
Journal of Information Systems Engineering and Management
2025, 10(2s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Code-Driven Approach Design with Help of Artificial

Intelligence

Hasan Hashim1, Omar Isam Al Mrayat2, El-Sayed Atlam3, Dyala Ibrahim4
1Department of Information Systems, College of Computer Science and Engineering, Taibah University

46421, Yanbu, Saudi Arabia

hhashim@taibahu.edu.sa
2Department of Software Engineering, Amman Arab University, 11953,Amman, Jordan

o.mrayat@aau.edu.jo
3Department of Computer Science, College of Computer Science and Engineering, Taibah University

46421, Yanbu, Saudi Arabia

satlam@yahoo.com
4Department of Cyber Security, Amman Arab University, 11953, Amman, Jordan

d.ibrahim@aau.edu.jo

ARTICLE INFO ABSTRACT

Received: 12 Oct 2024

Revised: 07 Dec 2024

Accepted: 21 Dec 2024

This paper investigates the creation of real-time experimentation in Artificial Intelligence (AI)

by means of a code-driven approach, which addresses the dynamic nature of AI applications in

contemporary contexts. The complexities of real-world scenarios are frequently not captured by

traditional AI experimentation, which heavily depends on static datasets and preset criteria.

This study illustrates the process of adapting and enhancing AI models in live environments by

combining real-time data processing with continuous method optimization. The methodology

entails the establishment of real-time data channels, the execution of AI models in dynamic

conditions, and the application of numerical analysis to quantify performance enhancements.

The primary findings. indicate that real-time experimentation substantially enhances the

accuracy, productivity, and flexibility of models in comparison to conventional methods. The

results are corroborated by meticulous numerical experiments, which encompass metrics such

as precision, recall, accuracy, and processing times. This research contributes to the expanding

field of AI by illustrating the efficacy of real-time, code-driven testing and offering practical

insights. This work has a wide-ranging impact on a variety of industries, as the demand for

real-time, adaptive AI solutions becomes more urgent. These methods could be further refined

and additional applications across various AI domains could be explored in future research.

Keywords: Artificial Intelligence, Real-Time Experimentation, Code-Driven Approach,

Algorithm Optimization, Data Processing, Model Accuracy, Dynamic Experimentation

INTRODUCTION

Technology called artificial intelligence (AI) has grown very quickly and is changing many fields, from healthcare to

finance, by automating hard tasks and making predictions. In the past, AI experiments were based on static

datasets, which are sets of fixed data that are used to train, verify, and test algorithms. Unfortunately, this method

only works in some situations because it doesn't take into account how real-world settings are always changing and

decisions need to be made right away. Real-time data processing and more powerful computers have made it

possible for AI researchers to try new things. In real-time testing, live data is constantly fed into AI models, which

lets them be adjusted and improved on the fly. This dynamic method not only better represents the real world, but

it also makes AI systems more flexible and better at what they do. In a recent study about a real-time suggestion

system, models that used real-time data on how users interacted with the system were 15% more accurate than

models that used standard data(Elizaveta & Evert, 2023). In the same way, an AI model for financial predictions

that was optimized with real-time market data did 12% better than standard models at guessing how stock prices

would move.A code-driven approach to real-time testing focusses on using scripts and algorithms to handle the

constant flow of data and changes made in real time. This method uses code tools like TensorFlow, PyTorch, and

custom-built processes to handle the tricky tasks of updating models and integrating data in real time. By

286 Hasan Hashim et al. / J INFORM SYSTEMS ENG, 10(2s)

automating these steps, AI systems can react almost instantly to new data, which makes sure that models stay

useful and correct over time. In this study, numerical tests show that training models with a code-driven, real-time

approach can cut delay by up to 20% and boost processing efficiency by 18%. This shows that this method works in

the real world(Khankhoje, 2023). Also, the problems that come up with real-time testing are dealt with using strict

optimization methods. These include data delay, computing overhead, and algorithm stability. For instance, using

flexible learning rates and gradient cutting in real-time settings has been shown to make training more stable and

lower the chance of model divergence by 10-15%. These number gains show how important code-driven, real-time

testing is for making AI systems better. The goal of this paper is to look into these changes in more detail by giving a

full picture of real-time AI testing through both theory talks and numerical proof. The goal is to give researchers

ideas on how to use a code-driven method to improve AI performance in real-world situations.

LITERATURE REVIEW

A. Historical Context of AI Experimentation:

⮚ Overview of Traditional AI Experimentation Methods

Traditional AI experiments have primarily used static datasets and specified parameters to train, validate, and test

models. These methods often include gathering a dataset, separating it into subsets for training, validation, and

testing, and then executing algorithms to optimize for specific goals, such as correctness or error minimization(Liu,

2020). This approach frequently employs batch processing, in which every record is analyzed at once to create a

model that synthesizes well to new data. Cross-validation is an approach used to reduce overfitting and ensure

model durability. While these methods are useful in controlled conditions, they have limitations due to their

dependence on past information, which may not reflect real-time environmental changes. Because of the static

nature of this approach, models cannot respond to new data until they are updated, which can be resource-

intensive as well as time-consuming, making them unsuitable for dynamic real-world applications.

Figure 1: Flowchart of Traditional AI Experimenting Methods

⮚ Limitations of Static Datasets and Predefined Parameters:

The fundamental disadvantage of using static databases and predetermined variables in AI experiments is the

inability to respond to new or changing input. Static datasets are, by the description, snapshots of data taken at a

given point in time, therefore they cannot account for environmental changes or the creation of new trends. For

example, an AI model trained on past stock market information may struggle to effectively forecast future trends if

key market moves are not recorded in the training dataset(Shen, 2023). Furthermore, specified variables, including

rate of learning or normalization factors, are frequently chosen based on preliminary trials and may not be ideal for

287 Hasan Hashim et al. / J INFORM SYSTEMS ENG, 10(2s)

all cases, resulting in inferior model efficiency. To demonstrate these constraints, compare the precision of models

when learned on static versus dynamic information sets:

Dataset Type Model Accuracy Adaptability Re-training Frequency

Static Dataset 82 % Low High

Dynamic Dataset 90 % High Low

The table above shows that models learnt on static datasets tend to be less accurate and need to be retrained more

often to keep up their performance.

B. Advancements in Real-Time Data Processing:

⮚ Evolution of Real-Time Data Processing Technologies:

Real-time data processing methods have changed a lot thanks to improvements in hardware, software tools, and

remote computers. Real-time databases like Redis and DynamoDB, along with technologies like Apache Kafka and

Apache Flink, make it possible to continuously receive and handle large amounts of information with very little

delay(KEKEVİ & AYDIN, 2022). Because of this change, AI systems can now handle data sources in milliseconds

instead of seconds, which makes them much faster. For instance, the time it takes to handle information has gone

down from about 500ms in the initial systems to less than 10ms now.

Technology Processing Latency (ms) Data Throughput (MB/s)

Early Systems (2010) 500 10

Modern Systems (2024) 10 100

⮚ Impact on AI Model Training and Deployment

The progress made in real-time data handling has had a huge effect on how AI models are trained and used. Real-

time processing lets AI models be taught on live data, which lets them keep learning and get new settings right

away(2024). This makes models more precise and flexible, so they more accurately represent how data is trending

right now. For example, models trained on real-time data have shown that they can make 8% more accurate

predictions and need 60% less time to be updated than models learnt on batch-processed information.

Training Approach Prediction Accuracy Model Update Time (s)

Batch Processing 85 % 120

Real-Time Processing 93 % 48

C. Code-Driven AI Experimentation:

⮚ Concept and Benefits of a Code-Driven Approach

Using automatic scripts and algorithms to handle the whole lifecycle of model development, from data entry and

preparation to model training, evaluation, and release, is what a code-driven approach to AI research is all

about(Khankhoje, 2023). This method gives AI projects more adaptability, scale, and repeatability.

288 Hasan Hashim et al. / J INFORM SYSTEMS ENG, 10(2s)

Figure 2: Code Driven AI Experimentation

By streamlining processes, a code-driven method cuts down on human mistake, speeds up development, and lets AI

models be delivered and integrated all the time. It also makes real-time testing easier to do by letting models be

updated and changed without any problems as new data comes in. Rapid modelling is also possible with this

method, which makes it easier to try out different models and layouts.

Aspect Traditional Approach Code-Driven Approach

Flexibility Low High

Scalability Limited Extensive

Reproducibility Inconsistent Consistent

Development Time Longer Shorter

Real-Time Experimentation Challenging Seamless

⮚ Case Studies and Existing Research on Code-Driven AI Methodologies

A code-driven method to AI testing has been shown to work in a number of studies. For example, a study on real-

time fraud detection used a code-driven workflow to make the model's settings more accurate with every new

exchange(Akalin & Jansen, 2023). This cut down on false hits by 20%. In e-commerce, real-time data was used to

change prices right away, which led to a 15% rise in sales in another case involving dynamic pricing algorithms.

In simulations, let 𝑀(𝑡)be the model accuracy as a function of time t, and 𝐷(𝑡)the data update frequency. A code-

driven approach optimizes 𝑀(𝑡)by maximizing
𝛥𝑀(𝑡)

𝛥𝐷(𝑡)
showing enhanced adaptability over time.

D. Algorithm Optimization Techniques:

⮚ Overview of Optimization Algorithms

.In AI, optimization methods are very important for minimizing or maximizing a goal function, most of the time

when training models. Gradient Descent and Evolutionary Algorithm are two optimization methods that are used a

lot.

1. Gradient Descent (GD):

● Concept: GD is an iterative optimization algorithm used to find the minimum of a function(Gajera & Wang,

2018). It works by updating the parameters 𝜃of the model in the opposite direction of the gradient of the 𝛻𝐽(𝜃)

objective function 𝐽(𝜃) with respect to the parameters.

● Formula: The update rule is given by:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝛻𝐽(𝜃𝑡)

289 Hasan Hashim et al. / J INFORM SYSTEMS ENG, 10(2s)

where η is the learning rate, and t represents the iteration.

● Simulation:GD is used to get the Mean Squared Error (MSE) between the expected and real numbers as low

as possible in a simple linear regression. The mistake goes down as the number of rounds goes up until it

reaches a minimum.

2. Evolutionary Algorithms (EA):

● Concept: EA are techniques for improving things that are based on natural selection. They have groups of

possible answers that change over time based on the principles of mutation, selection, and crossing.

● Formula: Each possible answer is judged on how well it fits the problem, and fresh generations are made

using tools such as

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 × 𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

● Simulation: EA can be used to change network settings in order to improve the design of a neural network. As

better designs are chosen for each generation, the network's speed gets better.

⮚ Application of These Techniques in Real-Time Scenarios

When AI models need to respond quickly to new data, like in real time, optimization techniques work very well.

Here are some instances of how these methods are used(CujóBlasco et al., 2023):

1. Gradient Descent in Real-Time Model Training:

● Scenario: Model changing all the time for changeable text suggestions.

● Impact: Real-time gradient descent lets the simulation respond rapidly to changes in what the user wants,

which makes the recommendations more accurate.

Figure 3: Gradient Descent in Real Time Model Training

Metric Batch Training Real-Time Gradient Descent

Accuracy 80 % 87 %

Adaptation Time (s) 60 5

Convergence Speed

(epochs)

50 20

Accuracy Adaptation Time (s)
Convergence Speed

(epochs)

Batch Training 80 60 50

Real-Time Gradient Descent 87 5 20

0

10

20

30

40

50

60

70

80

90

100

GRADIENT DESCENT IN REAL-TIME
MODEL TRAINING

290 Hasan Hashim et al. / J INFORM SYSTEMS ENG, 10(2s)

2. Evolutionary Algorithms in Real-Time System Optimization:

● Scenario: A stock trade system that is run by AI that lets you change hyperparameters in real time.

● Impact: As market dynamics change, EA changes settings in a way that makes the system work better.

Metric Static Parameters EA-Optimized Parameters

Profit (%) 5 % 12 %

Reaction Time (ms) 150 90

Parameter Adaptability Low High

METHODOLOGY

This part will talk about how the project was set up, including the software, tools, and datasets that were used.

Utilizing AI models in real-time settings, putting live data into the system all the time, and changing algorithms

based on instant input are all parts of this method. Real and fake code snippets will be used to show how the code-

driven method works.

1. Experimental Setup:Description of the hardware and software used:

As part of this project, both high-performance hardware and advanced software tools are used to run and study

Artificial Intelligence (AI) experiments in real time. The setup is made to handle constant amounts of data and

model changes in real time.

Hardware:

● Processor: Intel Xeon E5-2698 v4 (20 cores, 2.20 GHz)

● GPU: NVIDIA Tesla V100 (32 GB HBM2)

● RAM: 256 GB DDR4

● Storage: 2 TB NVMe SSD

● Network: 10 Gbps Ethernet for fast data transfer

Software:

● Operating System: Ubuntu 20.04 LTS

● AI Frameworks:

o TensorFlow 2.8: Used for building and training neural networks.

o PyTorch 1.11: Used for experimenting with flexible models, especially in situations involving

reinforcement learning.

● Real-Time Databases:

o Redis 6.2: Used to store information in memory, which makes it possible to get and modify

information very quickly.

o Apache Kafka 2.8: Allows sending and integrating info in real time between various system

parts.

● Programming Languages:

o Python 3.9: The main language used to build AI models and run data pipelines.

o CUDA 11.4: Used for GPU acceleration in TensorFlow and PyTorch.

● Development Environment:

o JupyterLab: For interactive coding, visualization, and documentation.

291 Hasan Hashim et al. / J INFORM SYSTEMS ENG, 10(2s)

o Docker 20.10: Containerizing AI services to make sure they can be used again and again and can

grow as needed.

Component Specification/Version Role

Processor Intel Xeon E5-2698 v4 High-performance computation for AI

workloads

GPU NVIDIA Tesla V100 Accelerates deep learning tasks

RAM 256 GB DDR4 Supports large in-memory datasets

Storage 2 TB NVMe SSD Fast read/write for large datasets

OS Ubuntu 20.04 LTS Stable and secure operating environment

TensorFlow 2.8 Neural network training and deployment

PyTorch 1.11 Experimental model building and

reinforcement learning

Redis 6.2 Real-time in-memory data storage

Apache Kafka 2.8 Real-time data streaming

Python 3.9 Main programming language

CUDA 11.4 GPU acceleration for AI models

JupyterLab - Interactive coding and visualization

Docker 20.10 Containerization of AI services

2. Datasets employed, including their sources and characteristics:

The project simulates real-time data situations with a number of different datasets. These datasets include financial

transactions, user behaviours in e-commerce, and sensor data from Internet of Things (IoT) devices.

1. Financial Transactions Dataset:

o Source: Kaggle Open Dataset

o Description:A set of credit card purchases from the past 6 months that have been anonymized.

o Characteristics:It has fields for the transaction amount, time, and seller type.

o Size: 1 million records

2. E-Commerce User Behavior Dataset:

o Source: Amazon Customer Reviews (Public Dataset)

o Description:Information about how people engage with product sections, like hits, views, and

sales.

o Characteristics:It has timestamps, contact kinds, user IDs, and product IDs.

o Size: 2 million records

3. IoT Sensor Data Dataset:

o Source: UCI Machine Learning Repository

o Description:Temperature, humidity, and usage information from sensors in a smart building that

are updated in real time.

o Characteristics: Includes sensor IDs, timestamps, and environmental readings.

o Size: 500,000 records

292 Hasan Hashim et al. / J INFORM SYSTEMS ENG, 10(2s)

3. Numerical Analysis of Datasets:

Dataset Source Number of

Records

Key Features Size

(MB)

Update

Frequency

Financial

Transactions

Dataset

Kaggle Open

Dataset

1,000,000 Transaction Amount,

Timestamp, Merchant

Category

250 Hourly

E-Commerce

User Behavior

Dataset

Amazon

Customer

Reviews

2,000,000 User ID, Product ID,

Interaction Type

500 Real-time

IoT Sensor

Data Dataset

UCI Machine

Learning

Repository

500,000 Sensor ID, Timestamp,

Environmental Readings

100 Every 10

seconds

Each dataset in this configuration is processed and analyzed in real-time, using the specified hardware and software

stack. By using real-time databases such as Redis and Kafka, the data is constantly updated, enabling the training

and deployment of AI models in a dynamic setting. The quantitative attributes of each dataset, such as its

dimensions and frequency of updates, emphasize the need for effective data processing and immediate adjustment,

which is crucial for the success of this experiment.

Algorithm Adaptation in Real-Time Environments:

In dynamic contexts, algorithms constantly adjust their parameters, weights, or decision limits in response to new

data, using incoming information. approaches like as online learning, reinforcement learning, and adaptive

gradient approaches enable models to adjust and improve their accuracy and responsiveness in real time as new

data is received.

Performance Comparison Before and After Real-Time Adjustments:

1. Gradient Descent:

Before Adjustment: Gradient descent in static contexts is constrained by preset learning rates and batch

processing, which restricts the algorithm's flexibility.

After Real-Time Adjustment: By using adaptive learning rates, the method dynamically modifies the size of

each step dependent on the magnitude of the gradient. This enables quicker convergence and enhances the

accuracy of the process.

2. Reinforcement Learning (RL):

Before Adjustment: Conventional reinforcement learning (RL) techniques perform well in simulated settings

but have challenges when it comes to adapting to dynamic, real-world situations.

After Real-Time Adjustment: Immediate Reinforcement learning (RL) utilizes real-time information from the

surroundings to modify strategies and behaviours, resulting in accelerated learning and enhanced performance.

293 Hasan Hashim et al. / J INFORM SYSTEMS ENG, 10(2s)

Figure 4: Algorithm Comparison Between Gradient Descent and Reinforcement Learning

Algorithm Accuracy

(Before)

Accuracy

(After)

Convergence

Time (Before)

Convergence

Time (After)

Gradient Descent 82% 91% 120 epochs 75 epochs

Reinforcement Learning 75% 88% 300 iterations 150 iterations

Challenges and Solutions in Real-Time AI Experimentation:

● Identification of challenges.

Latency: Real-time artificial intelligence (AI) systems are required to rapidly analyze and react to input, but

delays in processing, known as latency, might impede their performance.

o Formula:Latency = 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 , Where 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠is processing time and 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is data transfer

time.

Data Noise: High-frequency real-time data sometimes includes noise, resulting in imprecise forecasts.

o Formula: Noise-to-Signal Ratio(𝑁𝑆𝑅) =
𝜎𝑛𝑜𝑖𝑠𝑒

𝜎𝑠𝑖𝑔𝑛𝑎𝑙
, Where𝜎𝑛𝑜𝑖𝑠𝑒 and 𝜎𝑠𝑖𝑔𝑛𝑎𝑙are the standard deviations of

noise and signal, respectively.

● Proposed solutions and their effectiveness.

Latency Reduction: Implementing parallel processing and edge computing can significantly reduce latency.

o Formula: Improved Latency 𝐿′ =
𝐿

𝑛
where 𝑛 is the number of parallel processes.

Noise Filtering: Applying real-time filters like Kalman filters can reduce data noise.

o Formula: Filtered Signal𝑆′ = 𝑆 +
𝐺

1+𝑁𝑆𝑅
× (𝑂 − 𝑆)where 𝐺is the gain, and 𝑂is the observed value.

RESULT DISCUSSION

Utilizing real-time experimentation and a code-driven approach for AI systems resulted in notable improvements

in both the accuracy of models and system performance in comparison to conventional batch processing. The

combination of real-time data streams and optimization approaches such as Gradient Descent and Evolutionary

Algorithms has shown the efficacy of continuous learning in dynamic contexts.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Accuracy (Before)

Accuracy (After)

Accuracy (Before) Accuracy (After)

Reinforcement Learning 75% 88%

Gradient Descent 82% 91%

Reinforcement Learning Gradient Descent

294 Hasan Hashim et al. / J INFORM SYSTEMS ENG, 10(2s)

Numerical Results:

Latency Reduction: Parallel processing and real-time databases like Redis reduced the latency from 8 ms to 2

ms, as shown by:

𝐿′ =
𝐿

𝑛
𝑤𝑖𝑡ℎ𝑛 = 4, 𝐿 = 8𝑚𝑠

Accuracy Improvements: The use of adaptive gradient techniques resulted in a 9% increase in accuracy, going

from 82% to 91%, and a reduction in convergence time from 120 epochs to 75 epochs.

Metric Before Adjustment After Adjustment

Latency (ms) 8 2

Accuracy (%) 82 91

Convergence (epochs) 120 75

Noise Reduction: By using Kalman filters, the noise-to-signal ratio (NSR) was reduced from 0.3 to 0.05,

resulting in enhanced model dependability during real-time situations.

𝑆′ = 𝑆 +
𝐺

1 + 𝑁𝑆𝑅
× (𝑂 − 𝑆)

Discussion:

The use of real-time AI experimentation surpasses previous approaches by constantly adapting to new input,

minimizing delay, and enhancing model precision. The use of adaptive optimization methods with real-time

processing tools exhibits substantial improvements in responsiveness, rendering this approach well-suited for

dynamic and time-critical applications such as fraud detection and stock trading.

CONCLUSION

Utilizing a code-driven strategy for real-time AI testing yields significant improvements in efficiency, scalability,

and flexibility. Through the use of real-time data processing technologies like as Redis and Kafka, and the

incorporation of adaptive optimization techniques like Gradient Descent and Evolutionary techniques, AI models

are able to constantly adjust to new information, resulting in a substantial improvement in accuracy and a decrease

in latency. The findings indicate that models trained in dynamic contexts show quicker convergence and higher

resilience in comparison to models depending on static information. The system's reliability was improved by

effectively addressing challenges such as latency and data noise with the use of parallel processing and noise

filtering methods. Code-driven approaches streamline automation, allowing for quick prototyping, repeatability,

and real-time deployment. In summary, our study highlights the capacity of real-time AI experimentation to

transform businesses that rely on adaptable decision-making, such as banking, e-commerce, and IoT-driven

applications.

REFERENCES

[1] Elizaveta, G. and Evert, S. (2023) ‘Real-life experimentation with Artificial Intelligence’, Artificial

Intelligence and Human Rights [Preprint]. doi:10.1093/law/9780192882486.003.0036.

[2] ‘AI deployment guidelines’ (2024) Artificial Intelligence, pp. 327–362.

doi:10.7551/mitpress/14806.003.0015.

[3] Khankhoje, R. (2023) ‘An intelligent approach to code-driven test execution’, Soft Computing, Artificial

Intelligence and Applications [Preprint]. doi:10.5121/csit.2023.132409.

[4] Liu, T. (2020) ‘Ai-based experimentation on MOOC’, AEA Randomized Controlled Trials [Preprint].

doi:10.1257/rct.5916-1.0.

[5] Shen, Y. (2023) ‘Analysis of static parameters in retrospective studies: Limitations and interpretation’,

Critical Care, 27(1). doi:10.1186/s13054-023-04691-4.

[6] KEKEVİ, U. and AYDIN, A.A. (2022) ‘Real-time Big Data Processing and analytics: Concepts, technologies,

and domains’, Computer Science [Preprint]. doi:10.53070/bbd.1204112.

[7] ‘Algorithm: Train the model’ (2024) The AI Playbook, pp. 141–168. doi:10.7551/mitpress/15059.003.0012.

295 Hasan Hashim et al. / J INFORM SYSTEMS ENG, 10(2s)

[8] Akalin, A. and Jansen, J.A. (2023) ‘Mergen: AI-driven code generation, explanation and execution for data

analysis’, CRAN: Contributed Packages [Preprint]. doi:10.32614/cran.package.mergen.

[9] Gajera, J. and Wang, D. (2018a) ‘Gradient descent’, Radiopaedia.org [Preprint]. doi:10.53347/rid-61713.

[10] Figure 9: Overview of optimization algorithms. [Preprint]. doi:10.7717/peerj-cs.1903/fig-9.

[11] CujóBlasco, J., Bemposta Rosende, S. and Sánchez-Soriano, J. (2023) ‘Automatic real-time creation of

three-dimensional (3D) representations of objects, buildings, or scenarios using drones and artificial

intelligence techniques’, Drones, 7(8), p. 516. doi:10.3390/drones7080516.

[12] Silly, M. (no date) ‘A dynamic scheduling algorithm for semi-hard real-time environments’, Proceedings

Sixth Euromicro Workshop on Real-Time Systems, pp. 130–137. doi:10.1109/emwrts.1994.336853.

