
Journal of Information Systems Engineering and Management 
2025, 10(20s) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/ Research Article  

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Designing a Hybrid Load Balancing Algorithm for Optimized 

Resource Allocation in Cloud Environments Using Python 
 

1F. Niyasudeen, *2M. Mohan, 
1Research Scholar, Department of Computer Science, SRM University Delhi-NCR, Sonepat, Haryana, India        

niyasudeenresearch24@gmail.com 
2Department of Computer Science and Engineering, SRM University Delhi-NCR, Sonepat, Haryana, India 

mmohanit.2006@gmail.com 

Corresponding Authors :  *niyasudeenresearch24@gmail.com,  *mmohanit.2006@gmail.com 

 

ARTICLE INFO ABSTRACT 

Received: 24 Dec 2024 

Revised: 31 Jan 2025 

Accepted: 16 Feb 2025 

To keep up with fluctuating workloads and guarantee optimal system performance, effective 

resource management strategies are essential in the ever-expanding world of cloud computing. 

This research presents a hybrid load balancing approach to improve resource allocation in cloud 

environments. The proposed algorithm combines techniques such as genetic algorithms (GA) 

and machine learning (ML) with traditional approaches like round-robin and least-connections. 

By using the strengths of both approaches, the hybrid algorithm aims to minimize wasted 

resources, improve task distribution, and make the system more scalable. To test and refine the 

hybrid load balancing strategy, this study simulates the cloud environment in Python. In order 

to optimize both energy efficiency and performance, the proposed algorithm dynamically 

modifies resource allocation depending on real-time workload circumstances. When compared 

to more conventional load balancing methods, the proposed hybrid algorithm shows 

considerable improvements in all three metrics such as load distribution, task completion time, 

and resource utilization. The results show that hybrid cloud systems, which use both traditional 

and advanced load balancing strategies, are better than existing methods. 

Keywords: Load Balancing, Cloud Computing, Hybrid Algorithm, Genetic Algorithm, Machine 

Learning 

 
1. INTRODUCTION 

The demand for mobile broadband services that offer higher data rates and improved quality of service (QoS) has 

risen steeply due to the expansion in the use of smart gadgets and apps, which encompass both information and 

communication technology. So that the sixth generation (6G) of wireless networks can meet the huge demand for 

services, they will need to be faster, more reliable, have more advanced features like low latency, and offer more 

advanced broadband than the fifth generation (5G) of wireless networks [1]. An article looks at the current state of 

load balancing techniques in Software Defined Networking (SDN) networks. It focusses on algorithms that are used 

in server load balancing networks. Next, it suggests a Weighted Round Robin plus Least Connections (W-RRLC) 

algorithm, which combines a weighted index with the Round-Robin and Least Connections algorithms [2].  

Another research provides a hybrid task scheduling algorithm that uses a genetic algorithm (GA) and deep 

reinforcement learning (DRL) to minimise make-up, overall cost, average turnaround, and degree of imbalance, 

among other optimisation goals. While GA optimises the schedule by investigating several configurations, the 

HDRLGA technique uses DRL to provide dynamic predictions of the best task-to-resource maps [3]. Various 

algorithms with goals such as routing (including dynamic ones), traffic optimisation, forward delay minimisation, 

forwarding as well as load balancing, are included in this work's theoretical study of state-of-the-art SDN 

optimisation techniques. The work also includes an analysis and comparison of these algorithms. The focus is on 

generic algorithms that can provide practical answers for big systems or routing with numerous metrics [4]. 

Another study, explores how load balancing, which involves distributing workloads equally among virtual machines 

(VMs), is crucial for optimising cloud computing performance. To avoid under- or overutilization of resources and 
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effectively manage data traffic, load balancing as a service (LaaS) is a must-have. Some examples of static as well as 

dynamic load balancing algorithms are Max-Min, least connection, central queue, round robin, Min-Min along with 

local queue [5]. Each offers a different method, but there are trade-offs between flexibility and system overhead. The 

research sheds light on load balancing foundational concepts and the difficulties encountered by conventional 

algorithms. Many distinct load-balancing algorithms exist, each with its own unique set of advantages and 

disadvantages in terms of speed, adaptability, and complexity. In order for contemporary computing systems to 

function properly, load balancing algorithms are essential [6].  

Another study presents a taxonomy of cloud computing load balancing techniques that academics and practitioners 

may use to better understand and choose the algorithms that are best suitable for their individual requirements. This 

study encompasses the three primary kinds of load balancing algorithms such as dynamic, static as well as 

metaheuristic [7]. A work reviews the knowledge gaps in load balancing algorithms according to four factors types of 

algorithms, nature of the issue, metrics, simulation tools as well as by analysing each algorithm's parameters, goals, 

and operational processes in detail. It rates the algorithms' pros and cons based on their type and nature using 

qualitative QoS parameter-based criteria [8, 9]. Existing load balancing algorithms often have difficulties with 

scalability and real-time adaptation, particularly in big cloud environments. Energy efficiency and complicated 

workload dynamics are the issues with methods like classic round-robin and least-connections. In addition, advanced 

methods such as ML have limited practical use since they require massive datasets and susceptibility to overfitting. 

Integrating many approaches into real-world cloud infrastructures isn't easy, particularly if they are unreliable or 

need a lot of computing resources. This study introduces a novel hybrid load balancing algorithm that combines the 

adaptability of genetic algorithms and advanced ML with the simplicity of conventional methods. Thus, this work 

contributions include 

• Combining round-robin, least-connections, and advanced genetic algorithms to balance between their 

advantages and disadvantages is a main contribution. 

• There has been a significant improvement in the utilization of resources, task allocation, and energy 

efficiency.  

• Both small and big cloud environments may benefit from the algorithm's scalability. 

•  By enabling ML, the algorithm dynamically adapts to changing workloads and improve performance in 

uncertain scenarios.  

• The advantages and practical implementation of the hybrid algorithm are shown via a Python-based 

simulation, which gives the basis for future research and real-world applications. 

Here is the structure of the work: Related work on designing and implementing of some existing load balancing 

algorithms are reviewed in Section 2. Section 3 discusses the proposed technique. Section 4 includes details on the 

research findings, along with some limitations of the current study. Section 5 concludes the work, followed by the 

references. 

2.LITERATURE REVIEW 

Toofani et al. [10] investigated load balancing and energy efficiency in cloud systems. In their effort to reduce energy 

usage and environmental effects, the authors conducted a system analysis to evaluate several load balancing 

solutions. The goal is to improve system performance while decreasing carbon emissions by optimising resource 

usage. This work thoroughly examines a variety of load balancing solutions. This approach takes into account crucial 

factors such as energy consumption and environmental conservation. It enhances system efficiency by optimising the 

utilisation of available resources. However, experimental confirmation of the suggested solutions is absent from the 

publication. The theoretical approach may constrain its potential practical applicability. Because system analysis is 

the main emphasis of the work and the dataset that was used is not disclosed.  

Zhanuzak et al. [11] described the Enhanced Dynamic Load Balancing (EDLB) algorithm that suggests that cloudlets 

should be automatically assigned to VMs based on service level agreement (SLA) deadlines and the current state of 

the system. To proactively prevent SLA breaches, the algorithm modifies cloudlet placement. With this effort, pre-

emptive measures to avoid SLA violations and real-time dynamic cloudlet deployment are made possible. Better use 

of resources and less likelihood of missing deadlines are the results of efficient task scheduling. The restrictions 

include the computational cost is high because of the need to make modifications in real time and position cloudlets. 
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Large cloud environments may have problems with scalability. Results from simulations are the main emphasis of 

the article; the dataset used is not mentioned. 

Hayyolalam et al. [12] developed a load balancing method known as CBWO, which combines elements of chaos theory 

and the Black Widow Optimisation algorithm. By improving energy efficiency and resource utilisation, the strategy 

strives to optimise cloud computing environments. This work uses Cloud Sim to run simulations and see how well it 

works. The work decreases computing costs while improving energy efficiency. Efficiently enhances system 

performance and decreases task completion time. The results of the simulation demonstrate significant 

improvements in resource utilisation. One drawback is that the outcomes derived from simulations may not always 

be indicative of the actual world. It may be difficult to put the algorithm into practice. For the purpose of this 

simulation, this work uses the cloud sim dataset, but it doesn’t reveal its exact name.  

Rajawat et al. [13] discussed for cloud systems to allocate resources in real-time, a framework based on ML. By 

employing trained ML models, the framework is able to optimise resource allocation, task scheduling, and load surge 

forecasting. ML models have the ability to adapt to the evolving needs of a system. Proactive task scheduling avoids 

system bottlenecks and enhances performance. The restrictions include the ML models that require large, high-

quality datasets for training. Inadequately calibrated models carry the risk of overfitting. This use a dataset pertaining 

to system performance and workloads to train the ML models.  

Deng et al. [14] distributed jobs equitably among VMs in cloud systems, use spider monkey foraging behaviours to 

tackle the NP-hard issue of load distribution. The method's stated goals include faster reaction times and more 

efficient load distribution. Using several VMs, the job distributes tasks effectively. The job is highly efficient (85%) at 

managing multiple tasks simultaneously. One potential drawback is that the algorithm can struggle to handle 

workloads that are very unpredictable or dynamic. There is little transferability to other contexts or task 

environments. This dataset uses modelled data from load distribution tests.  

Rawat et al. [15] highlighted the algorithms for managing resources in cloud environments that are based on nature 

are the main topic. In order to optimise the allocation of cloud resources, the authors explore algorithms inspired by 

natural processes. Nature-inspired strategies can solve innovative optimisation challenges. These strategies 

effectively manage resources in cloud environments that utilise virtualisation. One potential drawback is that these 

algorithms could be hard to tweak or parameterise. There will be scalability problems in environments that are very 

dynamic or unpredictable. The chosen dataset remains unclear.  

Nambi et al. [16] defined the Enhanced Multi-Objective Optimisation Algorithm (EMO-TS) combines Enhanced 

Electric Fish Optimisation (EEFO) with DRL to schedule tasks in a way that saves energy and is dynamic. Without 

affecting system performance, the work decreases energy usage. The system enhances task scheduling and execution 

time. A dynamic method may manage real-time workloads. It could be challenging to execute the hybrid DRL-EEFO 

paradigm due to its complexity. Problems with scalability may arise in very variable, massive cloud environments. 

This work uses operational and workload data in real-time for task scheduling purposes. Table 1 shows the existing 

work review. 

Table 1: Existing works 

Authors and 

papers 

Methodology Advantages Limitations 

Toofani et al. 

[10] 

System analysis of load balancing 

algorithms and their impact on 

energy efficiency in cloud 

systems. 

- This evaluates various load 

balancing solutions. 

- Reduce energy use and 

promote environmental 

sustainability. 

- There has been very little 

talk about realistic steps to 

take. 

- There is no empirical 

proof. 

Zhanuzak et 

al. [11] 

EDLB algorithm for real-time 

task scheduling and resource 

allocation. 

- The process involves 

placing cloudlets in real 

time. 

- Making modifications in 

real time could be 

computationally intensive.  
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- Takes proactive measures 

to prevent SLA breaches. 

- Allocation of resources 

that is dynamic and 

dependent on system 

conditions. 

- There are constraints on 

the scalability of large-scale 

systems. 

Hayyolalam 

et al. [12] 

Integration of CBWO for energy-

efficient resource allocation. 

- It enhances the efficiency 

of energy use. 

- This approach maximises 

the utilisation of available 

resources. 

- Decreases the time and 

money needed to compute 

and complete tasks. 

- For simulation, you'll need 

Cloud Sim.  

- Implementing in real-

world applications may be 

somewhat challenging. 

- The algorithm may 

experience instability. 

Rajawat et al. 

[13] 

ML-based framework for real-

time resource allocation in cloud 

systems. 

- As system needs change, 

ML models change with 

them. 

- The system optimises task 

allocation and predicts load 

spikes. 

- It makes the system run 

better. 

- Large datasets are 

necessary for training.  

- Incorrect handling might 

lead to models being overfit. 

Deng et al. 

[14] 

Spider Monkey Foraging 

Optimization for load 

distribution among VMs in cloud 

systems. 

- The goal is to distribute 

loads efficiently.  

- This ensures an even 

distribution of the 

workload. 

- Prompt and efficient 

allocation of tasks (85% 

effectiveness). 

- There is a lack of 

applicability to various 

kinds of tasks. 

- Unpredictable workloads 

may hinder performance. 

Rawat et al. 

[15] 

Nature-inspired algorithms for 

resource management in cloud 

environments. 

- Makes use of natural 

phenomena to achieve 

optimisation. 

- Resource management is 

optimised. 

- Effective in virtualised 

environments. 

- Very dynamic 

environments do not have 

enough scalability. 

- It could be challenging to 

parameterise procedures 

inspired by nature. 

Nambi et al. 

[16] 

Enhanced Multi-Objective 

Optimization Algorithm for Task 

Scheduling (EMO-TS) combining 

DRL and EEFO. 

- The energy use of cloud 

data centres is decreased. 

- Automated scheduling 

using data collected in real-

time. 

- It enhances system 

efficiency and reduces the 

duration required to 

complete tasks. 

- The model is complex and 

hybrid.  

- Depends on the current 

state of the workload in real 

time. 

- The system might have 

trouble handling cloud 

environments on a grand 

scale. 
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3. PROPOSED METHODOLOGY 

Even though often employed in cloud environments, traditional load balancing algorithms like Round-Robin and 

Least Connections can't handle workload changes that happen in real-time. Because these technologies depend on 

simple rules, they might not be able to handle large-scale systems well, distribute tasks in the best way, or use 

resources in the best way possible. ML and other advanced methods have shown promise in solving these problems, 

but they face issues such as lengthy training periods, problems with real-time data, and the risk of overfitting. 

Reinforcement learning (RL) models, although capable of continuous adaptation, have trouble with sample 

inefficiency and could require a lot of computing resources to develop optimal policies. Because of these problems, 

this study proposes a Proximal Policy Optimization (PPO), which is a RL algorithm known for finding the best balance 

between training speed and stability. Through the use of feedback from system states, such as task completion time 

and resource utilization, PPO learns optimal policies via trial and error with the goal of improving resource allocation 

in cloud environments. PPO is the ideal solution for real-time cloud resource management, as it enhances system 

efficiency, minimizes resource waste, and boosts scalability to adapt to dynamic workloads. Figure 1 displays the 

proposed process flow. 

 

Figure 1. Proposed Process flow 

3.1. Workload Detection and Preprocessing 

Workflow detection and data collection on incoming workloads is the first stage. Task size, resource requirements 

(CPU, memory, etc.), and any constraints is the part of this data. Understanding the resource needs and efficiently 

allocating tasks to VMs requires this knowledge. Workload detection enables the system to make judgments in real 

time, depending on the cloud environment current state. Precise workload detection, allows the hybrid algorithm to 

respond correctly, modifying load balancing techniques as per the task complexity. This first step serves as the 

foundation for the load balancing procedure. It is challenging to distribute resources properly without precise 

workload information. 
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3.2 Traditional Load Balancing Techniques (Round-Robin and Least Connections) 

This section discusses about the conventional methods of load balancing, such as Round-Robin (RR) and Least 

Connections (LC). These techniques provide a simple task distribution.  

• Round-Robin: This approach allocates tasks to VMs in a cyclical fashion, guaranteeing an even load 

distribution when jobs are about the same size. 

• Least Connections: According to the task's real-time requirement, this strategy allots jobs to VMs with the 

fewest active connections. 

 For simpler and more predictable workloads these traditional approaches serve as a baseline. Because of their speed 

and cheap computing cost, these approaches can manage simple load balancing problems. Afterwards, it may 

implement more advanced strategies. While conventional approaches are quick and simple to build, they fall short 

when workloads change or cloud systems need to scale dynamically. Therefore, they initially handle simple scenarios 

before transitioning to more complex algorithms. 

3.3 Advanced Load Balancing Strategy (Proximal Policy Optimization - PPO) 

After working with conventional methods some advanced algorithms are utilized to adjust the cloud resource 

allocation dynamically using the PPO, a RL method. The PPO algorithm uses the actor-critic architecture, where the 

actor proposes actions (such as which VM should perform which task). The critic evaluates the actions by sending 

feedback in the form of a reward signal depending on how well the system performs. By striking a balance between 

stability and exploration, PPO optimizes the policy. Through repeated trial and error, the algorithm gets better at 

balancing the load and adapts to changing system conditions. Using PPO, the system can respond real-time to 

changing workload demands. To optimize task completion, reduce energy consumption, and prevent overload, it 

continually modifies resource allocation. Decisions like which VM to allocate a task to are represented in the action 

space, and PPO will figure out the optimal allocation technique. PPO works well in complex cloud environments with 

unpredicted workloads and the need to dynamically assign resources. The capacity to maintain a balance between 

exploration and exploitation makes it a perfect fit for environments that undergo continual evolution. This allows for 

better resource allocation over time. To direct the agent's learning in PPO, the reward function is crucial. This study 

establishes a metric for cloud resource allocation that takes into account minimum task completion time, energy 

consumption, and load imbalance as in equation (1). 

𝑅𝑡 = −𝛼 × 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑡 − 𝛽 × 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡 + 𝛾 × 𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑡     (1)   

Where 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑡  is the time taken to finish the task, 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡 represents the energy used by the 

allocated VM, 𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑡 denotes a measure of how evenly the load is distributed across VMs and 𝛼, 𝛽, 𝛾 are the 

hyperparameters that weight each factor. The optimization objective for PPO is to update the policy 𝜋𝜃  by maximizing 

the expected return using the clipped objective function in equation (2): 

                          𝐿𝐶𝐿𝐼𝑃(𝜃) = Ε̂𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)]                     (2) 

Where 𝑟𝑡(𝜃) is the probability ratio between the new policy and the old policy and is represented in equation (3): 

                                          𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

                                                           (3) 

𝐴̂𝑡 is the advantage estimate, which indicates how much better an action is compared to the average and 𝜖 is a clipping 

parameter to ensure stability during policy updates. 
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3.4. Hybrid Decision Layer 

The Hybrid Decision Layer acts as a controller that decides where to apply traditional utilizes either the established 

load balancing techniques (RR and LC) or use the PPO-based approach as per the workload characteristics. Incoming 

tasks' complexity and predictability influence the decision-making process.  

• When dealing with simple, predictable incoming tasks, traditional methods such as RR or LC can distribute 

tasks evenly and quickly without requiring complex optimization.  

• But when there are complicated, unpredictable, or changing resource demands, the system uses the PPO-

based approach to change allocations dynamically and optimize long-term system performance. 

 This layer lets the system find a good balance between efficiency and complexity by using standard methods for 

simple cases with low overhead and switching to PPO for dynamic, real-time adjustments in more complicated 

scenarios. To improve decision-making, it is important to avoid wasting computational resources on complex 

algorithms when simpler approaches would do the job just as well. Using the hybrid decision layer, take advantage 

of both the traditional and advanced algorithms. This method makes the system more scalable and efficient by 

reducing computation when workloads are predictable and allowing for better job assignment when tasks are hard.  

Table 2 shows hybrid decision layer process. 

Table 2: Hybrid Decision Layer Process 

Workload 

Complexity 

Load Balancing Method Reason for Selection 

Simple and Predictable Round-Robin or Least 

Connections 

Efficient, low overhead for evenly distributed tasks. 

Complex and Dynamic PPO-based Strategy Adapts to changing workloads and learns optimal 

allocation. 

 

3.5. Final Resource Allocation 

In the final resource allocation phase, the hybrid decision layer assigns tasks to the available VMs based on its choice. 

This procedure verifies that the allocated resources are distributed fairly across all VMs in accordance with the 

selected strategy. Traditional methods distribute tasks in a RR manner or based on the fewest connections. The rules 

learned by PPO take into account both the features of the workload in real time and the optimization of performance 

in the long run, and they determine how jobs are distributed for PPO-based strategies. 

 In order to put the load balancing judgments into action, this step is crucial. It ensures the efficient distribution of 

resources across all virtual machines by considering both present and anticipated future needs. Ultimately, load 

balancing is to achieve efficient resource allocation. The system can prevent overloading individual VMs, limit 

resource waste, and guarantee optimal performance by using the suitable approach. Integrating classic and modern 

methodologies ensures robustness and scalability in various environments. Given the load balancing strategies, the 

task allocation 𝐴 can be represented as in equation (4): 

                                             𝐴 = 𝑎𝑟𝑔 min
𝑉𝑀

(∑ (
𝑡𝑎𝑠𝑘𝑖

𝑉𝑀𝑗
)𝑛

𝑖=1 )                                               (4) 

Where 𝑡𝑎𝑠𝑘𝑖  represents the resources required for 𝑡𝑎𝑠𝑘𝑖, 𝑉𝑀𝑗 represents the resources available in 𝑉𝑀𝑗. The sum is 

minimized to achieve the most balanced load. In the case of PPO, the allocation is based on the policy learned by the 

agent, which considers multiple factors like CPU utilization, task size, and network load. 
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4. Results 

The results presented in this work are derived from two load balancing strategies such as the RR and PPO-based 

allocation. The RR algorithm evenly distributes tasks across the available VMs, ensuring that each VM handles an 

equal share of the workload. In contrast, the PPO-based allocation strategy, which leverages a PPO reinforcement 

learning model, dynamically assigns tasks based on the learned policy, aiming to optimize resource allocation based 

on real-time system conditions. For performance evaluation, two primary measures used are task allocation and load 

distribution. Task allocation refers to how tasks are assigned to each VM, where a more balanced distribution 

indicates better efficiency in utilizing resources. Load distribution measures the percentage of total resources (CPU 

and memory) utilized by each VM. A balanced load distribution indicates an efficient allocation of resources, 

minimizing bottlenecks and ensuring that no single VM is overwhelmed while others remain underutilized. The 

performance of each strategy is compared by analyzing how well the workload is distributed among VMs, with a focus 

on fairness, efficiency, and scalability. The results indicate how the algorithms perform under different conditions, 

with RR providing a simple, balanced approach and PPO-based Allocation showing more dynamic, but potentially 

imbalanced, allocations depending on the model’s policy. 

4.1 Evaluation Metrics 

This study evaluates the performance using time to completion, energy efficiency, resource utilization, and other 

metrics for load and task performance. This study can see how well the load balancing algorithms are working by 

looking at these measurements. The time it takes for a task to go from being assigned to VM until it is finished 

executing is called the Task Completion Time (TCT). Because improved total system throughput is the result of 

shorter task completion times, this metric is crucial for evaluating system performance in equation (5). 

                                              𝑇𝐶𝑇 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡𝑎𝑠𝑘𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑
                              (5) 

Where Total Time Taken to Complete tasks is the total amount of time it has taken for all VMs to complete their 

assigned duties. The number of tasks assigned is the number of tasks allocated to each VM. As the system finishes 

tasks quicker, resulting in improved overall efficiency, a lower TCT implies better performance. Energy efficiency 

(EE) is a metric that assesses the effectiveness of a system's use of energy to execute computational activities. In cloud 

environments, where sustainability depends on reducing energy consumption without compromising performance, 

this is crucial in equation (6). 

                                                   𝐸𝐸 =
𝑇𝑜𝑡𝑎𝑙 𝑢𝑠𝑒𝑓𝑢𝑙 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒(𝑖𝑛 𝑡𝑎𝑠𝑘𝑠)

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
                                  (6) 

Where total useful work done denotes the total number of tasks completed by the system. When all VMs use energy 

(in joules or watt-hours) to perform a task, that's the total energy consumption. The system is able to do more tasks 

with less energy consumption when its energy efficiency is higher. To lower operating costs and lessen environmental 

effects, this is particularly crucial in data centers and cloud environments. "Resource Utilization" (RU) is the 

percentage of available resources, like CPU and RAM, that each VM actually utilizes. This study can see whether VMs 

are under- or over-utilized by looking at their resource utilization rate. CPU Utilization is in equation (7): 

                                        𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖 =
𝐶𝑃𝑈 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑉𝑀𝑖

𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑉𝑀𝑖
× 100                  (7) 

Formula for Memory Utilization is in equation (8): 

                               𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖 =
𝑀𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑉𝑀𝑖

𝑇𝑜𝑡𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑉𝑀𝑖
× 100                (8) 

Where  𝑖  represents the VM number (e.g., VM1, VM2, VM3), CPU resources used by 𝑉𝑀𝑖  and memory used by 𝑉𝑀𝑖 

are the total resources used by  𝑉𝑀 𝑖 to process the tasks. Total CPU Capacity of   𝑉𝑀𝑖 and total memory capacity of   

𝑉𝑀𝑖 are the maximum available resources for   𝑉𝑀 𝑖. The ideal range for resource utilization is between 70% and 90%. 

Anything much greater (overloaded) or significantly lower (underutilized) indicates inefficiencies. Load Balancing 

Efficiency (LBE) quantifies the extent to which all VMs bear the same load. Ideally, a load balancing approach would 

disperse the load evenly. This statistic allows for the assessment of the load balancing algorithm's efficiency in 

equation (9). 
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                                                  𝐿𝐵𝐸 = 1 −
∑ |𝐿𝑜𝑎𝑑𝑖−𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑|𝑛

𝑖=1

𝑛×𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑
                                  (9) 

Where   𝑛   is the number of VMs, 𝐿𝑜𝑎𝑑𝑖  is the load on  𝑉𝑀 𝑖 and 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑  is the mean load across all VMs. An 

LBE that is greater (closer to 1) indicates better load balancing, with the load spread evenly. If the number is low, it 

means that certain virtual machines are swamped with more work than others, an indication of poor load balancing. 

The TAF metric gauges the equitable distribution of tasks among virtual machines. Each VM should have an equal 

opportunity to complete tasks in a well-balanced system in equation (10). 

                              𝑇𝐴𝐹 = 1 −
∑ |𝑇𝑎𝑠𝑘 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑖  −𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑎𝑠𝑘 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑|𝑛

𝑖=1

𝑛×𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑎𝑠𝑘 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑
                  (10) 

Where Tasks assigned to 𝑉𝑀𝑖 is the number of tasks assigned to 𝑉𝑀 𝑖 and 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑎𝑠𝑘𝑠 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑   is the mean 

number of tasks assigned across all VMs. A TAF value closer to 1 indicates a more even distribution of duties among 

VMs. Values that are too low suggest that jobs are not being distributed fairly, which might lead to certain VMs being 

overloaded. To minimize load imbalance and prevent bottlenecks or underutilization, VM Load Imbalance (VLI) 

monitors the variation in load among VMs in equation (11). 

                                                             𝑉𝐿𝐼 =
𝑀𝑎𝑥 𝐿𝑜𝑎𝑑−𝑀𝑖𝑛 𝐿𝑜𝑎𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑
                                       (11) 

When considering all VMs, Max Load represents their maximum resource load. Min Load is the minimum load on 

all resources for all VMs. Load Average is the sum of all VMs' loads. A lower VLI shows that the load balancing is 

good, with little variation between the maximum and lowest loads among VMs. 

4.2 Result Analysis 

Table 3 shows how the RR and PPO-based allocation algorithms stack up in terms of how they distribute workloads, 

how well they use energy, how long it takes to finish tasks, and how well they use resources. 

Table 3: Performance Metrics Table 

Performance Measure Round-Robin PPO-based Allocation 

Task Completion Time (TCT) Average time per task: 5 steps Average time per task: 5 steps 

Energy Efficiency (EE) Not provided in raw data Not provided in raw data 

CPU Utilization (VM1) 40% 0% 

CPU Utilization (VM2) 40% 0% 

CPU Utilization (VM3) 20% 100% 

Memory Utilization (VM1) 40% 0% 

Memory Utilization (VM2) 40% 0% 

Memory Utilization (VM3) 20% 100% 

Task Distribution (VM1) task1, task4 No tasks allocated 

Task Distribution (VM2) task2, task5 No tasks allocated 

Task Distribution (VM3) task3 task1, task2, task3, task4, task5 

VM Load Distribution 40%, 40%, 20% 100% 

Load Balancing Efficiency (LBE) 0.67 (Moderate) 0.33 (Low) 

Task Assignment Fairness (TAF) 0.67 (Fair) 0.33 (Unfair) 
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VM Load Imbalance (VLI) 0.5 (Moderate) 1 (High imbalance) 

According to the environment rollout logs, both methodologies take the same amount of time to complete a task, 

which consists of five phases. This means that both methods can do jobs at about the same pace right now, excluding 

any further limitations (such as resource availability or VM saturation). The data does not explicitly state energy 

efficiency. With data on energy consumption per VM, however, it could be computed. The amount of energy required 

to complete each task is a common metric for this. The RR method divides the workload between VMs, with VM1 and 

VM2 each using 40% of the CPU capacity and VM3 using 20%. As a result of the PPO-based allocation, VMs 1 and 2 

are left idle with 0% CPU utilization, while VMs 3 get all the jobs. RR allocation distributes memory among VMs in a 

manner analogous to CPU utilization. VM3 uses all of the memory resources according to the PPO-based allocation 

approach; however, VM1 and 2 utilize zero memory. RR allocation evenly distributes jobs among VMs, with VM1 and 

VM2 handling two jobs each, and VM3 managing only one task. Allotment Based on PPOs When VM 3 receives all 

tasks (from task 1 to task 5), it leads to an imbalanced allocation. To provide a balanced load across VMs, RR uses a 

load distribution of 40% for VM1, 40% for VM2, and 20% for VM3. The PPO-based allocation results in an 

imbalanced load distribution, as VM3 receives 100% of the workload. 

In a RR despite VM3 carrying less load, the LBE is mild at 0.67 due to the evenly distributed activities. For allocation 

based on PPOs insufficient load balancing leads to the allocation of all jobs to a single VM, resulting in a low LBE of 

0.33. In a round-robin Although there is still some imbalance, the fairness of task allocation is reasonable (0.67). 

This distribute tasks among VM1, VM2, and VM3. For allocation based on PPOs Because VM3 is assigned all the 

duties while VM1 and VM2 are left idle, the TAF is low at 0.33. In a RR the VLI, at 0.5, indicates a moderate balance 

among VM1, VM2, and VM3. For allocation based on PPOs since all jobs are being put into VM3, which creates a 

substantial imbalance, the VLI is high (1).  

Table 4: Task Allocation Comparison 

Task VM Round-Robin 

Allocation 

PPO-based Allocation 

0 VM1 task1 task4      

1 VM2 task2 task5      

2 VM3  task3 task1 task2 task3 task4 task5 

 

When it compares RR and PPO-based allocation, two load balancing algorithms, the task allocation comparison table 

4 shows how the work is split between the three VM. RR is a method for sequentially distributing duties. The number 

of tasks assigned to each VM is about equal.VM1 has assigned Tasks 1 and 4, while VM2 has assigned Tasks 2 and 5. 

VM3 has received Task 3. The learned policy of the model forms the basis for the dynamic assignment of tasks in the 

PPO-based allocation approach. Nonetheless, there are discrepancies in the allocation of tasks in the output. In this 

case, it looks like the PPO model may have preferred one VM over another. This could be because of the training 

environment or the parameters for allocating resources, since all the tasks have been given to VM3.  

Table 5: Load Distribution Comparison 

Task VM Round-Robin Load 

Distribution(%) 

PPO-based Load 

Distribution(%) 

0 VM1 40.0 0.0 

1 VM2 40.0 0.0 

2 VM3 20.0 100.0 

Under both the RR and PPO-based allocation schemes, the load distribution comparison table 5 shows what 

proportion of the workload each virtual machine handles. In the RR approach, the workload is split equally among 

the VMs: VM1 and VM2 each handle 40% of the entire load, while VM3 handles 20% of the whole load, which 

corresponds to the single task (task 3) that is allocated to it. With all five jobs allocated to it, VM3 handles 100% of 
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the workload in the PPO-based approach, which results in a skewed load distribution. Here, the PPO model's uneven 

allocation approach is on display since VM1 and VM2 are not carrying any load. Figure 2 displays the VM load 

distribution. 

 

Figure 2: VM Load distribution graph 

4.3 Discussions 

The PPO-based allocation method outperforms RR on several crucial parameters due to its greater adaptability and 

reduced resource usage. First, compared to VM1 and VM2 during round-robin allocation, PPO guarantees that 

resources are completely used on VM3 by achieving 100% utilization in terms of CPU and memory usage. More jobs 

may be handled in the same amount of time because of this optimization of resource utilization, which boosts the 

system's overall efficiency. PPO assigns work based on the load, which makes better use of resources. This is different 

from Round-Robin, which spreads jobs out evenly but often leaves some VMs idle. Even though VM3 is under more 

strain, this results in better load distribution. Unlike the static Round-Robin technique, PPO adapts to the current 

situation, ensuring effective job allocation even when system loads fluctuate. While PPO does increase load imbalance 

on VM3, it guarantees superior overall performance in environments that prioritize scalability and resource 

optimization. PPO excels when the goal is to optimize resource utilization at scale, delivering a more flexible and 

effective allocation in dynamic cloud environments. Finally, load balancing efficiency and task assignment fairness 

are greater in round-robin. 

5. Conclusion 

For effective resource allocation and task scheduling in cloud environments, this research proposed an allocation 

algorithm based on PPO. The findings demonstrate a number of major benefits of the PPO-based technique over the 

more conventional RR allocation method. The main advantage of PPO is its adaptive resource utilization. It takes 
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real-time system load into account and assigns tasks dynamically, resulting in improved utilization of resources (100 

percent CPU and memory usage on a single VM). In environments where getting the most out of limited resources is 

critical, this is especially beneficial. The PPO algorithm excels in terms of scalability. It skillfully handles workload 

changes by adjusting task allocation depending on the current status of the system. In contrast to Round-Robin's 

static task allocation, which often results in unused resources and idle virtual machines, this adaptive flexibility can 

quickly adjust to changing conditions. The choice to use PPO is justified by its positive effect on task completion speed 

and resource optimization, even if it may unbalance the load distribution between virtual machines. Overall, PPO 

improves system efficiency, fairness in task allocation, and load balancing, which makes it a better fit for resource-

intensive cloud environments on a big scale.  

Some things that could be studied further are making the PPO algorithm work better in large, multi-cloud 

environments and fixing the uneven load by using multi-agent systems or task relocation algorithms. Further 

investigation of how the PPO framework may be improved by including energy-efficient strategies might lead to even 

greater improvements in performance, with reduced energy consumption and sustained high task throughput. For 

even better performance across a wide range of workloads, further optimization can include tailoring the PPO 

hyperparameters to the unique specs of the cloud environment. 
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