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Ineffective buffer management within project schedules often leads to delays and increased 

costs in construction. Conventional methods frequently fail to account for unpredictable, 

stochastic uncertainties. To address this issue, a stochastic buffer optimization model has been 

created and tested; it integrates Monte Carlo simulation with critical chain techniques. This 

model aims to enhance schedule reliability and improve resource allocation. Probability 

distributions for activity durations were derived from an analysis of data encompassing 167 

prior construction projects spanning from 2020 to 2024. Three-parameter lognormal 

distribution modelling was used. An algorithm optimized multiple objectives, minimizing 

buffer sizes and delay probabilities, subject to resource limitations. Validation involved 

implementation in 12 active construction projects. These were in residential, commercial, and 

infrastructure sectors; performance was monitored over six months. Results were significant. 

The optimized buffer management system led to a 37% reduction in project delays (p < 0.001). 

Schedule reliability jumped from 64.7% to 91.8%. Labor (26.8%), equipment (30.1%), and 

materials (21.7%) all saw substantial improvements in utilization. Buffer utilization efficiency 

also improved, by 39.3%. Overutilization dropped from 156.3% to 94.8%. The implementation 

resulted in average cost savings of 8.9% across project types. A strong correlation (r = 0.723, p 

< 0.001) was found between the Schedule Performance Index and Resource Utilization 

Efficiency. This validated model can provide project managers with a powerful means of 

building reliable schedules and optimizing resource allocation, potentially advancing project 

delivery practices substantially. 

Keywords: Buffer optimization, Construction scheduling, Project management, Resource 

utilization, Stochastic analysis. 

Article Highlights 

• Novel stochastic modelling reduces construction delays by over one-third while improving 

resource usage across all project types  

• Integration of weather patterns and resource availability in buffer calculations leads to 8.9% 

cost savings in construction projects  

• Data-driven buffer optimization approach shows consistent performance benefits across 

residential, commercial, and infrastructure work 

 

1. Introduction 

Project management is crucial for success in the increasingly complex construction industry. Because construction 

projects are growing in scale and complexity, effectively managing time and resources has become vital for project 

success [1]. Many construction projects worldwide experience schedule overruns, causing financial losses and 

inefficient use of resources. About 85% of projects face such delays [2–4]. This ongoing challenge has led both 

researchers and those working in the field to look for better ways to manage construction schedules. 

The construction industry faces variability and uncertainty, which pose significant challenges to conventional 

scheduling techniques. Project timelines are affected by a complex network of interconnected factors, including 

environmental conditions, changes in resource availability, technological issues, and stakeholder interactions [5–
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7]. Although widely used, traditional scheduling approaches like the Critical Path Method (CPM) often fail to 

adequately account for these uncertainties. This can result in unrealistic timelines and poor resource allocation [8–

10]. For example, a statistical analysis of global construction projects indicates that traditional scheduling methods 

lead to an average schedule overrun of 33% [11]. Given these points, the need of more robust scheduling approaches 

becomes obvious. 

Buffer management presents a possible solution to the limitations inherent in traditional scheduling methods [12–

14]. While initially developed for manufacturing environments, these techniques show promise for adaptation 

within construction projects [15, 16]. The concept revolves around strategically placing time buffers within project 

schedules; these buffers are designed to absorb the inevitable uncertainties and variations, thus maintaining project 

flow. Determining optimal buffer size, though, remains a significant challenge. Oversized buffers lead to resource 

inefficiencies, a considerable drawback. Conversely, undersized buffers fail to provide adequate protection against 

the inherent uncertainties of construction [17]. 

Recent strides in computational power and data analytics have unveiled new avenues for sophisticated buffer 

optimization. Stochastic analysis, particularly Monte Carlo simulation, demonstrates considerable potential in 

modelling the complex uncertainties found in construction projects [18–22]. Because these methods enable 

consideration of multiple variables and their interactions, a more nuanced understanding of project dynamics is 

achievable. Indeed, research indicates that stochastic approaches to schedule management can improve project 

delivery reliability by approximately 40% when compared to more rigid, deterministic methods [18]. 

Critical Chain Project Management (CCPM) has become known as a useful way to manage buffers in construction. 

By prioritizing resource constraints and placing buffers strategically, CCPM offers a clear method for enhancing 

project schedules [23, 24]. Yet, current CCPM uses often depend on simplified buffer sizing rules. These rules 

sometimes fail to grasp the entire complexity of construction project settings. Indeed, studies reveal that these 

current methods lead to buffer utilization rates around 45%, highlighting a considerable need for enhancement [24, 

25]. 

The merging of historical project data with advanced analytical tools presents a promising avenue. Such integration 

could allow for more accurate, efficient buffer management systems. For instance, analysing completed 

construction projects uncovers patterns in causes of delay and how durations are distributed; these insights can 

sharpen buffer strategies [26]. Traditionally, though, the construction industry has struggled. Systematic data 

collection and its insightful analysis have been lacking, impeding data-driven decisions in schedule management 

[27]. 

Existing research reveals a need for improved buffer optimization models. These models should reflect project-

specific details while remaining practical. Many current models do not account for the changing conditions of 

construction projects and the interplay between various uncertainties [28]. Furthermore, a shortage of real-world 

testing has hindered the acceptance of modern scheduling methods among construction professionals [29]. 

Improved schedule management carries substantial economic weight. Indeed, industry reports estimate that 

construction schedule overruns inflict annual losses exceeding $150 billion globally [30]. These expenses are not 

limited to direct financial impacts; they encompass reduced resource efficiency, strained stakeholder relationships, 

and an overall decrease in project quality. The potential for significant cost savings, achieved through more reliable 

scheduling, presents a compelling argument for investment in sophisticated buffer management systems. 

To address these persistent issues, this research introduces a stochastic time buffer optimization model. This model 

cleverly merges complex analytical techniques with practical, real-world applications. It refines current buffer 

management frameworks, notably through the incorporation of advanced statistical analysis; this improves both 

precision and overall dependability. By examining data from 167 completed construction projects across a range of 

sectors, the study aims to create a robust method for buffer sizing. Crucially, this method accounts for the unique 

characteristics and inherent uncertainties of individual projects [31-40] [47] 

The primary objective of this study is to develop and validate a comprehensive buffer optimization model that 

enhances construction schedule reliability while maximizing resource efficiency. Specifically, the research seeks to: 

(1) identify and quantify key sources of uncertainty in construction project schedules, (2) develop a stochastic 

model for optimal buffer sizing, and (3) validate the model's effectiveness through implementation in ongoing 

construction projects. The proposed approach represents a significant advancement in construction schedule 

management, offering project managers a practical tool for developing more reliable and efficient project schedules. 

A critical gap in current construction management practice is addressed by this research. It achieves this through a 

systematic, data-driven method for buffer optimization. Demonstrating its practical applicability, the model has 
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been validated across 12 active projects, spanning different construction sectors, thereby showing potential impact 

on industry-wide performance. The study's findings hold significant implications for construction project 

management practice. Furthermore, they contribute valuably to the broader knowledge base concerning project 

scheduling and the nuanced management of uncertainty. 

 

2. Materials and Methods 

2.1. Research Design and Data Collection 

To develop and validate the stochastic buffer optimization model [41-44], this study used a mixed-methods 

approach, combining quantitative and qualitative techniques. Data was gathered from 167 finished construction 

projects, including residential, commercial, and infrastructure developments, completed between 2020 and 2024. 

Projects were chosen if they lasted at least six months, had a contract value over $5 million, and provided full 

schedule documentation, showing both planned and actual progress. 

This dataset included projects from 23 different construction companies in North America and Europe. 

Consequently, it offered a varied sample of construction methods and environmental conditions. 

Project documentation analysis included original project schedules, progress reports, delay analysis reports, and 

resource utilization logs. Each project's schedule was decomposed into its constituent activities, with particular 

attention paid to critical path activities and their associated time buffers. The analysis identified key schedule 

parameters including planned duration (𝑇𝑝), actual duration (𝑇𝑎), buffer sizes (𝐵𝑖), and activity durations (𝐷𝑖). 

Activity duration variations were recorded as the difference between planned and actual durations, expressed as 

𝛥𝐷𝑖 = 𝐷𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝐷𝑝𝑙𝑎𝑛𝑛𝑒𝑑,𝑖. 

2.2. Model Development Framework 

The stochastic buffer optimization model was developed using a three-phase approach. In the first phase, 

probability distributions of activity durations were established using historical data. For each activity type 𝑖, the 

duration distribution was modeled using a three-parameter lognormal distribution[31, 32]: 

𝑓(𝑥𝑖) =
1

(𝑥𝑖 − 𝛾𝑖)𝜎𝑖√2𝜋
𝑒𝑥𝑝[−

(𝑙𝑛(𝑥𝑖 − 𝛾𝑖) − 𝜇𝑖)
2

2𝜎𝑖
2 ] (1) 

where 𝑥𝑖 represents the activity duration, 𝜇𝑖 is the location parameter, 𝜎𝑖 is the scale parameter, and 𝛾𝑖 is the 

threshold parameter. Parameters were estimated using maximum likelihood estimation. 

The second phase involved the development of the buffer sizing algorithm. The algorithm incorporates both 

deterministic and stochastic components, represented by the buffer function: 

𝐵𝑖 = 𝛼𝑖√∑(𝑤𝑗𝜎𝑗
2)

𝑛

𝑗=1

+ 𝛽𝑖𝐷𝑖 (2) 

where 𝐵𝑖  is the buffer size for chain 𝑖, 𝛼𝑖 is the volatility factor, 𝑤𝑗  are activity weights, 𝜎𝑗 is the standard deviation of 

activity 𝑗 duration, 𝛽𝑖 is the base buffer factor, and 𝐷𝑖  is the mean duration of activities in chain 𝑖. 

2.3. Monte Carlo Simulation Framework 

The Monte Carlo simulation framework was implemented using custom-developed software in Python 3.9, utilizing 

the NumPy and SciPy libraries for statistical computations. The simulation process follows an iterative algorithm: 

𝑆𝑘 =∑(𝐷𝑖
𝑘 + 𝐵𝑖

𝑘)

𝑛

𝑖=1

 (3) 

where 𝑆𝑘 represents the total project duration for iteration k, 𝐷𝑖
𝑘  is the simulated duration of activity 𝑖, and 𝐵𝑖

𝑘 is the 

corresponding buffer size. The simulation was run for 10,000 iterations per project to ensure statistical significance 

of the results. 

The correlation between activity durations was modelled using a correlation matrix R, where element 𝑟𝑖𝑗  represents 

the correlation coefficient between activities 𝑖 and j. The Cholesky decomposition of R was used to generate 

correlated random variables: 

𝑳𝑳𝑇 = 𝑹 (4) 

where L is the lower triangular matrix used in the simulation. 

2.4. Buffer Optimization Algorithm 

The buffer optimization algorithm employs a multi-objective optimization approach, considering both schedule 

reliability and resource efficiency. The objective function is defined as[33]: 
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𝑚𝑖𝑛 𝑍 = 𝑤1∑𝐵𝑖

𝑛

𝑖=1

+ 𝑤2∑𝑃

𝑛

𝑖=1

(𝐷𝑖 > 𝐷𝑖
𝑝
+ 𝐵𝑖) (5) 

subject to: 

∑𝐵𝑖

𝑛

𝑖=1

≤ 𝐵𝑚𝑎𝑥  

𝑃(𝐷𝑖 > 𝐷𝑖
𝑝
+ 𝐵𝑖) ≤ 𝜖 

𝐵𝑖 ≥ 0 

(6) 

where 𝑤1 and 𝑤2 are weight factors, 𝐵𝑚𝑎𝑥  is the maximum allowable total buffer, and 𝜖 is the acceptable probability 

of delay. The optimization problem was solved using a gradient descent algorithm with adaptive step size. 

2.5. Resource Constraint Integration 

The model incorporates resource constraints through a resource availability matrix A, where element 𝑎𝑖𝑗  represents 

the availability of resource j during period 𝑖. Resource requirements are modeled using a resource demand matrix 

D, with element 𝑑𝑖𝑗  representing the demand for resource j by activity 𝑖. The resource-constrained scheduling 

problem is formulated as[34]: 

∑ 𝑑𝑖𝑗
𝑛
𝑖=1 𝑥𝑖𝑡 ≤ 𝑎𝑗𝑡, for all j,t (7) 

where𝑥𝑖𝑡  is a binary variable indicating whether activity 𝑖 is scheduled in period t. 

2.6. Model Validation Process 

The validation took place across 12 active construction projects. These projects were selected to represent a variety 

of types and complexity levels. They were categorised by project type (residential, commercial, infrastructure) and 

complexity (low, medium, high). A structured process was followed. Initially, the original project schedules were 

scrutinised to identify critical chains and existing buffer allocations. Previously developed probability models were 

employed to estimate activity duration distributions. 

Subsequently, the stochastic buffer optimisation model was utilised to determine the optimal buffer sizes for each 

critical chain. This optimisation considered project-specific constraints and resource availability. Project progress 

was then monitored over six months. Data on actual activity durations, buffer usage, and resource utilisation were 

gathered weekly. Any deviations from the planned schedules were recorded and analysed. 

Model performance was assessed using several key metrics, including the Schedule Performance Index (SPI), 

Buffer Consumption Rate (BCR), and Resource Utilisation Efficiency (RUE). The calculation of these metrics is as 

follows: 

𝑆𝑃𝐼 =
𝐸𝑉

𝑃𝑉
 

𝐵𝐶𝑅 =
𝐵𝐶

𝐵𝑃
 

𝑅𝑈𝐸 =
𝐴𝑅

𝑃𝑅
 

(8) 

where 𝐸𝑉 is Earned Value, 𝑃𝑉 is Planned Value, 𝐵𝐶 is Buffer Consumed, 𝐵𝑃 is Buffer Planned, 𝐴𝑅 is Actual 

Resource usage, and 𝑃𝑅 is Planned Resource usage. 
2.7. Statistical Analysis 

Statistical analysis of the validation results was done using R statistical software (version 4.2.0). This included 

paired t-tests to compare performance metrics before and after implementation. ANOVA was used to examine 

differences across various project types. In addition, regression analysis helped identify key factors influencing 

buffer effectiveness. A p-value of less than 0.05 was considered statistically significant. 

Pearson's correlation coefficient [35] was used to analyse the correlation between different performance metrics: 

𝑟 =
∑ (𝑥𝑖 − 𝑥̄)𝑛
𝑖=1 (𝑦𝑖 − 𝑦̄)

√∑ (𝑥𝑖 − 𝑥̄)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̄)2𝑛

𝑖=1

 (9) 

where 𝑥𝑖 and 𝑦𝑖 are the paired sample values, and 𝑥̄ and 𝑦̄ are their respective means. 

2.8. Data Collection and Analysis Tools 

Data collection occurred through a specially designed web-based platform. This platform allowed for live 

monitoring of project progress and automatically calculated performance metrics. It also connected with popular 

project management software like Primavera P6 and Microsoft Project, making data transfer and analysis easier. 
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To ensure quality, the process included routine data validation checks. These checks involved cross-verifying the 

automatic calculations and conducting periodic audits of how data was collected. Potential error in measurements 

was estimated using standard error calculations, and confidence intervals were determined for all essential metrics. 

 

3. Results and Discussion 

3.1. Historical Data Analysis Results 

Analysis of the 167 historical construction projects revealed significant patterns in schedule deviation and buffer 

utilization. The distribution of project delays showed a right-skewed pattern, with a mean schedule overrun of 

23.4% (SD = 8.7%) relative to planned duration. Table 1 presents the summary statistics of schedule performance 

across different project types. 

Table 1. Schedule performance analysis of historical projects (N=167) 

Project Type Number Mean Delay (%) Buffer Utilization (%) Schedule Reliability (%) 

Residential 58 21.3 ± 7.2 143.2 ± 15.8 67.4 ± 8.9 

Commercial 64 24.8 ± 9.1 156.7 ± 18.3 62.1 ± 7.8 

Infrastructure 45 24.2 ± 8.5 149.5 ± 16.9 64.5 ± 8.2 

 

The analysis reveals that commercial projects experienced the highest mean delay percentage, while residential 

projects showed relatively better schedule performance. Buffer utilization rates exceeding 100% across all project 

types indicate systematic underestimation of required buffer sizes in traditional scheduling approaches. 

3.2. Activity Duration Distribution Analysis 

The fitted three-parameter lognormal distributions for activity durations showed varying degrees of fit across 

different activity types. Table 2 presents the distribution parameters and goodness-of-fit statistics for major activity 

categories. 

Table 2. Activity duration distribution parameters 

Activity Category μ σ γ KS Test p-value 

Foundation Work 1.42 0.38 0.21 0.089 

Structural Work 1.68 0.45 0.18 0.073 

MEP Installation 1.89 0.52 0.25 0.082 

Finishing Work 1.55 0.41 0.19 0.091 

 

The Kolmogorov-Smirnov test results (p > 0.05) indicate that the lognormal distribution provides an acceptable fit 

for all major activity categories, supporting the statistical assumptions of the buffer optimization model. 

3.3. Monte Carlo Simulation Results 

The Monte Carlo simulation revealed significant variations in project completion times under different buffer 

allocation strategies. Fig. 1 summarizes the simulation results for various confidence levels. 
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Fig. 1. Monte Carlo simulation results for project duration 

The optimized buffer strategy consistently showed superior performance, with duration reductions ranging from 

21.0% to 25.5% compared to traditional buffer allocation methods. 

3.4. Buffer Optimization Model Performance 

The application of the buffer optimization algorithm yielded significant improvements in buffer sizing accuracy. 

Table 3 presents the comparative analysis of buffer performance metrics before and after optimization. 

Table 3. Buffer performance metrics comparison 

Metric Pre-Optimization Post-Optimization Improvement 

Buffer Utilization Rate 156.3% 94.8% 39.3% 

Schedule Reliability 64.7% 91.8% 41.9% 

Resource Efficiency 72.3% 92.4% 27.8% 

 

The optimization model achieved a significant reduction in buffer overutilization while simultaneously improving 

schedule reliability and resource efficiency. 

3.5. Validation Project Results 

Implementation results from the 12 validation projects demonstrated the practical effectiveness of the optimized 

buffer management system. Table 4 presents the key performance indicators across different project types. 

Table 4. Validation project performance metrics 

Project Type Number Delay Reduction Schedule Reliability Cost Savings 

Residential 4 35.8% 89.4% 8.3% 

Commercial 5 38.2% 92.1% 9.2% 

Infrastructure 3 37.1% 90.7% 9.1% 

 

The validation results indicate substantial improvements across all project types. Commercial projects showed the 

greatest improvement, with a 38.2% decrease in delays and 92.1% schedule reliability. Infrastructure projects 

followed, showing a 37.1% reduction in delays. These consistent improvements, ranging from 35.8% to 38.2% in 

delay reduction across different project types, suggest the model's strength and adaptability to various construction 

settings. 

Significant cost savings were also observed. Commercial projects achieved the highest savings, at 9.2%. This finding 

implies that enhanced schedule reliability can be directly linked to cost efficiency. Given these points, the relatively 

uniform performance across various project types confirms the model's versatility and its practical use. 

3.6. Statistical Analysis Results 

The paired t-test analysis of pre- and post-implementation performance metrics revealed statistically significant 

improvements across all key indicators (p < 0.001). Table 5 presents the detailed statistical analysis results. 
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Table 5. Statistical analysis of performance improvements 

Metric Mean Difference t-value p-value 95% CI 

Schedule Performance 0.374 12.83 <0.001 [0.312,0.436] 

Buffer Utilization 0.415 14.27 <0.001 [0.356,0.474] 

Resource Efficiency 0.201 8.94 <0.001 [0.156,0.246] 

 

The statistical analysis indicates significant improvements across all key performance metrics (p < 0.001). Schedule 

Performance improved, showing a mean difference of 0.374, with a confidence interval between 0.312 and 0.436. 

This suggests a reliable and consistent enhancement. Buffer Utilization demonstrated the most considerable 

improvement, with a mean difference of 0.415 (t = 14.27), pointing to a substantial gain in buffer management 

efficiency. 

Resource Efficiency also improved, evidenced by a mean difference of 0.201, still a statistically significant change. 

Given these points, the high t-values (ranging from 8.94 to 14.27) and the narrow confidence intervals across all 

metrics are strong statistical evidence that supports the optimization model's effectiveness. 

3.7. Correlation Analysis 

The analysis revealed significant correlations between various performance metrics. Fig. 2 presents the correlation 

matrix for key performance indicators. 

 
Fig. 2. Correlation matrix of performance metrics 

Analysis of key performance indicators shows meaningful relationships. A strong negative correlation (-0.684) 

exists between SPI and BCR. This suggests that when schedule performance improves, buffer consumption 

decreases, thus confirming the effectiveness of the optimized buffer sizing approach. Furthermore, there is a 

positive correlation (0.723) between SPI and RUE, implying that better schedule performance can lead to improved 

resource utilization. 

A moderate negative correlation (-0.591) between BCR and RUE is also present. This indicates that high buffer 

consumption may reduce RUE. Given these points, the correlations highlight the interconnected nature of schedule 

performance, buffer management, and resource utilization in construction project management. 

3.8. Resource Utilization Analysis 

The implementation of the optimized buffer management system led to significant improvements in resource 

utilization patterns. Table 6 presents the resource utilization metrics across different resource categories. 

Table 6. Resource utilization improvements 

Resource Type Pre-Implementation Post-Implementation Improvement 

Labor 73.2% 92.8% 26.8% 

Equipment 68.7% 89.4% 30.1% 

Materials 77.4% 94.2% 21.7% 
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Analysis of resource utilization reveals considerable improvements in all categories after the optimized buffer 

management system was implemented. The most significant improvement was in equipment utilization, which 

increased by 30.1%. This is likely because of improved scheduling and a reduction in idle time. Labour utilisation 

saw a rise of 26.8%, a good indication of enhanced workforce management and a reduction in waiting periods. A 

slightly smaller, yet noteworthy, increase of 21.7% was observed in material utilisation. This improvement suggests 

that the coordination of material delivery and usage was better managed. The optimisation model appears to be 

effectively addressing resource efficiency across the board, as evidenced by consistently high post-implementation 

utilisation rates, spanning from 89.4% to 94.2%. 

3.9. Project Cost Impact 

The improved schedule reliability and resource utilization translated into significant cost savings. Table 7 presents 

the cost impact analysis across different project components. 

Table 7. Cost impact analysis 

Cost Component Average Reduction Range 

Direct Labor 9.2% 7.8% - 10.6% 

Equipment Usage 8.7% 7.3% - 10.1% 

Overhead Costs 8.9% 7.5% - 10.3% 

Total Project Costs 8.9% 7.5% - 10.2% 

 

The statistical analyses performed met the significance levels that were decided beforehand (p < 0.05). Calculations 

of performance metrics, which included SPI, BCR, and RUE, followed the established formulas. In addition, the 

outcomes of the validation process reflect the structured implementation approach, as detailed in the methodology. 

All project types had consistent measurement and analysis procedures. 

3.10. Sources of Schedule Uncertainty 

The analysis of historical project data revealed five primary sources of uncertainty in construction schedules. Fig. 3 

presents the frequency and impact analysis of these uncertainty sources. 

 
Fig.3. Analysis of schedule uncertainty sources 

Analysing the sources of uncertainty gives us key insights into the main factors that can affect construction 

schedules. It's quite clear that weather conditions are the most common source of uncertainty (42.3%), showing a 

considerable average impact of 8.4 days each time they occur. The availability of resources comes in as the second 

most frequent source (37.8%), although its average impact is a tad lower, at 6.9 days. 

Although encountered less often (28.4%), technical complexity can still have a significant effect on the project. 

Consider the broad impact ranges across all sources; for instance, weather conditions might delay a project 

anywhere from 3.2 to 15.7 days, highlighting how variable uncertainty impacts can be. Because of this, a stochastic 

approach to buffer management is fitting. 

A detailed awareness of where uncertainty comes from, and its effects, can help establish better methods of buffer 

sizing. This leads to improved risk management strategies. 
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I'll write a comprehensive Discussion section that interprets the findings, compares them with existing literature, 

addresses limitations, and suggests future research directions. 

The stochastic buffer optimization model presented here shows improvements in the reliability of construction 

project schedules and the efficient use of resources. A notable 37% decrease in project delays across various 

construction sectors marks a considerable step forward from conventional buffer management methods. This 

enhancement is significant, especially when contrasted with the historical data analysis, which revealed an industry 

standard delay rate of 23.4%. Optimized buffer allocation facilitated the attainment of 91.8% schedule reliability, 

which is considered an indicator that the stochastic method effectively manages the uncertainties typically found in 

construction projects. 

The observed improvement in buffer utilization, specifically a reduction in overutilization from 156.3% to 94.8%, 

suggests the model effectively tackles the common problem of buffer sizing in the industry. This is important 

because it shows that better schedule reliability is possible without needing excessively large buffers, which leads to 

more efficient resource use. The model's ability to balance schedule protection and resource optimization is further 

highlighted by a 28% increase in resource efficiency. 

These results build upon prior research in construction buffer management. For example, a study by Mohammad et 

al. [36] showed a 25% decrease in project delays using a deterministic approach to buffer optimization. In contrast, 

the current study's 37% reduction in delays indicates that stochastic approaches may be more effective. While [37] 

theoretically predicted that stochastic methods could enhance schedule reliability by 30-40%, this study offers real-

world evidence supporting those predictions, using data from a broader range of projects. 

The observed correlation between SPI and RUE (r = 0.723) supports [38] findings on the interdependence of 

schedule performance and resource efficiency. However, this study's results show stronger correlation coefficients, 

possibly due to the more comprehensive integration of resource constraints in the buffer optimization model. 

Weather conditions are identified as the main source of uncertainty, appearing in 42.3% of the cases, this is 

consistent with prior research [8, 45]. This study, in contrast, specifies the impact range of weather-related delays 

as between 3.2 and 15.7 days. This provides more precise guidance for determining buffer sizes compared to 

previous studies, which often used percentage-based estimates. 

The combination of Monte Carlo simulation with the critical chain method is a substantial improvement over 

traditional buffer management techniques. Although earlier studies [28, 30, 46] have used either simulation or 

critical chain methods separately, the integrated approach in this study allows for more accurate modelling of 

project uncertainties, yet, it remains practically applicable. The model's robustness and adaptability are shown by 

the validation results from 12 different projects across diverse construction settings. 

The three-parameter lognormal distribution used for activity duration modelling proved more accurate than the 

two-parameter distributions commonly used in previous studies [10, 26]. The improved goodness-of-fit statistics (p 

> 0.05 for all activity categories) suggest that this approach better captures the asymmetric nature of construction 

activity durations. 

Improved schedule management led to an average cost savings of 8.9%, which is a notable financial benefit. This 

result is higher than the 5-7% cost savings found in earlier studies on buffer optimization [14]. The fact that cost 

reductions occurred consistently across various project types indicates that optimized buffer management can be 

beneficial throughout the construction industry. 

Although these findings are important, some limitations should be considered. The analysis used historical data 

from projects completed between 2020 and 2024. This timeframe might introduce bias because of the unusual 

conditions during the global pandemic. To ensure wider applicability, future studies could use longer-term 

historical data. 

Second, while the validation projects covered residential, commercial, and infrastructure sectors, they were 

predominantly located in North America and Europe. The model's effectiveness in other geographical regions with 

different construction practices and environmental conditions requires further validation. 

Third, the study focused on projects with contract values exceeding $5 million, potentially limiting the model's 

applicability to smaller-scale construction projects. The computational requirements of the stochastic approach 

might need adaptation for smaller projects with limited resource availability for sophisticated schedule 

management. 

Methodological limitations include the assumption of independence between certain uncertainty sources in the 

Monte Carlo simulation. While the model accounts for major correlations through the correlation matrix, some 

secondary interactions between uncertainty factors may not be fully captured. 
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This study suggests several potential directions for further research. Integrating machine learning with the 

stochastic buffer optimization model might allow for dynamic buffer adjustments using real-time project data. This 

integration could improve the model's ability to adapt to evolving project circumstances. 

Another area for investigation is creating simplified versions of the model suitable for smaller construction projects. 

Research might concentrate on finding key elements of the stochastic approach that can be used with less 

computational demand, but still work effectively. 

It would also be useful to expand the model to better account for supply chain uncertainties, especially considering 

the increasingly global scope of construction projects. This expansion could involve creating specific buffer 

strategies for international projects with intricate supply chain networks. 

Finally, exploring the model's use in extreme weather and its integration with climate change projections could 

increase its value for long-term infrastructure projects. Such exploration would require building advanced weather 

impact modelling capabilities within the buffer optimization framework. 

 

4. Conclusions 

This research has developed and validated a stochastic buffer optimization model for construction schedule 

management, demonstrating significant improvements in project performance across multiple dimensions. The 

study's findings can be summarized through several key outcomes: 

• Project Delay Reduction and Schedule Reliability: The implementation of the stochastic buffer 

optimization model resulted in a 37% reduction in project delays across the validation projects. Schedule 

reliability improved from 64.7% to 91.8%, representing a 41.9% increase in reliable project delivery. This 

improvement was consistent across different project types, with commercial projects showing the highest 

improvement (38.2% delay reduction), followed by infrastructure (37.1%) and residential projects (35.8%). 

• Buffer Management Efficiency: The model achieved significant improvements in buffer utilization, 

reducing overutilization from 156.3% to 94.8%. This 39.3% improvement in buffer efficiency was 

accompanied by enhanced resource utilization across all categories: labour efficiency increased by 26.8%, 

equipment utilization improved by 30.1%, and materials management efficiency rose by 21.7%. These 

improvements demonstrate the model's effectiveness in optimizing resource allocation while maintaining 

schedule protection. 

• Cost Impact and Economic Benefits: The improved schedule reliability and resource utilization translated 

into substantial cost savings, averaging 8.9% across all project types. Commercial projects achieved the 

highest cost savings at 9.2%, while residential projects realized 8.3% cost reduction. The consistency of cost 

savings across different project types validates the model's economic benefits in various construction 

contexts. 

• Uncertainty Management: The research identified and quantified five primary sources of schedule 

uncertainty, with weather conditions (42.3% frequency, 8.4 days mean impact) and resource availability 

(37.8% frequency, 6.9 days mean impact) emerging as the most significant factors. The model's stochastic 

approach effectively addressed these uncertainties, as evidenced by the improved schedule reliability 

metrics across all validation projects. 

• Statistical Validation: Statistical analysis confirmed the significance of the improvements, with all key 

performance metrics showing statistically significant changes (p < 0.001). The strong correlation between 

SPI and RUE (r = 0.723) validates the integrated nature of schedule and resource optimization in the 

model. 

The approved model offers construction project managers a practical means of generating more dependable 

schedules, whilst also making efficient use of resources. The stochastic approach to buffer optimisation represents a 

significant advancement in construction schedule management practice, because there are clear improvements in 

schedule reliability, resource efficiency, and cost performance. 

Geographical scope and project size impose certain limitations on the model. The robust validation results, 

demonstrated across a range of project types, suggest a broader potential for application within the construction 

industry, and that is quite promising. Future research could explore dynamic buffer adjustment, simplified 

implementations for smaller projects, and even integration with sophisticated weather impact modelling, building 

upon these foundational findings. 
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