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The Internet of Things (IoT) is a network of a variety of devices that generate diverse data and 

need scalable, efficient, and secure management. Traditional, centralized solutions often fail to 

meet the security and scalability needs of such networks. Blockchain enhances data security and 

integrity due to its decentralized nature. However, IoT devices are resource constrained. To 

address this, we propose a multi-layer blockchain framework. It utilizes several permissioned 

blockchains for parallel processing, which enhances scalability and access control. The 

framework works with decentralized storage like the InterPlanetary File System (IPFS). Bloom 

filters optimize data retrieval by filtering out non-existent content. Additionally, we incorporate 

the High-Performance Edwards Curve Aggregate Signature (HECAS). HECAS boosts transaction 

speed and block validation by 10%. It also cuts storage costs by 40%. The system ensures 

signatures can't be denied and verifies them quickly. This solves key blockchain issues in IoT. 

Tests show data detection is fast using Bloom’s filter and takes 1.21 seconds for present data and 

0.02 seconds to notify the absence of data. 

Keywords: Aggregate signature, digital signature, elliptic curve cryptography, HECAS, IPFS 

 

1. INTRODUCTION  

The blockchain is the Bitcoin technology's backbone network for processing transactions. Blockchains are 

decentralized and immutable. Across numerous industries, blockchain is revolutionizing finance, healthcare, 

agriculture, and smart Internet of Things (IoT) applications. Satoshi Nakamoto's groundbreaking work [1], paved 

the way for these advancements. IoT networks are now widely used across various applications in business, 

healthcare, security, tracking, smart homes, and smart grids, to name a few. This can be attributed to the 

accessibility of IoT devices with limited resources that are economical and practical [2,3]. IoT frameworks are 

frequently created with centralized technologies and structure. This implies a centralized server collects and 

processes data from IoT devices. However, this approach makes IoT networks vulnerable to privacy and security 

issues resulting from both physical and cyberattacks [4,5]. Due to its inherent characteristics, blockchain 

technology emerges as a robust solution for secure IoT network implementations [6]. Blockchain-powered IoT 

networks offer a reliable and efficient way to connect and exchange data between physical and virtual devices 

equipped with sensors and actuators over the internet [7]. 

Blockchain, a particular type of distributed ledger, tracks, supervises, and manages IoT devices using cryptography 

and decentralization [8,9]. Blockchain transactions are highly reliable as they eliminate the need for intermediaries. 

Its intrinsic qualities—immutability, accountability, and decentralization—provide significant benefits like 

enhanced security, data protection against unauthorized access, and full process traceability. By integrating these 

advanced technologies, secure and scalable IoT networks can be developed, enabling seamless data sharing among 

stakeholders, systems, and devices. 

While blockchain provides strong access control, managing the vast amounts of data generated by IoT devices poses 

a significant challenge. The Inter Planetary File System (IPFS), a peer-to-peer distributed file system, has been 
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suggested as an excellent solution for decentralized data storage in IoT networks. IPFS facilitates efficient and 

secure storage by distributing data across multiple nodes, eliminating the need for centralized data servers and 

reducing the risk of data loss [10]. However, the decentralized nature of IPFS also brings complexities in data 

retrieval, especially in large-scale networks where data may be spread across numerous nodes. 

To overcome these challenges, integrating Bloom filters—a space-efficient probabilistic data structure—into the 

IPFS framework can significantly improve data retrieval efficiency [11]. Bloom filters enable quick and efficient 

existence checks of data within the network, greatly reducing the time and computational resources needed to find 

and retrieve specific pieces of data. This is especially critical in IoT environments, where rapid access to data is vital 

for real-time decision-making and operations.  

Various digital signature systems, such as aggregate, blind, group, proxy, and ring, are detailed in [12]. An aggregate 

signature can combine n messages from n nodes into one fixed-length signature. This single signature can provide 

non-repudiation for all n messages across n nodes. Aggregate signatures not only reduce storage requirements but 

also lower the computational and communication costs associated with verification. As noted in [13], this type of 

signature is ideal for tasks with limited storage, network, and computing resources. Additionally, [14] demonstrates 

that digital signature techniques ensure information nonrepudiation, blockchain integrity, authenticity, and 

identity verification. 

2. RELATED WORK 

The integration of blockchain, IPFS, and Bloom filters in IoT networks represents a pioneering research area that 

tackles the crucial issues of security, scalability, and efficient data retrieval in distributed environments. This 

literature survey highlights the most recent advancements and contributions in these fields. 

The decentralized nature of blockchain helps counter security threats such as unauthorized access and data 

tampering, boosting the reliability of IoT systems [15]. Spatial blockchain [16] further optimizes this by 

segmenting blockchains into spatial units and consolidating data over time, thereby reducing the overall size of 

the blockchain. RapidChain [17] significantly boosts throughput by applying sharding to public blockchains and 

can handle Byzantine faults impacting nearly one-third of participants. Each shard is formed by randomly 

assigning participants to committees, ensuring that compromised members in any committee do not exceed one-

half. Afterward, each committee uses the synchronous Byzantine consensus method to reach an agreement.  

[18] introduces a streamlined hierarchical access control system built on blockchain and multi-chaincode for IoT 

networks, using a clustering strategy with blockchain managers to enhance scalability. Elastico [19] organizes 

miners into several groups, allowing transaction throughput to rise linearly with the total processing power 

dedicated to mining. By increasing the number of nodes from 100 to 1600, the number of blocks generated per 

epoch can rise from 1 to 16, with the epoch period increasing from 600 to 711 seconds as a result. Omniledger 

[20], leveraging two PoS blockchain technologies known as Ouroboros and Algorand, enhances blockchain 

scalability and bias-resistant validators through parallel transaction processing in an intra-shard manner. 

RandHound [21] manages the secondary key security channel. A checkpoint-based method is used to improve 

efficiency, enabling miners to create new blocks without downloading the entire blockchain history. This 

approach achieves a throughput of 13,000 transactions per second (TPS), even with an adversary rate of 12.5% 

and 1,800 hosts distributed across 25 shards. However, the system requires a considerable amount of time (in the 

order of minutes) to bootstrap each epoch. 

According to [22], the elliptic curve digital signature algorithm (ECDSA)-based modern cryptography has gained 

popularity recently due to its performance, privacy, and the efficient length of keys and signatures. An elliptic 

curve (EC) is an effective algorithm that utilizes minimal resources and involves few mathematical operations. 

This cubic curve is represented by Equation (1). 

𝐸: 𝑦2  ≡ 𝑥3 + 𝑎. 𝑥 + 𝑏 𝑚𝑜𝑑 𝑝    (1) 

The Edwards curve, as a generalization of elliptic curves, is detailed in [23] to provide robust security on devices 

with limited resources. It achieves the same level of security with smaller keys, reducing computational costs. Due 

to its basis in scalar operations, such as point addition and point multiplication, the computational expense is less 

compared to elliptic curves. Equation (2) highlights these advantages of the Edwards curve, which can function 
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more efficiently with basic components and an addition rule, on a smaller field with fewer operations, making it 

ideal for resource-constrained environments. 

𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2    (2) 

The Edwards curve builds a point using principles which are in contrast to other elliptic curves which utilize 

tangents and chords. This shows that in the following equation (3), (𝑥3, 𝑦3) are known to be taken from the same 

curve if there are (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in the Edward curve. 

𝑥3 =
(𝑥1𝑦2+𝑥2𝑦1)

(𝑎.(1+𝑥1𝑦1𝑥2𝑦2))
, 𝑦3 =

(𝑦1𝑦2−𝑥1𝑥2)

(𝑎.(1−𝑥1𝑦1𝑥2𝑦2))
  (3)    

Correspondingly, doubling property is applied to Equation (3) to obtain point doubling as in Equation (4).  

𝑥3 =
(𝑥1𝑦1+𝑥1𝑦1)

(𝑎.(1+𝑥1
2𝑦1

2))
, 𝑦3 =

(𝑦1
2−𝑥1

2)

(𝑎.(1−𝑥1
2𝑦1

2))
   (4) 

A Schnorr signature variant is used in the digital signature technique known as the Edwards-curve digital 

signature algorithm (EdDSA) designed in [24]. In comparison to ECDSA, EdDSA is less complicated and robust. 

A random number generator is not required for EdDSA to function. It is deterministic and distinct from ECDSA 

since it hashes the message in order to retrieve the seed. In ECDSA, the private key may leak or create a collision 

risk if the same random integer was employed to generate two distinct signatures. The Schnorr signature [25] is 

represented in Equation (5). Verification is carried out using Equation (6), and ‘r’ is a random nonce of signer. 

(𝑅, 𝑠) = (𝑟𝐺, 𝑟 + 𝐻(𝑋, 𝑅, 𝑚)𝑥)   (5) 

𝑠𝐺 = 𝑅 + 𝐻(𝑋, 𝑅, 𝑚)𝑋    (6) 

HECAS (High-performance Edwards Curve Aggregate Signature) [26] is a powerful cryptographic tool that boosts 

the efficiency, security, and scalability of digital signatures in blockchain and other distributed systems. By using 

Edwards curve cryptography, known for its speed and robustness against attacks, HECAS combines multiple 

signatures into an aggregate one. This reduces storage needs and communication overhead, making it easier to 

handle large-scale operations. It is especially useful for systems like IoT, where resources are limited, as it keeps 

computational demands low while ensuring strong protection against tampering. 

HECAS initially generates a public-private key pair as in Equation (7), where ‘A’ is the public key, ‘G’ is the 

generator point of the Edwards curve and ‘a’ is the private key. 

A = a . G    (7) 

A signature pair (R, S) is generated by the signer to sign the message m as in Equations (8) and (9), where ‘r’ is 

the random scalar nonce, ‘H’ is the cryptographic hash function and ‘q’ is the order of the elliptic curve. 

R=r⋅G    (8) 

S=r + H (m, R, A) ⋅a (mod q)  (9) 

When multiple signatures (𝑅𝑖, 𝑆𝑖) are created for messages 𝑚𝑖 they can be combined into a single signature as 

shown in Equations (10) and (11) where 𝑅𝑎𝑔𝑔 is the aggregated public commitment and 𝑆𝑎𝑔𝑔 is the aggregated 

scalar. This reduces the size and communication cost of the signatures. 

𝑅𝑎𝑔𝑔 =   Σ𝑖=1
𝑛  𝑅𝑖   (10) 

𝑆𝑎𝑔𝑔 =   Σ𝑖=1
𝑛  𝑆𝑖   (11) 

The validity of an aggregated signature is verified by Equation (12) where the LHS computes the aggregated scalar 

multiplied by the generator G and the RHS checks the sum of all commitments and hashed values weighted by 

their corresponding public keys. If the equality holds, the aggregated signature is valid. 

𝑆𝑎𝑔𝑔  . 𝐺 =  𝑅𝑎𝑔𝑔 +  Σ𝑖=1
𝑛  𝐻 (𝑚𝑖 ,  𝑅𝑖,  𝐴𝑖  ).  𝐴𝑖   (12) 

A Bloom filter [27] is a space-efficient probabilistic data structure used to test whether an element is a member 

of a set. It is used to determine if an element is definitely not in the set or possibly in the set, but it may produce 

false positives. A Bloom filter uses multiple hash functions to map an element to a fixed-size bit array, setting 
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specific bits to 1. To check membership, the same hash functions are applied to the element, and if all 

corresponding bits are 1, the element is considered possibly in the set; otherwise, it is definitely not. Bloom filters 

are commonly used in applications requiring fast lookups with minimal memory usage, such as caching, 

networking, and blockchain systems. 

3. ARCHITECTURE 

The proposed approach employs a multi-level blockchain framework to integrate several IoT networks with 

the management blockchain, with the objective of enhancing scalability and addressing data access control 

challenges as shown in figure 1. This solution enables decentralized data management primarily with IoT devices, 

utilizing a consensus procedure that eliminates resource-intensive computations. To send blockchain data from 

the IoT network to the management blockchain, all IoT nodes must provide signatures during the consensus 

phase. Using aggregate signatures helps minimize the signature size, which reduces the overall message size 

during the consensus process. The gateway controls the transit of data between decentralized storage and the 

management blockchain, assuring node authenticity and integrity using compressed signatures that prevent 

tampering and forgery.  

Fig 1: Scalable IoT networks integrated with IPFS 

 

a. Leader Election Based on Energy 

In the proposed blockchain-based system, the network or cluster leader is elected based on the device with the 

highest residual energy to establish consensus as described in algorithm 1. Each network operates its own 

blockchain, and the leader plays a crucial role in validating transactions and maintaining consensus. By selecting 

the device with the highest energy, it is ensured that the leader has the necessary resources to perform these tasks 

efficiently, reducing the likelihood of interruptions due to energy depletion. This method promotes network 

stability and reliability, as the energy-rich leader can handle the computational demands of blockchain operations 

and manage network consensus without frequent changes. Consequently, this technique improves performance 

and durability of the blockchain network, ensuring robust and uninterrupted consensus processes. This algorithm 

ensures that the leader, chosen for its optimal energy resources, can effectively handle the demands of blockchain 

consensus and network management. 
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Algorithm 1: Leader Election Based on Energy 

Initialize: 

Define the set of devices N= {𝐷1 , 𝐷2, . . , 𝐷𝑁 }. 

Assign energy levels E(𝐷𝑖) for every 𝐷𝑖. 

Compute: 

Calculate E(𝐷𝑖) for all 𝐷𝑖. 

Identify the device with the highest energy: 𝐷𝑚𝑎𝑥 =

arg max
𝐷𝑖∈𝑁

𝐸(𝐷𝑖)  

Where E(𝐷𝑚𝑎𝑥)= arg max
𝐷𝑖∈𝑁

𝐸(𝐷𝑖) 

While (network is active) do  

      For (each region) do  

                     Update  

                        - Elect 𝐷𝑚𝑎𝑥 as the leader 

                        - Notify all the devices about the leader          

                      Update and analyze  

                         -If energy of 𝐷𝑚𝑎𝑥  drops below a 

threshold, then: 

                         -Search for next device with highest 

energy  

         end for                                                                                      

 end while                                                

 

 

b. Leader Transition and Blockchain Update with HECAS 

At the end of its operational cycle, the elected network or cluster leader communicates the current state of the 

blockchain to the gateway using the High-Performance Edwards Curve Aggregate Signature (HECAS) method as 

shown in algorithm 2. This ensures that all transactions and consensus data are authenticated, aggregated, and 

securely transmitted in a compact form to minimize overhead. The use of HECAS facilitates efficient and tamper-

resistant synchronization of blockchain records across the network and the central management system, 

enhancing security and performance. 

Following this handover, a new leader is elected based on the highest remaining energy among the devices. The 

HECAS method is also employed during the leader election process to verify and aggregate device signatures, 

ensuring the integrity and authenticity of the election. This rotation ensures that the leader with the most energy 

resources takes over, maintaining optimal performance and stability for blockchain operations. 

The transition process, supported by HECAS, minimizes disruptions and ensures continuous, secure, and 

effective management of network consensus and data integrity throughout the system. This algorithm guarantees 

a smooth transition of leadership while keeping the blockchain up-to-date, maintaining network stability, and 

bolstering trust in the system through cryptographic assurance. 

Algorithm 2: Leader Transition and Blockchain 

Update with HECAS 

Ensure: NewLeaderElected, BlockchainUpdated 

End of Cycle 

if C.cycleEnd() = true then 

      - Communicate Blockchain State 

          - S(C) = getBlockchainState(C) 

           -Sign and Transmit 

               -𝜎𝐶 = 𝑆𝑖𝑔𝑛𝑘𝑐
(𝑆(𝐶)) 

               - Send (𝑆(𝐶), 𝜎𝐶) to the gateway 

end if 
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if Verify (𝑆(𝐶), 𝜎𝐶 , 𝑘𝑐) = true then 

     -Update Blockchain: 

         -updateStatus=gateway.updateBlockchain(𝑆(𝐶)) 

         -if updateStatus = Succcess then 

           -BlockchainUpdated = true 

end if 

Collect Energy Data 

For each device 𝐷𝑖 ∈ 𝑁 do 

         -E(𝐷𝑖) = energy level of device 𝐷𝑖  

         -Sign energy: 𝜎𝑖 =  𝑆𝑖𝑔𝑛𝑘𝑖
(𝐸(𝐷𝑖)) 

       -Aggregate signatures: Σ = 𝐴ggregate(𝜎1, 𝜎2, … 𝜎𝑛) 

Elect New Leader 

if verify (𝚺) = true then 

         -Identify new leader: 

              -𝐷𝑚𝑎𝑥 = arg max 𝐷𝑖𝜖𝑁  𝐸(𝐷𝑖) 

              - Assign new leader: 

                 - newLeader = 𝐷𝑚𝑎𝑥   

                 - NewLeaderElected = true 

end if 

Transition Leadership 

C = newLeader 

Inform the network 

For each device in N do 

         -Notify newLeader 

         -Update network configuration: 

                 -NotifyAllDevices(N, newLeader) 

                -UpdateNetworkConfiguration(N, 

newLeader) 

 

c. Blockchain Data Storage via Gateway and IPFS 

At the end of each cycle, the gateway receives the updated blockchain data, which contains all the transactions 

and activities that occurred during that period. The gateway then transmits this data to the IPFS, where it is stored 

as a unique Content Identifier (CID) used to reference and retrieve content in a decentralized manner. By utilizing 

IPFS, the blockchain data is distributed across multiple nodes, enhancing both the scalability and resilience of 

the network. The data from IPFS, including CIDs or hashes, are collected by the gateway and stored on the 

management blockchain. To uniquely identify the data belonging to a specific network, a NetworkID is utilized, 

while a GatewayID is used to identify the particular gateway that processed and stored the data. By associating 

each CID or hash with its respective NetworkID and GatewayID, the management blockchain maintains a clear 

and organized record of the distributed data. The gateway also holds a mapping of the TransactionID to BlockID, 

While the nodes store their TransactionIDs. This is detailed in algorithm 3. 

 

Algorithm 3: Blockchain Data Storage via 

Gateway and IPFS 

Ensure: Blockchain storage 

End of cycle 

if cycleEnds() = true then 

    -Retrieve the updated blockchain data 

              𝐵𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑔𝑒𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛𝐷𝑎𝑡𝑎() 

   -Send the data to the gateway 

              G.receive(𝐵𝑢𝑝𝑑𝑎𝑡𝑒𝑑) 
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Transmit to IPFS 

-Gateway transmits the updated blockchain data to 

IPFS 

             G.sendToIPFS(𝐵𝑢𝑝𝑑𝑎𝑡𝑒𝑑) 

Store Data on IPFS 

-IPFS stores the updated blockchain data and 

generates a Content Identifier (CID): 

              CID=I.storeData(𝐵𝑢𝑝𝑑𝑎𝑡𝑒𝑑) 

Retrieve CID 

-Gateway receives the CID from IPFS: 

              receivedCID=G.receivedCIDFromIPFS(CID) 

Store CID on Management Blockchain 

-Store the received CID on the management blockchain 

via the gateway: 

             

G.storeCIDOnManagementBlockchain(receivedCID) 

Repeat Process 

Wait for the next cycle to end and repeat the process: 

             while true: 

                    if cycleEnds() = true 

                        Go to step 1 

                    end if 

             end while 

 

d. Data Retrieval Using Bloom Filter in IoT Network 

For access management in IoT networks, when a particular IoT device with a specific ‘DeviceID’ from a 

‘NetworkID’ requests data, the Gateway uses a Bloom filter as an indexing method to efficiently retrieve the 

necessary information from the management blockchain. The procedure is given below and is detailed in 

algorithm 4. 

When a device with a specific DeviceID from a particular NetworkID requests data, the Gateway initiates the data 

retrieval process. It uses a Bloom filter, a space-efficient probabilistic data structure that acts as an index to 

quickly determine if the data is present and also by using the TransactionID to BlockID mapping. The Bloom 

filter is preloaded with hashes or identifiers of stored CIDs, NetworkIDs, and GatewayIDs from the management 

blockchain. The Gateway hashes the NetworkID and GatewayID along with the requested data identifiers to 

query the Bloom filter, which indicates whether the data is likely present on the management blockchain. If the 

filter suggests the data exists, the Gateway retrieves the exact CIDs or hashes from the management blockchain 

using the NetworkID to identify the specific network and GatewayID to locate the relevant gateway data. This 

approach allows the Gateway to efficiently find the data without scanning the entire blockchain, making the search 

process faster and more resource-efficient. Once the data is confirmed, the Gateway retrieves the records and 

delivers the requested information to the device. 

Algorithm 4: Data Retrieval Using Bloom Filter in IoT Network 

Let BM represent the management blockchain. 

Let BF denote the Bloom filter 

Receive data request 

-Receive a data request from a device in the network: 

                request=receiveRequestFromDevice(𝐷𝑖 ,N), where is the requesting device, and N 

is the network identifier. 

Initialize Bloom filter 

-Initialize a Bloom filter and load it with data from the management blockchain: 

BF=initializeBloomFilter() 

loadBloomFilter(BF,BM) 
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Check with Bloom filter 

-Compute the query hash and check the Bloom filter for the presence of the requested data: 

queryHash=hash(N,G,requestedDataIdentifiers) 

isPresent=BF.query(queryHash) 

Verify data presence 

-Verify whether the data is present based on the Bloom filter check: 

if isPresent=true, proceed to retrieve data (Step 5)  

if isPresent=false, return "Error Data not available”. 

Retrieve data from management blockchain 

-Locate and retrieve the required data from the management blockchain: 

networkData=locateNetworkData(BM,N)  

gatewayRecords=findGatewayRecords(networkData,G) = 

retrievedData=retrieveCIDsOrHashes(gatewayRecords,requestedDataIdentifiers) 

Provide access 

-Return the retrieved data to the requesting device: 

returnDataToDevice(𝐷𝑖,retrievedData) 

Repeat process 

The process repeats indefinitely: 

Repeat: While true, wait for next data request, then go to Step 1 

 

4. IMPLEMENTATION 

The experiment was conducted on a desktop PC equipped with an Intel Core i5-1235U processor (1300 MHz) and 

8 GB of RAM. The implementation predominantly uses Go (also known as Golang), an open-source programming 

language designed by Google to address challenges related to concurrency, scalability, and maintainability in 

large-scale software development. 

Each node or IoT device in the network is implemented as a Docker container, with the nodes interconnected via 

a Docker network. These networks are externally linked to the decentralized storage system IPFS through a 

gateway. For this purpose, Kubo (previously go-ipfs), primarily developed in Go, is utilized. 

All inter-node communication uses the gRPC protocol, a high-performance, open-source RPC (Remote Procedure 

Call) framework developed by Google. It supports efficient, cross-platform client-server communication systems 

and uses HTTP/2 for transport, Protocol Buffers (protobuf) for serialization, and a robust mechanism for defining 

services and methods in a clear, language-neutral format. Communication between the gateway and IPFS is 

carried out using the HTTP protocol. The local network nodes are initialized using Docker 

(https://www.docker.com/). 

The performance evaluation results are presented in this section, comparing the PoW (Proof of Work) and PoS 

(Proof of Stake) consensus mechanisms. The primary goal of this evaluation is to determine the scalability 

potential of the IoT network model. The system's capability to connect common devices to the Internet is assessed, 

focusing on its ability to handle an increasing number of devices over time, including those with limited 

processing power. A gateway typically connects to a network either wirelessly or via a wired configuration; 

however, the simulation in this study uses the gRPC protocol. 

The framework under consideration is specifically designed for scalable systems that leverage blockchain 

technology to ensure security, regardless of the communication protocol employed. The performance of the 

framework is evaluated through tests analyzing metrics such as throughput, latency, CPU usage, network 

bandwidth utilization, and storage requirements. 

5. RESULTS AND DISCUSSION 

This section evaluates the key attributes of the proposed framework and compares them with existing methods, 

highlighting the contributions to scalable IoT networks integrated with blockchain and IPFS. The experiment 

involves multiple IoT networks communicating commercially important data messages, secured using a robust 

signing mechanism like HECAS. With millions of transaction data points, the signing and verification processes 

https://www.docker.com/
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are designed to be fast and efficient. A Bloom filter is employed to enhance data retrieval from the management 

blockchain, enabling quick membership checks and reducing query overhead. This ensures secure, scalable, and 

rapid data handling in large-scale IoT systems. 

a. Latency and Throughput 

The performance of the IoT framework is assessed by evaluating two key metrics: latency and throughput. This 

process includes crucial steps such as validation, data addition to blocks, and transaction throughput 

measurement. 

-Latency: The time required for a data packet to pass through the gateway and be appended to the blockchain. 

-Throughput: The number of successfully completed transactions measured from the first to the last 

transaction. As the number of blockchain IoT nodes per gateway increases, the observed changes are recorded to 

evaluate the system's performance. The total number of blockchain IoT nodes in the experiment ranged from 60 

to 500. The block size was fixed at 1 MB, and the payload size was set at 50 bytes. Figure 2 shows the block creation 

time for different number of IoT nodes. 

-Regression Analysis: 

The relationship between the number of IoT nodes and block creation time is illustrated using a graph. A linear 

regression model fitted to the data shows: 

-Slope: Approximately 0.0315, indicating that for every additional IoT node, the block creation time increases 

by about 0.0315 seconds. 

-Intercept: Approximately 0.718, representing the base block creation time (with zero nodes) of about 0.718 

seconds. 

Fig 2: Comparison of Block creation time for different number of IoT nodes 

 

 

To represent the relationship between the number of IoT nodes (N) and the Transactions Per Second (TPS) for 

the Proposed Work (𝑇𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑) we derive a linear equation (13) based on the data: 

𝑇𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 75𝑁 + 1250                                 (13) 

Table 1 highlights the superior performance of the proposed consensus mechanism compared to traditional 

methods like Proof of Work (PoW) and Proof of Stake (PoS): 

1. Proof of Work (PoW) 

- Relies on solving energy-intensive cryptographic puzzles. 

- Results in high energy consumption, long processing times, and limited scalability. 

- TPS increases by only 1 TPS for every additional 10 IoT nodes, reflecting its inefficiency. 

2. Proof of Stake (PoS) 

- Reduces energy consumption but introduces centralization risks due to staking requirements. 

- Growth remains linear and slow, with TPS increasing by 5 TPS for every 10 additional nodes. 

3. Proposed Consensus Mechanism 

- Eliminates the need for computational work and staking systems. 
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- Achieves significantly faster and more scalable transaction validation. 

- TPS increases by approximately 650 TPS for every additional 10 IoT nodes, demonstrating superior 

scalability and processing efficiency. 

Table 1: Comparison of throughput for PoW and PoS for varying number of IoT nodes 

Number 
of IoT 
Nodes 

Transactions 
per Second 

(TPS) - PoW 

Transactions 
per Second 
(TPS) - PoS 

Proposed 
Work 

(TPS) 

10 5 15 2000 

20 6 20 2750 

30 7 25 3350 

40 8 30 4000 

50 9 35 4550 

60 10 40 5200 

 

b. Scalability 

The outcomes are noticeable through the analysis of Figs. 2 and table 1, it becomes evident that the throughput 

and transaction speed observed within the current approach speed has good linear scalability when the number 

of nodes increases. This demonstrates that proposed approach outperforms the PoW and PoS approach and 

performs well when the number of blockchain IoT nodes increases. 

c. IPFS query and response time 

The time taken by the gateway node to query the IPFS and receive the required data in response is measured 

across multiple networks with varying numbers of IoT nodes. The figure 3 presents a graph depicting the 

relationship between the number of IoT nodes and the IPFS query-response time, along with a fitted linear trend 

line. Linear regression analysis reveals that the response time increases by approximately 0.83 ms for each 

additional IoT node, indicating a predominantly linear growth in response time as the network size expands and 

follows the equation (14). These results strongly advocate for the adoption and promotion of IPFS in distributed 

storage applications. 

IPFS query and response time 

(ms)=0.9×Number of IoT Nodes+1      

                                                                                       

Fig 3: IPFS query and response time for the proposed approach for varying number of IoT nodes 

 

 

     

(14) 
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d. Data retrieval using Bloom’s filter 

The gateway processes a transaction data request from an individual IoT network node by querying the 

management blockchain, which holds CIDs retrieved from IPFS. During this process, a Bloom filter is populated 

with bit positions representing data presence. If all the queried positions are set to 1, it suggests that the data is 

likely available. This functionality is achieved using SHA-256 and MURMUR3 hashing functions. The measured 

time to confirm the presence of a block, based on its Block ID, is 1.21345 seconds, as illustrated in Fig. 4, whereas 

the time required to indicate the absence of a block is 0.02476 seconds, as depicted in Fig. 5. 

Fig 4: Time measured for block retrieval using Bloom’s filter 

 

Fig 5: Time taken to notify that block is absent 

 

From the analysis of the values and comparison with the linear search from the table 2, the logarithmic models 

for the times are as follows: 

 

 

Table 2: Comparison of times for linear search and MURMUR3 hashing for different number of 

IoT nodes 

No. 

of 

nodes 

Time 

for 

Linear 

Search 

in 

msec 

Time 

for 

first 

hash 

in 

msec  

Time 

for 

second 

hash 

in 

msec  

 

Total 

time 

in 

msec 

10 13.6 7.2 7.3 14.5 

20 14.39 7.6 7.8 15.4 

30 15.59 8.01 7.8 15.81 

50 16.45 8.1 8.05 16.15 

100 18.23 8.25 8.27 16.52 

150 19.49 8.3 8.32 16.52 

200 20.98 8.35 8.27 16.62 

250 22.45 8.34 8.3 16.64 

300 24.93 8.33 8.35 16.68 

350 27.22 8.35 8.29 16.64 
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For nodes beyond 100, the times stabilize around 8.3 ms for both the first and second hash processes. The total 

time can be computed as the sum of 𝑇1 and 𝑇2 as shown in eqns. (15), (16)  

Time for first hash (𝑇1): 

𝑇1 =  {
6.23 + 0.46 . ln(𝑁𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠) , 𝑖𝑓 𝑁𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ≤ 100
8.3,                                                      𝑖𝑓 𝑁𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 > 100 

      (15) 

 

Time for first hash (𝑇2): 

𝑇2 =  {
6.46 + 0.40 . ln(𝑁𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠) , 𝑖𝑓 𝑁𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ≤ 100
8.3,                                                      𝑖𝑓 𝑁𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 > 100 

      (16) 

Figure 6 illustrates the comparison between Linear Search and Bloom Filter. Linear Search, with its O(n) 

complexity, experiences a linear increase in time as the number of nodes grows. In contrast, the time required for 

a Bloom Filter search remains nearly constant at O(1). Although Bloom Filters are probabilistic and can produce 

false positives, their efficiency makes them significantly faster and more advantageous for quick membership 

tests in large datasets. This efficiency gap becomes increasingly evident as the dataset size grows. 

 

 

 

 

 

Fig 6: Comparison between Linear search and Bloom’s filter for varying number of nodes 

 

e. Signing and verification of transactions using HECAS 

The High-Performance Edwards Curve Aggregate Signature (HECAS) scheme simplifies cryptographic 

processes by combining multiple digital signatures into a single, compact signature. This approach helps reduce 

the time and effort needed for both computation and communication, making it particularly useful in IoT 

networks. 

1. Signing: Each IoT device creates its own digital signature using Edwards curve cryptography, which is 

both secure and efficient. 

2. Aggregation: These individual signatures are then merged into one unified signature that can be 

verified all at once, instead of one at a time. 

By streamlining the process, HECAS saves valuable resources and time, especially in networks with many devices, 

while maintaining strong security and scalability. 
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Here HECAS scheme is used, which is designed to make cryptographic operations faster and more efficient in 

IoT environments to reduce the time needed for signing and verification, making it highly scalable for large 

networks. To see how well it performs, we compared it with the Edwards Curve Signature (ECS) scheme, a 

widely used cryptographic method. The comparison focuses on how quickly each scheme handles signing and 

verification as the number of IoT nodes increases and is shown in table 3. The results as seen from figures 7 and 

8 clearly show that HECAS is more efficient and better suited for larger networks. 

Table 3: Comparison of signing and verification times of ECS and HECAS schemes 

Number 

of IoT 

Nodes 

Time 

for 

signing 

in 

msec 

(ECS) 

Time for 

signing 

in msec 

(HECAS) 

Time for 

verification 

in msec 

(ECS) 

Time for 

verification 

in msec 

(HECAS) 

0 0 0 0 0 

20 0.8 0.81 0.9 0.8 

40 1.5 1.45 1.9 1.7 

60 2.2 2.1 2.9 2.3 

80 3.5 3.4 3.8 3.2 

100 4.8 4.1 4.8 4.1 

120 6 5.2 5.9 5.06 

Fig 7: Comparison of signing times for ECS and HECAS 

 

Fig 8: Comparison of verification times for ECS and HECAS 
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6. CONCLUSION 

The proposed work introduces a methodology for data access and management in resource-constrained IoT 

networks. By leveraging verification and validation processes through an elected leader and gateway, the 

approach ensures end-to-end security while minimizing risks of device performance degradation. Performance 

metrics such as latency, throughput, and resource utilization are analyzed for networks ranging from 60 to 500 

devices. Docker is utilized to evaluate the network's performance concerning throughput, latency, and the 

distributed storage provided by IPFS. 

The investigation is divided into four sections: analysis of distributed storage latency, throughput, and IPFS query 

and response times. The proposed methodology is particularly beneficial for IoT applications requiring resource 

efficiency and low latency, making it suitable for real-time use cases in finance and medical sectors due to its 

reduced latency and enhanced throughput. Additionally, the widespread adoption of blockchain technology for 

secure and efficient data management and storage in medium to large enterprises depends on its low operational 

costs. 
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