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Drought forecasting is crucial for managing its effects on crop production and water supply. 

This study evaluates the effectiveness of the Seasonal Auto-Regressive Integrated Moving 

Average model with external predictors (SARIMAX) and Artificial Neural Networks (ANN) in 

predicting the Standardized Precipitation Index (SPI), a crucial indicator of drought conditions 

in Karnataka. Using data from 2000 to 2023, both models incorporate variables such as 

rainfall, temperature, NDWI (Normalized Difference Water Index), and NDVI (Normalized 

Difference Vegetation Index). The results indicate that the SARIMAX model significantly 

outperforms the ANN model, with a lower RMSE of 0.2699 and MAE of 0.2114, highlighting its 

superior accuracy and predictive reliability. The SARIMAX model also demonstrates minimal 

bias (ME = 5.89e-14) and uncorrelated residuals (ACF1=-0.0750), confirming its robustness in 

capturing the underlying trends. In contrast, the ANN model exhibited higher errors and lower 

predictive performance in extreme drought conditions. Based on these findings, the SARIMAX 

model is recommended as the more effective tool for SPI forecasting in North Karnataka, 

offering a reliable approach to enhancing agricultural resilience in drought-prone areas. 

Keywords: SARIMAX, ANN, drought, SPI forecasting, R software. 

 

 

1. INTRODUCTION 

Droughts are among the most severe and destructive environmental catastrophes, posing severe threats to 

agriculture, water resources, and livelihoods, especially in regions with predominantly agricultural economies. 

North Karnataka, a semi-arid region in southern India, frequently experiences droughts that disrupt agricultural 

productivity and socio-economic stability. The growing unpredictability of rainfall patterns due to climate change 

underscores the necessity of robust drought forecasting models to enhance resilience and mitigate adverse impacts. 

Accurate forecasting of drought events is critical for informed decision-making in agricultural planning, 

water resource management, and disaster preparedness. Traditional drought indexes, such as the Standardized 

Precipitation Index (SPI), have been widely used to assess drought severity. However, the challenge lies in 

accurately predicting SPI values, which depend on a combination of climatic variables and their complex 

interrelationships. Vyom Shah et al., 2024, demonstrated the potential of SARIMAX models in capturing seasonal 

patterns and external climatic variables, proving their efficacy in agricultural planning. Similarly, Kumar et al., 

2021 highlighted the capabilities of ANN models in handling non-linear climatic interactions, showcasing their 

advantage in regions with complex weather patterns. 

This article provides two advanced modeling techniques: the Seasonal Auto-Regressive Integrated Moving 

Average with Exogenous Variables (SARIMAX) and Artificial Neural Networks (ANN). SARIMAX, a statistical 

model, captures seasonality and external influences, making it suitable for time-series data with predictable 

patterns. On the other hand, ANN, a machine learning-based model, excels in handling non-linear relationships 

and complex data structures, offering a data-driven approach to drought forecasting. 
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This article seeks to assess the effectiveness of these two models in forecasting SPI for North Karnataka. The 

study leverages 23 years of historical data (2000-2023) encompassing key Meteorological factors like temperature, 

rainfall, and vegetation indices. By comparing the models' accuracy using metrics like Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE), this study aims to identify the most reliable and efficient model for 

drought prediction. 

2. LITERATURE REVIEW 

Amr Mossad and Abdulrahman AliAlazba (2015) highlight the significance of drought forecasting in facilitating 

effective drought mitigation strategies. Their study explores the applicability of linear stochastic models, specifically 

the autoregressive integrated moving average (ARIMA) model, for predicting drought conditions. Using the 

Standardized Precipitation Evapotranspiration Index (SPEI) in a hyper-arid climate, multiple ARIMA models were 

developed to assess their forecasting capabilities. The findings indicate that these models can effectively predict 

drought across various time scales. Consequently, the study suggests that ARIMA models are valuable tools for 

drought forecasting, enabling water resource managers and planners to implement proactive measures based on 

anticipated drought severity. 

A.K. Mishra, V.R. Desai, and V.P. Singh (2007) present key findings from their study on drought 

forecasting using the Standardized Precipitation Index (SPI). Their analysis indicates that a hybrid model 

outperforms other approaches for predicting drought in the Kansabati basin, India. This hybrid model integrates 

the strengths of both stochastic and neural network models. A comparison among various models—including 

ARIMA/SARIMA (stochastic models), recursive multistep neural network models (RMSNN), direct multistep 

neural network models (DMSNN), and hybrid stochastic neural networks with recursive (HSNNRA) and direct 

(HSNNDA) approaches—reveals that HSNNRA provides the best performance for a one-month lead time. However, 

as the lead time increases, the accuracy of recursive-based models declines due to error accumulation. In contrast, 

HSNNDA demonstrates superior performance when longer lead-time forecasts are required. 

2.1 Study Area: The Drought Crisis in North Interior Karnataka 

North Interior Karnataka extends across latitudes 14°N to 18°N and longitudes 74°E to 77°E, encompassing 

districts such as Bagalkote, Ballari, Belagavi, Bidar, Dharwad, Gadaga, Haveri, Kalaburagi, Koppala, Raichur, 

Vijayapura, Yadgir, and Vijayanagar. The region experiences semi-arid climatic conditions, withyearly precipitation 

ranging from 500 mm to 850 mm, predominantly occurring during the southwest monsoon(June to September). 

Summers are typically hot, with temperatures often exceeding 35°C, while winters are mild. 

Drought is a recurring issue in this area, driven by erratic and insufficient rainfall. These dry spells lead to 

reduced crop yields and economic hardship for farmers reliant on rain-fed agriculture. The unpredictability of 

rainfall, exacerbated by climate change, has strained water resources and increased the risk of desertification and 

soil degradation. This study seeks to analyze these seasonal drought patterns and use advanced forecasting models 

to support sustainable agricultural practices and mitigate the drought crisis. 

Maltare et al. (2023) explored the rainfall pattern and groundwater level of the Banaskantha district of Gujarat 

and predicted a rise in the groundwater level using Artificial Intellegent such as SARIMA, multi-variable regression, 

ridge regression, and KNN regression. 

The literature review reveals limited efforts have been made to develop a statistical model for reliably 

predicting drought occurrences in Karnataka. Additionally, the impact of hydrological, meteorologicalparameters, 

and remote sensing profiles on drought prediction has not been thoroughly explored. This study aims to address 

these gaps by leveraging data and advanced technological approaches to enhance drought forecasting accuracy. 

3. METHODOLOGY 

This study utilizes historical data (2000-2023) collected from official sources such as the Karnataka State Natural 

Disaster Monitoring Centre (KSNDMC), India Meteorological Department (IMD), United States Geological Survey 

(USGS), BHUVAN, and other official sources. The variables considered for drought forecasting include rainfall, 

temperature, NDVI, NDVI lag, NDWI, and SPI. These parameters are crucial climatic and vegetation health 

indicators, directly influencing drought conditions.  
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The methodology for this study is summarized in the flowchart below (Figure 1). It provides a detailed, sequential 

explanation of the process., starting from raw data collection to drought forecasting. The raw data, comprising 

Rainfall, Temperature, NDVI, NDVI lag, and NDWI, was processed to generate the SPI values. These processed 

data were then used for drought modeling through two approaches: Time Series Modeling (SARIMAX) and 

Artificial Intelligence Modeling (ANN). The model’s accuracy and efficiency were assessed using statistical 

measures, including RMSE and MAE for error estimation, while AIC and BIC were employed to determine model 

fit and complexity. The final step involved drought forecasting in terms of duration and severity. The analysis is 

conducted using R software to ensure precise modeling and forecasting. 

 
Figure 1: Flowchart depicting the methodology for drought forecasting 

 

3.1 Normalized Difference Vegetation Index (NDVI) 

NDVI is a remote sensing index utilized to evaluate vegetation density and health. It is derived from the difference 

in reflectance between near-infrared (NIR) and red (RED) light, as healthy vegetation strongly reflects NIR while 

absorbing more RED light. 

NDVI= 
(𝑵𝑰𝑹−𝑹𝑬𝑫)

(𝑵𝑰𝑹+𝑹𝑬𝑫)
 

Where: 

 NIR: Reflection in the near-infrared wavelength range 

 RED: Reflectance in the red wavelength range 

The NDVI scale spans from -1 to +1, where elevated values reflect healthier and more abundant vegetation. Values 

near zero suggest barren or sparsely vegetated areas, while negative values often correspond to water bodies or 

clouds. 

3.2 NDVI Lag 

NDVI lag represents the delayed influence of vegetation health on drought conditions. Vegetation changes, as 

captured by NDVI, may impact subsequent month’s or season’s climatic and soil conditions. Incorporating lagged 

NDVI values helps capture this delayed effect, enhancing the predictive capacity of drought forecasting models. 

NDVI lag(t) = NDVI(t−k) 

Where: 

• NDVI lag(t): Lagged NDVI value at time t 

• t: Current time period 

• k: Lag interval  

3.3 Normalized Difference Water Index (NDWI) 
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NDWI is a satellite-derived index that assesses water content in vegetation and soil by analyzing the difference in 

reflectance between the green and near-infrared bands, it highlights water features and minimizes interference 

from vegetation and soil. NDWI values typically range between -1 and 1. Positive values indicate water bodies or 

areas with high water content. Negative or low values indicate dry or non-water regions. This index is widely used 

in drought monitoring, agricultural studies, and hydrological assessments, as it helps identify areas of water stress 

or availability.  

NDWI =  
(GREEN−NIR)

(GREEN+NIR) 
 

Where: 

• Green Band: Reflectance value from the green wavelength of the electromagnetic spectrum. 

• NIR (Near-Infrared Band): Reflectance value from the near-infrared wavelength of the spectrum. 

 

3.4 SPI  

The Standardized Precipitation Index (SPI) serves as an essential tool for assessing and quantifying drought 

severity. It measures deviations from normal precipitation over a specific period, ranging from -2 to +2. SPI values 

closer to -2 indicates extreme drought, with -1 indicating moderate drought conditions. Conversely, values above +1 

represent wetter-than-normal conditions, with +2 indicating unusually high precipitation. This index aids in 

determining the intensity and duration of droughts, with lower values indicating more severe water scarcity. 

3.5 SARIMAX (Seasonal Auto-Regressive Integrated Moving Average with exogenous variables)  

SARIMAX is a time series forecasting model based on statistical methods. It builds upon the SARIMA model by 

incorporating exogenous variables - external factors influencing the dependent variable. SARIMAX effectively 

accounts for: 

• Seasonality: Repeating patterns or cycles in the data. 

• Trend: Long-term directional movement. 

• Autocorrelation: Relationships between current and past values. 

• External predictors: Key factors, including climatic conditions and economic metrics. 

SARIMAX Model 

The Seasonal Auto-Regressive Integrated Moving Average with Exogenous Variables (SARIMAX) model was 

employed to forecast the SPI. The model incorporated SPI as the dependent variable and used NDVI, NDVI lag, 

NDWI, rainfall, and temperature as exogenous variables. 

The SARIMAX model is represented as: 

SARIMAX (p, d, q) × (P, D, Q) s 

where p, d, and q represent the non-seasonal components, corresponding to the autoregressive (AR) terms, 

differencing, and moving average (MA) terms, respectively. Similarly, P, D, and Q denote the seasonal 

counterparts of these components. The parameter s specifies the length of the seasonal cycle. 

 

The SARIMAX equation incorporates exogenous predictors (Xt) as: 

 

ϕp(B) ΦP(Bs) (1-B)d(1-Bs)DYt =θq(B) ΘQ(Bs) ℇ𝒕+ βXt 

 

In the SARIMAX model, Yt represents the dependent variable, the time series being analyzed. The term ϕp(B) 

denotes the non-seasonal autoregressive (AR) component of order p, while ΦP(Bs) represents the seasonal 

autoregressive (SAR) component of order P with a defined seasonality s. To achieve stationarity, the model 
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applies differencing, where (1−B)d accounts for non-seasonal differencing of order d, and (1−Bs)D manages 

seasonal differencing of order D to remove seasonal trends. The moving average (MA) components are captured 

through θq(B) which represents the non-seasonal MA component of order q, and ΘQ(Bs), which accounts for the 

seasonal MA component of order Q with seasonality s. Additionally, the model includes a linear combination of 

exogenous predictors, denoted as βXt, where Xt represents external influencing factors, and β is their 

corresponding coefficients. Finally,ℇ𝒕 the error term  represents white noise, which is assumed to have a mean of 

zero and constant variance, ensuring that the model captures only the systematic patterns in the data. 

 

3.6 Artificial Neural Network (ANN) 

Artificial Neural Networks (ANN) are machine learning models designed to emulate the functioning of the 

human brain in processing information and identifying patterns. They are composed of multiple layers of 

interconnected neurons that analyze input data and identify patterns for making predictions. ANNs are widely 

used for nonlinear and complex data analysis, including time-series forecasting. 

Artificial Neural Network (ANN) Model 

An Artificial Neural Network (ANN) model was developed to forecast SPI, leveraging its capacity to capture 

complex nonlinear relationships. The input layer consisted of NDVI, NDVI lag, NDWI, rainfall, and temperature 

as input features. The network architecture was configured with: 

• Input layer: 5 neurons (one for each feature) 

• Hidden layers: Two layers with 5 and 3 neurons respectively, activated using the ReLU function 

• Output layer: 1 neuron for SPI prediction 

The input layer, consisting of nodes representing these features, served as the entry point for the data. These 

input nodes transmit the data to hidden layers, processing the information through weighted connections. The 

hidden layers applied activation functions to transform the input data into a format suitable for making 

predictions. The weights assigned to each feature highlighted their relative influence on the model's output, 

offering insights into the importance of each variable in predicting SPI. The final SPI predictions were generated 

through a single-node output layer.  

4. RESULTS AND FINDINGS 

4.1 SARIMAX Model Performance and Error Analysis for SPI Forecasting 

Table 1: Error and Accuracy Metrics for Training Set Predictions 

 ME RMSE MAE ACF1 

Training 

set 

5.88e-14 0.2698 0.2113 -0.0750 

 

To build and validate the forecasting model, the data is divided into separate training and testing subsetsin an 

80:20 proportion. The training set is used to build and fine-tune the SARIMA model, ensuring optimal 

parameter selection and model accuracy. Meanwhile, the testing set is set aside. To assess the model's 

forecasting accuracy and determine its ability to generalize to new data. 

The training set error measures demonstrate that the model performs well in forecasting SPI. The Mean Error 

(ME) is nearly zero, indicating that the model is unbiased and correctly aligned with observed values. The Root 

Mean Squared Error (RMSE) of 0.2698 shows a relatively small average error in predictions, suggesting the 

model's accuracy. Additionally, the Autocorrelation of Residuals (ACF1) value of 0.0138 indicates minimal 

correlation among residuals, signifying that the model effectively captures the data’s underlying patterns. 

Overall, the model demonstrates strong forecasting ability and accurately predicts SPI values. 
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4.2 Comparison between the SARIMAX and ANN models 

 Table 2: Error Metrics for SARIMAX and ANN Models in SPI Forecasting 

Model RMSE MAE AIC BIC 

SARIMAX 0.2698 0.2113 26.4381 40.7395 

ANN 0.6035 0.4860 -

29.7657 

43.7842 

The evaluation of SARIMAX and ANN models for SPI forecasting reveals that SARIMAX outperforms ANN in 

both accuracy and model fit. With a lower RMSE of 0.2698 andMAE of 0.2113, the SARIMAX model 

demonstrates greater predictive precision compared to the ANN model, which recorded an RMSE of 0.6035 and 

MAE of 0.4860. 

The comparison of model performance revealed that the AIC value for the ANN model (-29.7657) was lower 

than that of the SARIMAX model (26.4381). However, the BIC value for the SARIMAX model (40.7395) was 

slightly lower than that of the ANN model (43.7842). Considering both criteria and the overall performance 

metrics, the results favor the SARIMAX model for its superior predictive accuracy and reliability. 

These findings suggest that the SARIMAX model is more reliable for SPI forecasting, making it a preferable 

choice for this study's drought prediction objectives. 

4.3 ACF and PACF plots of the residuals for Model Comparison 

 
Figure 2: ACF and PACF plots of the residuals of SARIMAX and ANN models 

 

The Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of the residuals were 

analyzed to assess the adequacy of the SARIMAX and ANN models. 

SARIMAX Residuals: 

The ACF and PACF plots of SARIMAX residuals exhibit no significant lagsexceeding the confidence intervals, 

indicating the absence of correlation. This confirms that the SARIMAX model effectively captured the data’s 

underlying pattern, leaving minimal autocorrelation in the residuals. 

ANN Residuals: 

The ACF and PACF plots of ANN residuals display some lags exceeding the confidence intervals, suggesting the 

remaining autocorrelation. This indicates that the ANN model may not have fully captured the temporal 

dependencies in the data. 

 

4.4 Q-Q plot for SARIMAX Residuals and ANN Residuals for normality check 

 

Shapiro-Wilk normality test 

• SARIMAX Residuals 

W= 0.9795, p-value=0.2978 

• ANN Residuals 

W=0.98711, p-value=0.8032 
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The Shapiro-Wilk test results indicate that the residuals of both the SARIMAX and ANN models follow a normal 

distribution, as their p-values exceed 0.05. This is a good sign that the assumptions for normal residuals are met 

in both models. 

 
Figure 3: Q-Q Plot for SARIMAX Residuals and ANN Residuals 

 

The Quantile-Quantile (Q-Q) plot for the SARIMAX residuals shows that they align well with the expected quantiles 

of a normal distribution. The Quantile-Quantile (Q-Q) plot for the SARIMAX residuals shows that they align well 

with the expected quantiles of a normal distribution. Most observations align with the reference trend line, 

suggesting that the residuals follow a normal distribution.This result supports the adequacy of the SARIMAX model 

in capturing the basic data patterns. It confirms that its residuals meet the assumption of normality, which is 

essential for reliable forecasting. This result supports the adequacy of the SARIMAX model in capturing the basic 

data patterns. It confirms that its residuals meet the assumption of normality, which is essential for reliable 

forecasting.  

The QQ plot of the residuals from the Artificial Neural Network (ANN) model assesses the normality of the 

prediction errors. Most residuals align well with the diagonal line, indicating that they follow normal distribution, 

which is a desirable property for validating model assumptions.  

 

4.5 Artificial Neural Network Architecture for SPI Forecasting 

 

 
Figure 4: Artificial Neural Network Architecture for SPI Forecasting 

 

The diagram illustrates the ANN model's architecture for forecasting SPI. It consists of five input nodes 

representing Temperature, NDWI, NDVI, NDVI Lag, and Rainfall, which feed into multiple hidden layers of 

interconnected neurons. The connections between nodes are weighted, indicating the relative importance of each 

input and hidden layer neuron. The output node represents the predicted SPI value. The model's prediction error is 

0.050793, indicating a high level of accuracy.  The document also lists the weights associated with each feature, 
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highlighting their influence on the model's predictions. This ANN model can be utilized for accurate environmental 

monitoring and forecasting. 

 

4.6 Actual and Predicted values of SPI using SARIMAX model (2000-2023) 

The SARIMAX model effectively predicted the SPI values, closely aligning with the observed (actual) values (refer 

to Table 3). The residuals, representing the discrepancies between the observed and predicted SPI values, were 

mostly minimal, suggesting that the model fits the data well. 

Table 3: Actual vs. predicted and Residual values of SPI using the SARIMAX model (2000-2023) 

Year Season Actual 

SPI 

Predicted 

SPI 

Residual 

2000 Kharif -0.4231 -0.4795 0.0564 

2000 Rabi -0.3484 -0.3715 0.0231 

2000 Zaid -0.2793 -0.3895 0.1103 

2001 Kharif -0.1533 -0.1312 -0.0221 

2001 Rabi 0.0979 -0.0963 0.1942 

2001 Zaid -0.7195 -0.7318 0.0122 

2002 Kharif -0.5122 -0.4958 -0.0164 

2002 Rabi 0.4764 0.4907 -0.0143 

2002 Zaid 0.2624 0.3749 -0.1125 

2003 Kharif -0.7598 -0.8449 0.0851 

2003 Rabi 0.1454 0.0782 0.0672 

2003 Zaid -

0.3009 

-0.2433 -0.0576 

2004 Kharif -0.3907 -0.3125 -0.0782 

2004 Rabi -0.0130 0.0499 -0.0629 

2004 Zaid -0.1515 0.0458 -0.1974 

2005 Kharif -0.7202 -0.7013 -0.0189 

2005 Rabi 0.0954 -0.0446 0.1401 

2005 Zaid -0.1393 -0.0401 -0.0991 

2006 Kharif -0.9973 -0.9833 -0.0140 

2006 Rabi 0.2467 0.2889 -0.0422 

2006 Zaid 0.5180 0.5191 -0.0011 

2007 Kharif 0.1248 0.1041 0.0207 

2007 Rabi -0.2611 -0.4965 0.2354 

2007 Zaid 0.2020 0.1201 0.0819 

2008 Kharif -0.6218 -0.6839 0.0621 

2008 Rabi 0.2020 0.1201 0.0819 

2008 Zaid -0.1282 -0.0688 -0.0594 

2009 Kharif -

0.8698 

-0.8199 -0.0499 

2009 Rabi -0.5494 -0.1856 0.1356 

2009 Zaid 0.3272 0.2402 0.0870 

2010 Kharif -0.0621 -0.0771 0.0150 

2010 Rabi -0.5352 -0.6216 0.0864 

2010 Zaid -0.5594 -0.5493 -0.0101 

2011 Kharif -0.9926 -0.8972 -0.0954 
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2011 Rabi -0.2214 0.1845 -0.4059 

2011 Zaid 0.2295 0.1862 0.0433 

2012 Kharif -0.4449 -0.3560 -0.0889 

2012 Rabi 0.4764 0.4907 -0.0143 

2012 Zaid 0.7243 0.7013 0.0230 

2013 Kharif 0.2446 0.2924 -0.0478 

2013 Rabi 0.1454 0.0782 0.0672 

2013 Zaid -

0.0439 

0.0281 -0.0720 

2014 Kharif -0.7622 -0.7849 0.0227 

2014 Rabi -0.5398 -0.4787 -0.0610 

2014 Zaid 0.4873 0.5308 -0.0435 

2015 Kharif -0.6147 -0.4992 -0.1155 

2015 Rabi 0.4641 0.5069 -0.0428 

2015 Zaid -

0.0530 

-0.0978 0.0447 

2016 Kharif 0.2226 0.1992 0.0234 

2016 Rabi -0.6921 -0.7792 0.0871 

2016 Zaid -0.2551 -0.1340 -0.1211 

2017 Kharif 0.0356 0.1086 -0.0730 

2017 Rabi -0.7265 -0.6866 -0.0398 

2017 Zaid -

0.0396 

0.0042 -0.0439 

2018 Kharif 0.0181 0.0213 -0.0033 

2018 Rabi -0.3529 -0.3715 0.0186 

2018 Zaid 0.1267 0.2123 -0.0856 

2019 Kharif -0.5012 -0.4747 -0.0266 

2019 Rabi -0.4925 -0.4798 -0.0127 

2019 Zaid 0.4286 0.4105 0.0181 

2020 Kharif -0.2398 -0.2688 0.0291 

2020 Rabi 0.1178 0.0635 0.0543 

2020 Zaid -

0.2009 

-0.1903 -0.0106 

2021 Kharif -0.2658 -0.2381 -0.0277 

2021 Rabi -0.0287 -0.0624 0.0337 

2021 Zaid 0.0892 0.1277 -0.0385 

2022 Kharif -0.6545 -0.6762 0.0217 

2022 Rabi -0.0572 -0.0604 0.0032 

2022 Zaid 0.0912 0.1002 -0.0090 

2023 Kharif 0.4362 0.3991 0.0372 

2023 Rabi 0.1975 0.2619 -0.0644 

2023 Zaid -0.3691 -0.3337 -0.0354 
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Figure 5:  Actual and Predicted SPI values using ANN Model 

 

4.7 Forecasted SPI values using SARIMAX  

Since SARIMAX outperforms the ANN model, the forecasted SPI values for the period from 2024 to 2030 are 

presented season-wise. Refer to Table 5 and the plot (Figure 6) for a detailed view of Actual, Predicted, and 

forecasted SPI values. 

Table 5: Forecasted SPI Values Using SARIMAX  

(2024-2030) 

Year Season Forecasted 

SPI 

2024 Kharif -0.1188 

2024 Rabi 0.1093 

2024 Zaid -0.2576 

2025 Kharif -0.4668 

2025 Rabi 0.0020 

2025 Zaid -0.2804 

2026 Kharif -0.7106 

2026 Rabi 0.0726 

2026 Zaid -0.3094 

2027 Kharif -0.2969 

2027 Rabi -0.1077 

2027 Zaid -0.376 

2028 Kharif -0.0933 

2028 Rabi -0.1634 

2028 Zaid 0.60383 

2029 Kharif 1.1010 

2029 Rabi 0.1923 

2029 Zaid 0.3136 

2030 Kharif -0.2284 

2030 Rabi 0.1458 

2030 Zaid -0.0593 
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Figure 6: Actual, Predicted, and Forecasted SPI values using SARIMAX Model 

 

5. CONCLUSION 

This study compares the forecasting performance of two models SARIMAXand ANN for predicting SPI 

(Standardized Precipitation Index) in North Karnataka. The findings indicate that the SARIMAX model 

demonstrates greater predictive accuracy compared to the ANN model, as reflected in its lower RMSE (0.2698) and 

MAE (0.2114). demonstrating its ability to predict drought conditions reliably. The SARIMAX model also exhibited 

minimal bias (ME = 5.89e-14) and uncorrelated residuals (ACF1 = -0.0750), making it a robust tool for drought 

forecasting. 

However, the ANN model still showed considerable promise, particularly in capturing complex, non-linear 

relationships between the predictors and SPI. While the ANN had slightly higher RMSE and MAE values, it was still 

effective in modeling the complex patterns in the data. It can be a valuable tool in scenarios where non-linear 

interactions are critical. The flexibility of ANN models makes them suitable for a wide range of forecasting tasks, 

especially when data patterns are highly complex. 

In conclusion, while the SARIMAX model is recommended for its superior forecasting accuracy and reliability, the 

ANN model should not be dismissed. It can complement SARIMAX in areas where capturing non-linear 

relationships is essential. Both models provide valuable insights into SPI forecasting, and the selection between the 

two should be based on the specific requirements of the forecastingobjectives and the characteristics of the data. 

 

IMPLICATIONS and FUTURE RESEARCH SCOPE 

The results of this study have significant implications for agricultural planning, water resource management, and 

drought mitigation strategies in North Karnataka. A more reliable drought forecasting model can help policymakers 

and farmers make informed decisions regarding crop planning, irrigation scheduling, and disaster preparedness. 

By incorporating multiple meteorological and environmental variables, SARIMAX-based forecasting can enhance 

resilience against drought-induced agricultural losses. 

Future studies could extend this research by evaluating the performance of hybrid models, such as SARIMAX-ANN 

ensembles, for improved drought prediction. Incorporating high-resolution remote sensing data and machine 

learning techniques could further enhance model accuracy. Additionally,taluk-wise drought forecasts could provide 

more localized insights, enabling better resource allocation and targeted drought management strategies. 

Expanding the study to include longer forecast horizons and climate change scenarios could also provide valuable 

insights for long-term drought risk assessment. 
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