 

 18: end Procedure 

In this algorithm, the EEG signals undergo pre-processing and are integrated with facial features 

through a series of steps:   

1. Retrieve the EEG dataset and choose a specific channel: The code retrieves the EEG data for a 

particular subject from a designated dataset directory and picks a single channel from the available 

options.   

2. Segment the EEG signals: The code divides the EEG signals into smaller segments of a specified size 

using a function named "EEG_Segment". This facilitates the extraction of pertinent features from 

designated time intervals of the EEG signals.   

3. Implement wavelet transform: The code conducts a wavelet transform on each EEG segment to 

extract relevant frequency-domain features. The wavelet transform is executed through the "wavedec" 

function, which decomposes the EEG signal into various frequency sub-bands.   

4. Calculate relative wavelet energy: The code utilizes the coefficients gained from the wavelet 

transform to determine the relative wavelet energy (RWE) for each frequency sub-band. RWE 

quantifies the energy present in each sub-band relative to the overall energy of the signal.   

5. Derive statistical features: The code also computes statistical features from the EEG signals, such as 

mean, standard deviation, kurtosis, skewness, and entropy.   

6. Standardize the feature vector: The code standardizes the extracted feature vector by scaling all 

features to a range between 0 and 1. This process helps eliminate any bias resulting from variations in 

feature scales.   

7. Merge EEG and facial features: The normalized feature vector obtained from the EEG signals is 

combined with the facial features extracted from video frames.   

By executing these pre-processing steps, the EEG signals are converted into a collection of relevant 

features suitable for classifying the subject. 

4.2.2 Classification 

This research addresses the "closed set" recognition challenge, which pertains to a pattern recognition 

issue where the categories of the input data are established and predetermined. This implies that the 

potential classifications of the input data are confined to a specific, limited set of classes, and the 

objective is to accurately categorize new input into one of these known classes. A frequently employed 

approach to solve the closed-set recognition problem involves the use of supervised learning 

algorithms. In these methods, a model is trained on a labeled dataset, where each instance is 

associated with a class label. During training, the model acquires the correlations between the 

characteristics of the input data and the respective class labels. Once training is complete, the model 

can classify new, unseen data by identifying the class label that most closely corresponds to the input 

data based on the relationships acquired during training. Additionally, Fig. 6 illustrates the confusion 

matrix for each classifier at the decomposition level 5 using a 1.5-second recording. 

Various classifiers apply different criteria for performing classification: The fundamental concept 

underlying closed-set recognition challenges, which is particularly suited for SVM, is to find a 

hyperplane that maintains the maximum distance from the nearest data points of each class, known as 

support vectors. Support vectors are the crucial data points that significantly impact the positioning of 

the hyperplane that is nearest to them. Moreover, despite having minimal training data, our classifier 

demonstrates impressive performance and can also manage noisy data. The K-Nearest Neighbour 

(KNN) technique is simple and effective, functioning by identifying the closest neighbor to a data 

point and assigning class labels based on the majority voting among those neighbors. In addition to its 
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benefits, such as simplicity and ease of use, KNN does not necessitate any assumptions regarding the 

data distribution and can accommodate non-linear decision boundaries. 

Random Forest (RF) is particularly renowned for its robustness and exceptional accuracy in the 

presence of outliers. The fundamental concept is that each decision tree tends to overfit the training 

data; however, aggregating multiple decision trees can mitigate overfitting, resulting in a more 

resilient model with enhanced generalization performance. The improvement in performance can 

stem from decreased correlation among the trees due to random feature selection and bootstrapped 

training data. A popular variation of the naive Bayes algorithm is Gaussian Naive Bayes (GNB). In this 

approach, it is assumed that the conditional probability distribution of each feature given the class 

label follows a Gaussian distribution, implying that each feature is expected to conform to a normal 

distribution. The Gaussian Naive Bayes classification algorithm utilizes Bayes' theorem to compute 

the posterior probabilities of each class label based on the input features. The algorithm selects the 

class label with the highest probability as the predicted outcome by evaluating these probabilities. 

AdaBoost (AB) is a well-known ensemble learning technique. It operates by focusing on the 

misclassified instances from prior iterations, adjusting the weights at each step of the AdaBoost 

procedure to iteratively train a weak classifier on a weighted version of the training dataset. The 

ultimate classifier is formed by aggregating the weak classifiers, each receiving a weight based on its 

performance during training [34].  

The Multilayer Perceptron (MLP) is a type of neural network that is proficient at capturing complex 

non-linear relationships between input variables and output results. This capability makes MLPs 

particularly effective for addressing closed-set recognition challenges. MLPs can be trained utilizing 

labeled training data to uncover underlying patterns and generate accurate predictions for new data 

points. During the training phase, the weights and biases of the network are adjusted to reduce a cost 

function like mean squared error or cross-entropy.  

Once the network has been trained, it can be used to classify unseen data points by inputting the 

feature values into the network and receiving the output from the final output layer [35]. 

4.3 User verification 

Determine a score d(X,F') that indicates how closely the input sample resembles a group of identified 

individuals. This can be achieved using a distance metric, such as the Euclidean distance, where d 

represents the metric and Fi denotes the feature vector for the i-th identified individual. Assess d(X,F') 

against a predetermined threshold value T. If S(X,F') is less than or equal to T, classify X as not 

associated with any known individual. Conversely, if S(X,F') exceeds T, classify X as associated with 

the known person whose feature vector is closest. Specifically, if min(d(F', Fi)) is greater than T, then 

X does not correspond to any known individual; otherwise, X is associated with the recognized person 

whose feature vector Fk minimizes the distance, such that d(F', Fk) = min(d(F', Fi)). In this context, 

the if-statement evaluates whether the shortest distance between the feature vector of the input 

sample and those of recognized individuals in S surpasses the threshold T. If it does, the input sample 

is regarded as not linked to any known individual; if it doesn’t, the input sample is classified as 

belonging to the known person with the feature vector that is closest, determined by the minimum 

distance to the feature vector of the input sample. 
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                                  (a) SVM                                                                              (b) RF 

 

                         (c)KNN                                                                         (d)GNB 
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                                   (e)AB                                                                        (f)MLP 

 

Fig.6: Confusion matrices of the classifiers using 1.5 s of recording 

4.4 Results  

Each recording consists of 32 EEG channels, 12 peripheral channels, three channels that are not used, 

and one status channel. The signals in this research were down-sampled from 512 Hz to 128 Hz prior 

to performing the tests. A band-pass frequency filter was applied to restrict the signal range to 

between 4 Hz and 45 Hz, after eliminating electrooculogram (EOG) artefacts. Subsequently, the EEG 

signals were divided into Segment Size windows and underwent wavelet decomposition using the 

“wavedec” function at a defined number of levels. The wavelet coefficients were preserved, and the 

detailed coefficients from levels 1 to 5 were extracted for the delta, alpha, beta, and gamma frequency 

bands. A single-row vector containing the coefficients for the alpha, beta, and delta bands was 

normalized to ensure a zero mean and unit variance for each component. The energy characteristics of 

the wavelet coefficients, along with statistical variables such as mean (mu), standard deviation 

(sigma), kurtosis (Ku), skewness (Sk), and entropy (Ent), were incorporated into this normalized 

vector. The concatenation also included the topic number. This comprehensive method transformed 

EEG signals into a feature vector that encompassed wavelet-derived characteristics, statistical 

features, and facial attributes for further analysis. K-Nearest Neighbours (KNN), Support Vector 

Machine (SVM), Random Forest, and AdaBoost were trained on the extracted features to establish 

classification or prediction patterns. In this scenario of multi-class classification, a confusion matrix 

was utilized to assess the accuracy (Acc) of the models, as well as Macro-averaging Specificity (Sp), 

precision (Pe), recall (Re), and F1-score (Fs). These metrics indicate the ability of the model to 

distinguish between classes and its classification performance. The formulas used to compute these 

metrics are as follows: 

Acc= (∑
𝑇𝑝𝑖+𝑇𝑛𝑖

𝑇𝑝𝑖+𝐹𝑛𝑖+𝐹𝑝𝑖+𝑇𝑛𝑖

𝑙
𝑖=1 ) /

𝑙                                                                                                                                                       (2) 

Sp= (∑
𝑇𝑛𝑖

𝑇𝑛𝑖+𝐹𝑝𝑖

𝑙
𝑖=1 ) /𝑙                                                                                                                                                    

(3) 
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Pe= (∑ 𝑇𝑝𝑖
𝑙
𝑖=1 )/(∑ 𝑇𝑝𝑖 + 𝐹𝑝𝑖

𝑙
𝑖=1 )                                                                                                                                

(4) 

Re=

(∑ 𝑇𝑝𝑖
𝑙
𝑖=1 )

(∑ 𝑇𝑝𝑖+𝐹𝑛𝑖
𝑙
𝑖=1 )

                                                                                                                                                                                (5) 

Fs=2*(Pe*Re)/(Pe+Re)                                                                                                                                                                

(6) 

Table1: Classification results using combined features with five levels of DWT 

Time 

(sec) Algorithm Precision Recall Accuracy Specificity F_score 

0.5 

KNN 0.995411 0.992296 0.994987 0.999761 0.993702 

SVM 0.993515 0.994156 0.993734 0.999702 0.993732 

RF 0.998771 0.998864 0.998747 0.99994 0.998802 

KNB 0.998891 0.998864 0.998747 0.99994 0.998863 

AdaBoost 0.998891 0.998864 0.998747 0.99994 0.998863 

MLP 0.993053 0.993122 0.992481 0.999641 0.992982 

0.75 

KNN 0.994099 0.990907 0.993734 0.999701 0.992313 

SVM 0.994246 0.994199 0.993734 0.999701 0.994146 

RF 0.998737 0.998864 0.998747 0.99994 0.998784 

KNB 0.998891 0.998834 0.998747 0.99994 0.998849 

AdaBoost 0.998864 0.998864 0.998747 0.99994 0.998849 

MLP 0.993593 0.99397 0.993734 0.999702 0.993693 

1 

KNN 0.992831 0.994535 0.994987 0.999762 0.99355 

SVM 0.992645 0.992551 0.992481 0.999642 0.992496 

RF 0.998534 0.998701 0.998747 0.999941 0.998596 

KNB 0.998891 0.998701 0.998747 0.99994 0.99878 

AdaBoost 0.998891 0.995868 0.998747 0.99994 0.997274 

MLP 0.992057 0.992617 0.992481 0.999643 0.99225 

1.25 

KNN 0.991649 0.99403 0.993734 0.999703 0.992674 

SVM 0.994344 0.994318 0.993734 0.9997 0.99423 

RF 0.998891 0.998864 0.998747 0.99994 0.998863 

KNB 0.998182 0.998864 0.998747 0.999941 0.998497 

AdaBoost 0.998891 0.998864 0.998747 0.99994 0.998863 

MLP 0.993859 0.994192 0.993734 0.999702 0.993928 

1.5 

KNN 0.991683 0.994192 0.993734 0.999703 0.992775 

SVM 0.994247 0.994192 0.993734 0.999701 0.994145 

RF 0.998771 0.995868 0.998747 0.99994 0.997213 
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KNB 0.995076 0.997727 0.997494 0.999882 0.996298 

AdaBoost 1 1 1 1 1 

MLP 0.992781 0.992997 0.992481 0.999641 0.992793 

 

 

 

 

 

1.7 

KNN 0.99323 0.994127 0.993734 0.999703 0.993537 

SVM 0.994218 0.993308 0.993734 0.999701 0.993691 

RF 0.998864 0.998864 0.998747 0.99994 0.998849 

KNB 0.998891 0.998864 0.998747 0.99994 0.998863 

AdaBoost 0.998891 0.998804 0.998747 0.99994 0.998833 

MLP 0.994708 0.995425 0.994987 0.999762 0.995011 

2 

KNN 0.994127 0.994096 0.993734 0.999701 0.994063 

SVM 0.99397 0.994066 0.993734 0.999701 0.993906 

RF 1 1 1 1 1 

KNB 0.998891 0.998864 0.998747 0.99994 0.998863 

AdaBoost 0.998771 0.998804 0.998747 0.99994 0.998771 

MLP 0.992436 0.992797 0.992481 0.999642 0.992511 

2.25 

 

KNN 0.994246 0.994156 0.993734 0.999701 0.994126 

SVM 0.994071 0.993971 0.993734 0.999701 0.993955 

RF 0.998534 0.998804 0.998747 0.999941 0.998649 

KNB 0.998891 0.998864 0.998747 0.99994 0.998863 

AdaBoost 0.998864 0.998804 0.998747 0.99994 0.998819 

MLP 0.99183 0.993153 0.993734 0.999702 0.992328 

2.5 

KNN 0.99315 0.994 0.993734 0.999703 0.993458 

SVM 0.993664 0.994192 0.993734 0.999701 0.993887 

RF 0.998891 0.998834 0.998747 0.99994 0.998849 

KNB 0.994949 0.997727 0.997494 0.999883 0.996218 

AdaBoost 0.998891 0.998864 0.998747 0.99994 0.998863 

MLP 0.994035 0.994289 0.993734 0.999701 0.994083 

 

The True Positives (Tp) is the actual positive classes that were categorized as genuine subject True 

Negatives (Tn)  is actual negative class categorized as negative,false positive (Fp)is the actual negative 

classes that were categorized as positive are imposter subjects, (Fn) are positive classes but 

categorized as negative. Each class were added, and the True Accuracy (Acc) was computed by 

dividing the sum by the total number of instances (l) in the dataset. In this study, a 5-fold cross-

validation approach is employed, wherein the dataset is divided into five subsets or folds. Each fold 

was sequentially used as a testing set, while the remaining four folds were combined to form the 

training set. This approach ensures that each fold is used as the testing set once, providing a 

comprehensive evaluation of the model's performance. Specifically, approximately 20% of the data 

was allocated for testing in each fold, while the remaining 80% was utilized for training the model. By 

employing cross-validation, the study aims to assess the generalization ability and performance of the 
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model across multiple independent subsets of the data. Additionally, the data present in each fold is 

the same across all categorization algorithms. 

5.CONCLUSION AND FUTURE SCOPE 

This paper introduced a multimodal biometric framework that combines EEG signals with face video 

data, aiming to enhance user identification and verification. Traditional unimodal EEG-based 

methods, though harder to forge than facial images, still confront collectability and session variability. 

By merging EEG features with facial characteristics, recording time requirements (1.5–2.0s) are 

reduced while system robustness is increased. Six classifiers were tested, showing that AdaBoost and 

Random Forest offered the most reliable performance, exceeding 99.8% accuracy. Future work may 

explore deep neural network architectures to determine an optimal balance of EEG recording duration 

against accuracy. Employing larger and more diverse datasets could further validate generalization. 

The experiments here were executed in MATLAB on an Intel(R) Core(TM) i7-10870H system with 16 

GB RAM. As technology advances, integrating even more biometric traits such as speech and iris 

could yield further improvements in system security and user convenience. 
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