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Introduction: Forecasting electrical energy demand is crucial for predicting future energy 

consumption patterns, which aids in effective energy management and distribution. Various 

forecasting methods have been developed, yet this study explores univariate time series analysis 

using Bidirectional Long Short-Term Memory (BiLSTM) and a hybrid Convolutional Neural 

Network–Long Short-Term Memory (CNN-LSTM) model. These deep learning techniques are 

designed to capture both temporal dependencies and spatial patterns, improving predictive 

performance in energy forecasting. 

Objectives: This study aims to evaluate the forecasting performance of deep learning models in 

univariate time series energy demand prediction. Specifically, it seeks to: 

1. Implement and compare the forecasting performance of Bidirectional LSTM and hybrid 

CNN-LSTM models using a publicly available dataset from Transmission Service 

Operators (TSO). 

2. Preprocess the dataset using appropriate data preparation techniques, such as 

normalization, handling missing values, and feature selection, before training the 

models. 

3. Assess predictive accuracy by evaluating both models using key performance metrics, 

including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root 

Mean Squared Error (RMSE), and R-Squared (R²). 

Methods: The dataset used in this study was obtained from a public portal for Transmission 

Service Operators (TSO). Before training, the data underwent preprocessing techniques such as 

normalization, handling missing values, and feature selection to improve model performance. 

Two deep learning models—BiLSTM and CNN-LSTM—were implemented and trained on the 

dataset. The performance of each model was evaluated using four key metrics: Mean Absolute 

Error (MAE) – measures the average magnitude of errors, Mean Absolute Percentage 

Error (MAPE) – represents error as a percentage of actual values, Root Mean Squared 

Error (RMSE) – penalizes larger errors more heavily than MAE, R-Squared (R²) – indicates 

how well predictions align with actual data. 

Results: Experimental findings reveal that the hybrid CNN-LSTM model outperformed the 

BiLSTM model across all evaluation metrics. The CNN-LSTM model achieved a lower MAE of 

499.08 compared to 780.56 in BiLSTM, a lower MAPE of 1.80% versus 2.52%, and a reduced 

RMSE of 671.37 compared to 1,042.20. Additionally, the CNN-LSTM model obtained a slightly 

higher R² score of 0.97 compared to 0.94 in BiLSTM, indicating a better fit for the data. 

Conclusion: The results demonstrate that integrating CNN with LSTM significantly improves 

predictive accuracy in univariate time series energy demand forecasting. The CNN component 

enhances feature extraction, allowing the LSTM layers to capture complex temporal 

dependencies more effectively. Consequently, the hybrid CNN-LSTM model emerges as a more 

robust approach compared to BiLSTM alone, making it a valuable tool for accurate energy 

 
 
 

   

  

Journal of Information Systems Engineering and Management
2025,  10(15s)

e-ISSN:  2468-4376
https://www.jisem-journal.com/  Research Article

  Electrical Energy Demand Forecasting using Time Series in 
LSTM and CNN-LSTM Models in Deep Learning Applications

Teleron, Jerry I1, Gonzales, Shem L2, Fajardo, Arnel C3

  1Department of  Graduate Study, Technological Institute of the Philippines - Quezon City, Philippines
2Department of Information Technology, Surigao Del Norte State University, Del Carmen Campus, Philippines

3Department of Information Technology, Isabela State University, Philippines



719  
 

J INFORM SYSTEMS ENG, 10(15s) 

demand forecasting. Further research can explore additional deep learning architectures or 

hybrid models to optimize forecasting performance further. 

Keywords: Hybrid CNN-LSTM, LSTM, Time Series Analysis, Energy Forecasting, Deep 

Learning 

 

INTRODUCTION 

 Accurate forecasting of electrical energy demand is essential for ensuring the stability and efficiency of power 

systems. An overestimation of demand can lead to unnecessary energy production, increasing operational expenses, 

while an underestimation may cause supply shortages and potential power outages (Kumar & Janghel, 2022). To 

tackle these issues, researchers have developed advanced predictive models utilizing deep learning techniques, 

including Long Short-Term Memory (LSTM) networks and hybrid Convolutional Neural Network–Long Short-Term 

Memory (CNN-LSTM) architectures (Chung & Jang, 2022). 

LSTM networks, a specialized type of recurrent neural network, are well-suited for capturing long-term 

dependencies in time-series data, making them highly effective in modeling energy consumption trends. The hybrid 

CNN-LSTM model combines convolutional layers, which extract spatial patterns, with LSTM layers that recognize 

temporal dependencies, resulting in improved forecasting accuracy for intricate energy usage patterns (Zhao & 

Zhang, 2023). 

This study utilizes a dataset from the European Network of Transmission System Operators for Electricity 

(ENTSO-E), which provides extensive records of electricity generation, consumption, and cross-border transactions. 

The dataset contains hourly, monthly, and yearly aggregated consumption data by country, accessible through 

ENTSO-E’s Power Statistics platform (ENTSO-E, n.d.). By employing univariate time series forecasting, this research 

seeks to enhance energy demand predictions using LSTM and hybrid CNN-LSTM models, ultimately improving the 

accuracy of demand forecasting and contributing to more effective energy management and operational planning. 

Despite advancements in deep learning-based forecasting, further research is necessary to refine LSTM and 

hybrid CNN-LSTM models for univariate time series energy demand forecasting. Addressing these limitations can 

lead to more accurate predictions, supporting improved energy distribution, cost efficiency, and overall system 

reliability. 

OBJECTIVES 

The general objective of this study is to develop and evaluate deep learning models for forecasting electrical 

energy demand using univariate time series analysis. 

Specific objectives: 

1. To implement and compare the forecasting performance of Bidirectional LSTM and hybrid CNN-LSTM 

models using a publicly available Transmission Service Operators (TSO) dataset; 

2. To preprocess the dataset using appropriate data preparation techniques before training the models; and  

3. To assess the predictive accuracy of both models using key performance metrics, including Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and R-Squared 

(R²). 

METHODS 

The hardware specifications used in this study are summarized in Table 2. These components were selected 

to provide adequate processing power, memory, and storage for running simulations and executing programs. 

 

Table 2. Computer Hardware Specification 

Hardware Components Specification 

CPU Intel Core i7-8700 CPU @ 3.20Ghz 

Memory 16GB RAM 

Storage 1 TB HDD 

GPU 6GB NVDDIA GTX 1660 
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B. Software 

The software environment for this study consisted of various tools and platforms that facilitated 

programming, data analysis, and simulation. Table 3 lists the software used, along with their respective licenses. 

The execution of python script also requires different deep learning libraries such as pandas, scikit-learn and 

tensoflow. 

 

Table 3. List of Software 

Name License 

Anaconda Navigator Open-Source 

Spyder Open-Source 

Jupyter Notebook Open-Source 

Python Programming Language Open-Source 

Implementation Flow 

The implementation process follows a structured pipeline to ensure effective data preparation, model 

development, and performance evaluation. The key stages are shown in Figure 2 below also known as the 

implementation flow diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Implementation Flow Diagram 

1. Data Gathering 

The dataset, obtained from a Transmission System Operator (TSO) portal, covers a four-year period from 2015 

to 2018, with hourly recorded measurements (Roy, Ishmam, & Taher, 2021). It encompasses data on electricity 

generation from various energy sources, including fossil fuels, renewable energy, and nuclear power. Additionally, it 

provides insights into power consumption by comparing projected electricity demand with actual usage. The dataset 

also includes electricity pricing details, reflecting hourly market price variations. Due to its high-resolution time-
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series format, this dataset is valuable for trend analysis and serves as a strong foundation for predictive modeling. 

Figure 2 presents a visualization of electrical energy consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Dataset visualization 

2. Data Preprocessing 

The dataset was cleaned by removing unnecessary parameters, retaining only time and total load columns. The 

dataset was loaded from a CSV file using the pandas library, with the first column serving as the target variable. Any 

missing values were removed to ensure data integrity. To facilitate efficient model training, the data was normalized 

using MinMaxScaler, which scales values between 0 and 1, preventing large variations from affecting model 

performance. 

The time-series data was transformed into sequences through a custom function that creates input-output 

pairs based on a predefined sequence length. The dataset is then split into training and testing sets, with 80% 

allocated for training and the remaining 20% for testing. The preprocessed data is then utilized in training 

Bidirectional LSTM and hybrid CNN-LSTM models for forecasting. 

 

3. Model Selection & Hyperparameter Tuning 

In this study, two deep learning models, Bidirectional Long Short-Term Memory (BiLSTM) and a hybrid 

Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), were implemented for time-series 

forecasting. Both models were configured with carefully selected hyperparameters to produce best predictive 

performance. The BiLSTM model utilized two bidirectional LSTM layers, each with 64 units and ReLU activation. 

The first LSTM layer returned sequences to preserve temporal dependencies, while the second layer incorporated L2 

regularization (0.001) to prevent overfitting. A dropout rate of 0.2 was applied after the LSTM and dense layers to 

further enhance generalization. The fully connected layer comprised 32 neurons with ReLU activation, followed by a 

final output layer with a single neuron for prediction. The Adam optimizer, with a learning rate of 0.0005, was 

Training was conducted for 30 epochs with a batch size of 32, and early stopping was implemented, monitoring 

validation loss with a patience level of 20 to prevent unnecessary overfitting. 

Similarly, the hybrid CNN-LSTM model was designed with an initial convolutional layer consisting of 64 filters, 

a kernel size of 3, and ReLU activation to extract spatial features. This was followed by a max pooling layer with a 

pool size of 2 and batch normalization to stabilize training. The extracted features were then passed through two 

stacked LSTM layers, each with 64 units and L2 regularization (0.001). Dropout layers with a rate of 0.2 were applied 

after the LSTM and dense layers to prevent overfitting. A fully connected layer with 32 neurons and ReLU activation 

was included before the final output layer. Like the BiLSTM model, this architecture was trained using the Adam 

optimizer with a 0.0005 learning rate and an MSE loss function. The training process followed the same setup of 30 

epochs, a batch size of 32, and early stopping with a patience value of 20.  

 

4. Evaluation Metrics 

The evaluation of model performance in this study was conducted using four key metrics: Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and the coefficient of 

determination (R²). The formula are: 
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MAE = (1/n) ∑ |yᵢ - ŷᵢ|    Where: 

MAPE = (100/n) ∑ |(yᵢ - ŷᵢ) / yᵢ|    - yᵢ = actual value 

RMSE = sqrt((1/n) ∑ (yᵢ - ŷᵢ)²)    - ŷᵢ = predicted value 

R² = 1 - (∑ (yᵢ - ŷᵢ)² / ∑ (yᵢ - ȳ)²)    - ȳ = mean of actual values 

       - n = number of data points 

 

RESULTS 

A. Training and Validation Loss 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Training and validation loss of LSTM and hybrid CNN-LSTM   

B. Evaluation  

 

Table 4. Comparison of the models based on the metrics used 

 

Model 

Mean 

Absolute Error 

(MAE) 

Mean 

Absolute 

Percentage Error 

(MAPE) 

Root 

Mean 

Squared Error 

(RMSE) 

 

R-Squared 

(R2) 

BidirectionalLSTM 780.56 2.52 1042.20 .94 

hybrid CNN-LSTM 499.08 1.80 671.37 .97 

 

C. Prediction 

 

 
Fig 4. Predicted Graph 

DISCUSSION 

Illustrated in Figure 3 is the training and validation loss of the Bidirectional LSTM (BiLSTM) and CNN-LSTM 

models over 30 epochs. Both models demonstrate a rapid decrease in loss during the initial epochs, indicating 



723  
 

J INFORM SYSTEMS ENG, 10(15s) 

efficient learning of the data's underlying patterns. As training progresses, the loss values stabilize, suggesting that 

both models reach convergence effectively. 

While Bidirectional LSTM maintains a slightly lower validation loss, CNN-LSTM (represented by the orange 

lines) exhibits a competitive performance with a smooth and consistent loss path. The CNN-LSTM model benefits 

from its ability to extract spatial features using convolutional layers before passing the information to LSTM layers 

for sequential learning. 

Furthermore, CNN-LSTM shows a stable training process, as indicated by the absence of significant fluctuations 

in loss. This stability suggests that the model is learning efficiently without major risks of overfitting or underfitting. 

While the BiLSTM model slightly outperforms in validation loss, CNN-LSTM remains a strong contender due to its 

computational efficiency and ability to capture spatial-temporal relationships. 

The results presented in Table 4 between the comparison of the Bidirectional LSTM and hybrid CNN-LSTM 

models based on evaluation metrics reveals that the hybrid CNN-LSTM outperforms the Bidirectional LSTM in 

forecasting accuracy. The hybrid CNN-LSTM achieves a lower Mean Absolute Error (MAE) of 499.08 compared to 

780.56 for the Bidirectional LSTM, indicating that the hybrid CNN-LSTM has a smaller average difference between 

predicted and actual values. Similarly, the Mean Absolute Percentage Error (MAPE) is lower for the hybrid CNN-

LSTM at 1.80%, compared to 2.52% for the Bidirectional LSTM, signifying a more accurate percentage-based 

deviation. Additionally, the Root Mean Squared Error (RMSE) for the hybrid CNN-LSTM is significantly lower at 

671.37 compared to 1042.20 for the Bidirectional LSTM, suggesting that the hybrid model has better predictive 

performance with fewer large errors. Lastly, the R-squared (R²) value of the hybrid CNN-LSTM (0.97) is higher than 

that of the Bidirectional LSTM (0.94), demonstrating that it explains more variance in the data and provides better 

model fit.  

Figure 4 presented a comparative analysis of actual values and predictions generated by Bidirectional LSTM 

(BiLSTM) and hybrid CNN-LSTM models for time-series forecasting. The actual observed values are represented by 

a black line, while the predictions from the BiLSTM model are depicted with a blue dashed line, and the CNN-LSTM 

predictions are shown using a red dashed line. 

Both models effectively capture the overall trend of the dataset, as evidenced by their ability to follow the 

fluctuations and patterns in the actual values. The predictions exhibit a similar structure to the actual data, indicating 

that both models have learned the temporal dependencies within the dataset. 

However, hybrid CNN-LSTM model appears to provide predictions that are more closely aligned with the actual 

values compared to the BiLSTM model. The BiLSTM predictions display slightly more deviations, showing struggle 

to capture extreme fluctuations effectively. The graph demonstrates that both models are capable of time-series 

forecasting, but the CNN-LSTM model appears to be more effective in aligning with actual values. The integration of 

convolutional layers within the LSTM framework enhances feature extraction, leading to improved prediction 

accuracy. 

 

CONCLUSION    

This study evaluated the performance of Bidirectional LSTM and hybrid CNN-LSTM models for time series 

forecasting. The results indicate that the hybrid CNN-LSTM model is more effective than the Bidirectional LSTM in 

terms of accuracy and error reduction. The hybrid model exhibited lower error rates and a higher R² value, 

confirming its ability to better capture patterns in the data. These results highlight the advantages of combining 

convolutional and recurrent neural networks for time-series forecasting, particularly in applications requiring high 

accuracy and strong predictions. 

RECOMMENDATION 

Based on the findings, it is recommended that future research explore additional enhancements to the hybrid 

CNN-LSTM model, such as hyperparameter tuning or transformer-based architectures, to further improve predictive 

performance.  
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