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Cybersecurity is facing serious problems with the proliferation of malware in the internet world. 

The ever-changing nature of malicious software makes it difficult for traditional detection 

technologies to keep up. In order to make malware detection systems more accurate and 

resilient, this study investigates how to apply ensemble machine learning techniques. Using 

meta-learning frameworks like stacking and boosting in conjunction with various base models 

like logistic regression, Gaussian Naïve Bayes, and random forest allows the suggested method 

to make the most of each model's strengths while reducing their shortcomings. By utilizing a 

large dataset that includes both malicious and benign samples, the stacking algorithm surpassed 

the rivals in the prediction process, with a recall, precision, and f1-score of 100 after using the 

encoding method to convert the dataset from a numerical to a categorical format. 

Keywords: lorem ipsum. 

 

INTRODUCTION 

The digital revolution has brought immense convenience and connectivity to modern life, but it has also introduced 

significant security challenges. Malware, or malicious software, remains one of the most persistent threats to 

information systems. Malware's ability to infiltrate networks, compromise data, and disrupt operations poses serious 

risks to both individuals and organizations. Despite advances in cybersecurity technologies, the rapid evolution of 

malware techniques continues to outpace traditional defense mechanisms. Signature-based methods, which rely on 

known patterns of malware behavior, are often ineffective against sophisticated, previously unseen variants. This 

growing threat highlights the urgent need for innovative detection methods capable of adapting to the complex and 

dynamic nature of malware [1, 2].   

One promising solution lie is using machine learning (ML) techniques, particularly ensemble methods, to malware 

detection. Machine learning has revolutionized cybersecurity by enabling systems to identify patterns and anomalies 

indicative of malicious activity. Ensemble learning, a subfield of machine learning, combines the predictive power of 

multiple models to achieve higher accuracy and resilience. By aggregating the outputs of algorithms, ensemble 

techniques address the limitations of individual models, such as overfitting and poor generalization. This makes them 

particularly well-suited for the multifaceted nature of malware detection, where distinguishing between legitimate 

and malicious behavior often requires nuanced analysis [3].   

Ensemble methods like stacking, bagging, and boosting have shown exceptional promise in malware detection 

applications. Bagging techniques, like Random Forest, train multiple decision trees on random subsets of data, 

enhancing robustness and reducing variance. Boosting algorithms like XGBoost, focus on correcting the weaknesses 

of previous models by iteratively improving predictions. Stacking, on the other hand, combines the outputs of 

multiple base models using a meta-model, achieving a synergistic effect. These techniques not only improve detection 

accuracy but also reduce false positives, a critical factor in maintaining user trust and system performance [4].  

Pretium vulputate sapien nec sagittis aliquam malesuada. Auctor neque vitae tempus quam. Aenean sed adipiscing 

diam donec adipiscing. Magnis dis parturient montes nascetur ridiculus mus mauris. Placerat in egestas erat 

imperdiet sed euismod nisi porta lorem. Vel facilisis volutpat est velit egestas dui. Ultrices gravida dictum fusce ut 

placerat orci nulla pellentesque dignissim. Egestas tellus rutrum tellus pellentesque eu tincidunt tortor aliquam nulla. 

Mattis pellentesque id nibh tortor id. Ut venenatis tellus in metus vulputate. 

The success of ensemble learning in malware detection hinges on its ability to analyze large, complex datasets 

generated by modern computing systems. Malware detection systems often process vast amounts of data, including 
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network logs, file metadata, and application behavior, to identify potential threats. Ensemble models excel in 

handling such datasets due to their capacity to process diverse features and learn intricate patterns. Feature 

engineering plays a vital role in this context, enabling the extraction of relevant characteristics that differentiate 

between benign and malicious entities. Advanced techniques like natural language processing (NLP) for analyzing 

code snippets and deep feature extraction for behavioral analysis further enhance the capabilities of ensemble-based 

models [5, 6].   

In practice, deploying ensemble learning for malware detection requires overcoming several challenges. First, the 

dynamic nature of malware necessitates regular model updates to maintain accuracy. Techniques such as transfer 

learning and online learning can be employed to adapt models to new threats. Second, computational complexity can 

be a barrier, especially for resource-constrained environments like mobile devices. Optimizing ensemble 

architectures and employing lightweight models can address this issue. Finally, interpretability remains a key 

concern, as ensemble models are often seen as "black boxes." Enhancing model transparency through explainable AI 

(XAI) techniques is essential to building trust and ensuring compliance with regulatory standards [7, 8].   

This research explores the potential of ensemble techniques to redefine malware detection systems. Through rigorous 

experimentation on real-world datasets, it evaluates the effectiveness of various ensemble approaches in identifying 

known and novel malware threats. By integrating advanced feature engineering, adaptive learning strategies, and 

explainability tools, the study aims to develop a framework for malware detection that balances accuracy, efficiency, 

and transparency [9].   

The findings of this research have significant implications for cybersecurity, particularly in protecting critical 

infrastructure and sensitive data. Ensemble-based malware detection systems can provide organizations with a 

proactive defense mechanism, capable of identifying and mitigating threats before they cause harm. Furthermore, 

the scalability of these systems makes them suitable for a wide range of applications, from enterprise networks to 

individual devices. As the digital landscape continues to evolve, the adoption of ensemble machine learning 

techniques in malware detection represents a vital step toward building resilient and secure computing environments 

[10].   

OBJECTIVES 

The objective of this research is to utilize a hybrid machine learning algorithms to enhance the accuracy of 

predictions. Figure 1 shows the problem statement of this paper.  

 

The sections reminder for this paper is as follows: Section 2 presents the summary of previous papers. Section 3 

describes the methodology. Section 4 illustrates the proposed ensemble algorithm. Section 5 explains the results 

based on performance metrics. Finally, we conclude this paper and suggest some future works.   
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LITERATURE REVIEW 

Table 1 shows the summarization of the related papers terms of the algorithms used, the dataset, and the results 

based on evaluation metrics. 

Gupta et al. [11] conducted two approaches to enhance malware detection performance on a wide scale, one using 

ensemble learning and the other utilizing big data. The first approach uses ensemble learning's weighted voting 

process, whereas the second selects the best set of base classifiers to stack. We test and assess the performance of the 

suggested approaches using a dataset including 98,150 benign and 100,200 malicious samples. Results from 

experiments showed that the suggested method works, as it enhances generalization performance for identifying new 

malware. 

A hybrid deep learning model including gate recurrent unit (GRU) and deep belief network (DBN) was proposed by 

[12] as the basis for an algorithm for Android virus detection. Before anything else, examine the Android virus; not 

only are static features taken, but dynamic behavioral features with significant antiobfuscation ability are as well. 

create an Android malware detection model that combines deep learning with a hybrid approach. they used the DBN 

to process the static characteristics because they are generally independent. The GRU is employed to process the 

series of dynamic features because to their temporal correlation. In the end, the BP neural network receives the 

training data from DBN and GRU and produces the final classification results. Android malware detection model 

based on hybrid deep learning techniques outperforms other algorithms.  

Akhtar et al. [13] employed a many machine learning algorithms to detect harmful threats and malware. The ML 

algorithms are Naive Byes, J48, RF, SVM, and proposed approach). The findings demonstrated that DT 99%, 

outperformed other classifiers in terms of detection accuracy. Malware detection results on a tiny FPR were evaluated 

for the DT, CNN, and SVM algorithms on a specific dataset. DT achieved 2.01%, CNN achieved 3.97%, and SVM 

achieved 4.63%. Since harmful software is growing in both prevalence and sophistication, these findings are 

noteworthy. 

Using a number of static and dynamic features, Aurangzeb et al. [14] suggested BigRC-EML as a ransomware 

detection and classification tool. For better ransomware detection results, they employed ensemble machine learning 

techniques on large datasets. In addition, a novel method for selecting features that reduces feature dimensions is 

introduced, which is based on Principle Component Analysis (PCA). The study used two types of datasets: one 

dynamic, which included 582 ransomware and 942 clean programs, and another hybrid, which included 500 

applications. In this case, they were using XGBoost, Neural Network, SVM, Random Forest, and KNN as their 

classification models. According to their testing data, BigRC-EML attained a 98% accuracy rate, and Neural Network 

performed better than the other models. 

TABLE 1: PREVIOUS PAPERS SUMMARIZATION 
Ref Year Techniques Dataset Size Performance 

Metrics 

Experimental Results 

[11] 2020 Voting Stacking 193,530 Windows 

files 

Precision, Recall, 

Accuracy, F1-

score 

Enhancing parameterization 

to improve the identification 

of new malware. 

[12] 2020 DBN and GRU 7000 benign files 

and 6298 malware 

files 

Precision, Recall, 

Accuracy 

Accuracy = 96.82% 

[13] 2022 Naive Bayes, SVM, J48, 

RF, Proposed Approach 

17,394 files Accuracy, TPR, 

FPR 

Decision Tree (DT) accuracy 

= 99% 

[14] 2022 BigRC-EML, XGBoost, 

Neural Network, SVM, 

Random Forest, KNN 

582 ransomware 

files and 942 clean 

files 

Accuracy BigRC-EML accuracy = 98% 

METHODS 

A. Malware Dataset 

In this paper, we used the Malware Detection in Network Traffic Dataset obtained from the Kaggle website  that 

includes 23145 samples with 23 columns labels that shown in Table 2. In order to give researchers and analysts of 
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network malware more complete information, this dataset describes the links between flows associated with harmful 

or potentially malicious activity. Using malware capture analysis, the Stratosphere labs meticulously developed these 

labels. 

TABLE. 2 DATASET FEATURES 
Field Name Description Type 

ts The timestamp of the connection event. string 

uid A unique identifier for the connection. string 

id.orig_h The source IP address. addr 

id.orig_p The source port. port 

id.resp_h The destination IP address. addr 

id.resp_p The destination port. port 

proto The network protocol used (e.g., tcp). string 

service The service associated with the connection. string 

duration The duration of the connection in seconds. interval 

orig_bytes The number of bytes sent from the source to the destination. count 

resp_bytes The number of bytes sent from the destination to the source. count 

conn_state The state of the connection. string 

local_orig Indicates whether the source is considered local or not. bool 

local_resp Indicates whether the destination is considered local or not. bool 

missed_bytes The amount of missed data in the connection. count 

history A history of data events related to the connection. string 

orig_pkts The number of packets sent from the source to the destination. count 

orig_ip_bytes The number of IP bytes sent from the source to the destination. count 

resp_pkts The number of packets sent from the destination to the source. count 

resp_ip_bytes The number of IP bytes sent from the destination to the source. count 

tunnel parents Indicates if this connection is part of a tunnel. set[string] 

label A label associated with the connection (e.g., “Malicious” or “Benign”). string 

detailed-label A more detailed description or label for the connection. string 
1 https://www.kaggle.com/datasets/agungpambudi/network-malware-detection-connection-analysis/data 

Figure 2 presents a first and last five rows of the dataset before we applied any preprocessing steps. 

 

Fig2: Dataset Sample. 

Table 3 and Figure 3 shows frequency of these labels. 

TABLE 3: FREQUENCY OF THE LABELS 
Label Type Count 

Benign Normal 1923 

C&C Malicious 6707 
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DDoS Malicious 14394 

PartOfAHorizontalPortScan Malicious 122 

 

 

Fig. 3: Frequency of the Labels 

B. Building Models 

In order to determine if a file was benign or malicious, we used four different machine learning methods for 

classification on malware dataset. Computers may learn from data and generate inferences or predictions without 

human intervention through the use of machine learning algorithms, which are models for computational 

intelligence. 

1- Random Forest (RF) Algorithm 

Ensemble learning, which random forests use, combines several decision trees to produce predictions for regression 

and classification jobs. Among the many benefits of ensemble learning in machine learning are improved 

performance, resilience, and the capacity to handle complex problems. To improve their predictive power, random 

forests use ensemble learning techniques. While calculating the mean for the regression task, the RF calculates the 

average prediction for all trees in the classification job. At its heart, random forests are structured around decision 

trees. As illustrated in Figure 4, decision trees are hierarchical models that provide predictions by utilizing binary 

splits on features. In order to forecast a target variable, each division first divides the data into smaller subsets based 

on certain criteria. 

 

Fig. 4: RF Algorithm 

Through the amalgamation of numerous decision trees' predictions, random forests are able to improve accuracy, 

reduce overfitting, and efficiently handle complex situations. Random forests improve prediction accuracy by 

incorporating many decision trees to better understand the data and provide more robust forecasts.  Equation 1 shows 

how the RF calculates the final prediction, indicated by y, number of trees refers to N and hi(x) is the prediction for 

each decisions tree. 

𝑦 (𝑥) =
1

𝑁
∑ ℎ𝑖(𝑥)          𝐸𝑞. (1)

𝑁

𝑖=1
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1- Gaussian Naïve Bayes (NB) Algorithm 

An adaptation of the Naïve Bayes method, Gaussian Naïve Bayes (GNB) is created with continuous data in mind. For 

issues where this assumption holds true, it is especially successful because it assumes that the characteristics follow 

a normal distribution, or Gaussian distribution. Based on Bayes' theorem, all features are independent given the class 

label, it is similar to all Naïve Bayes classifiers, as shown in Equation 2. 

There are three Important Features about GNB: 

• Using the input features, GNB determines the posterior probability of each class and then chooses the class 

that has the highest probability. This makes GNB a probabilistic classifier. 

• Modeling the feature likelihood using a Gaussian distribution, defined by the mean and variance of the data, 

is the Gaussian distribution assumption. 

• Quick and Scalable: GNB's processing efficiency and ability to handle big datasets are both contributed by its 

simplicity. 

𝑃(𝐶𝑘\X) =
𝑃(𝑋\𝐶𝑘) 𝑃(𝐶𝑘)

P(X)
             𝐸𝑞. (2) 

              Where: 

• P(Ck\X): X is the feature vector, and Ck is the posterior class. 

• P(Ck): Prior probability. 

• P(X\Ck): Likelihood of the feature vector X given class Ck. 

• P(X): Marginal likelihood (constant for all classes). 

2- Logistic Regression (LR) Algorithm 

When it comes to binary classification tasks, one popular supervised learning approach is logistic regression. To be 

clear, it's not a regression model; rather, it's a categorization model. By mapping predictions to a range between 0 

and 1, logistic regression commonly employs the logistic (sigmoid) function. It then uses this range to estimate the 

likelihood that an input belongs to a certain class. The following is an example of how logistic regression models the 

relationship between input attributes (𝑋) and the likelihood of a binary target variable (Y): 

P(Y = 1|X) = σ(z) =
1

1 + e−z
 

C. Performance Metrics 

F1-score, accuracy, recall, and precision are the four metrics utilized to evaluate a classification task. TP: True Positive, 
FN: False Negative, TN: True Negative, and FP: False Positive are acronyms used in the following formula and 
simplified explanation: 

Accuracy: is the percentage of correctly predicted relative to all samples. 

Accuracy =  
TP + TN

TP + TN + FP + FN
          (3) 

 

Precision: is the proportion of anticipated positive samples that really. 

Precision =
TP

TP + FP
             (4) 

 

The recall is the proportion of correctly predicted positive samples to the total number of expected positive samples.  

Recall =
TP

TP + FN
                (5) 

F1-score: is calculated by computing the weighted average of Precision and Recall. 



394  

 

 

 J INFORM SYSTEMS ENG, 10(15s) 

F1 − Score = 2 ∗
Precision ∗ Recall

Precision + Recall
   (6) 

PROPOSED ENSEMBLE LEARNING APPROACH 

Proposed Technique Overview 

The proposed Technique used is a Stacking classifier that included three algorithms: RF, GNB and LR.   

Preprocessing 

We applied a label encoding method as a preprocessing step. this preprocessing method employed to convert the 

categorical data to numerical data a following: A unique integer is assigned to each distinct category (label) in the 

data. It is frequently employed in situations where the categorical data lacks an intrinsic order.   

Training Machine Learning Classifiers 

There were labels in the training data that showed whether a certain output was predicted to be in a certain class. By 

comparing it to the reference data, the main goal is to teach the learning model to correctly pinpoint the position of 

unknown data. However, we found that in some cases, the best results or the fewest mistakes could have been 

achieved with just one learning model. In order to correctly determine the sample's location, we used an ensemble 

learning strategy, which comprised developing numerous hypotheses from the training data and then combining 

them. By combining the results of multiple models, this method greatly enhanced the model's overall efficiency, 

which in turn increased the outputs' accuracy. More so than with individual models, this approach produced a robust 

and stable model.  We train each machine learning classifier in our ensemble in a systematic way so that we can build 

our ensemble model. The LR Classifier, Random Forest, and GNB are all part of the classifiers discussed in previous 

Section. Each classifier's unique structure, hyperparameters, and capabilities are vital to a thorough learning process. 

After training, these classifiers form the basis of the ensemble method. By utilizing the Stacking method, this strategy 

improves the ensemble's capability.  

Ensemble Stacking Classifier 

Stacking, also known as Stacked Generalization, is a method of ensemble learning that constructs a more robust 
meta-model by integrating the predictions of numerous base models, which are considered weak learners 
individually. By learning to integrate the outputs of multiple models through a meta-model, stacking takes 
advantage of the strengths of each model, unlike other ensemble methods such as bagging or boosting, as shown 
in Figure 5.  

The Process of Stacking: 

• Level-0 Base Models: A number of models are trained separately using the same dataset. The dataset is used 
to create predictions for each base model. 

• A meta-model is a distinct model that is trained using the base models' predictions. The meta-model figures 
out how to merge these forecasts for maximum efficiency. Although more complicated models (such as Gradient 
Boosting) are also possible, the meta-model is typically a simpler one, such Logistic Regression. 

• The basic models use additional data to construct predictions during inference, which leads to the final 
prediction. The meta-model takes these forecasts and produces a final forecast. 

 

Fig. 5: Flow Chart of Stacking Algorithm 
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RESULTS 

Here we detailed the experimental outcomes of using four ML methods on malware dataset and evaluating them using 
four metrics: f1-score, accuracy, recall, and precision. After that, we have a look at the experimental setups for each 
algorithm, which contain the values of the parameters.  

Experimental Setup 

This section presents the parameters used for each algorithm, as shown in Table 4. 

TABLE 4: PARAMETERS OF MACHINE LEARNING ALGORITHMS 
Algorithm Parameters 

RF n_estimators is 100 

criterion is gini 

max_depth is 2 

random_state is 42. 

GNB Priors = None 

var_smoothing= 1e-9 

LR Penalty = l2 

Solver = lbfgs 

max_iter = 100 

Stacking classifier estimators = RF, GNB 

final_estimator = LR 

 

The dataset needs to be split into two halves, called training and testing, before it can be fed into machine learning 

algorithms. It is possible to construct models using these techniques on the training dataset and then evaluate their 

efficacy on the testing dataset. The following is the training-to-testing ratio used in this paper: During training, 

80% of the dataset is utilized, while the remaining portion is utilized for testing.    

Experimental Results 

Here we show the outcomes of applying the three machine learning algorithms discussed in this article—RF, GNB, 

and LR—to the malware dataset. Following that, we contrasted the outcomes with a stacking classifier using four 

assessment metrics: accuracy, f1-score, recall, and precision. 

After applying the four machine learning algorithms to the dataset, the performance results are shown in Figure 6 

and Table 5. In comparison to other machine learning algorithms, Stacking outperforms them in the prediction 

process, with scores of 99.9 for accuracy, 100 for precision, 100 for recall, and 100 for f1-score. 

Table 5:Performance Results 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

GNB 99.24 99 99 99 

RF 99.15 99 99 99 

LR 97.66 98 98 98 

Stacking 99.9 100 100 100 
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Fig 6:Performance Results 

DISCUSSION 

Here we go over the results of our experiment to identify malware assaults using the dataset that was described 

earlier. These results are derived from a stacking classifier, RF, GNB, LR. The stacking classifier achieved better. The 

authors of [19] used deep learning algorithms on the malware dataset, and the results reveal an accuracy of 96.82, as 

shown in Table 6. Using 7 classifiers, other articles achieved 98% accuracy, such as [14]. Using the same dataset, our 

results showed an improvement of 99.9 percent accuracy.  

TABLE 6:COMPARISON BETWEEN PREVIOUS AND OUR WORK 
Ref Year Algorithms Results 

[12] 2020 DBN and GRU Accuracy = 96.82 

[14] 2022 BigRC-EML, XGBoost, Neural Network, SVM, Random Forest, 

and KNN 

BigRC-EML accuracy = 

98% 

Our 

Work 

2024 RF, GNB, LR, Stacking Accuracy of stacking = 

99.9 

 

The following objectives were met in light of our findings: 

• In order to achieve the highest detection accuracy in the dataset when compared to other algorithms in this 

study or earlier work, we constructed a strong ensemble learning method using three algorithms: RF, GNB, and LR. 

• Even though we used the same computer settings, our detection method was faster than prior studies. 

• The robust technique embedded into the dataset enables a greater accuracy value. 

Here are the main points that highlight the contributions of this paper: 

• To distinguish benign from malicious files in a bigger malware dataset, we need to create an ensemble 

learning approach that makes use of resilient machine learning techniques.  

• Minimizing false positives and missed detections by attaining a high degree of accuracy in differentiating 

between benign and malicious files. Our top priority is to minimize the possibility of falsely tagging reputable files 

while also making sure that the detection system can properly identify malware assaults. 

• Greater Detection Precision: By sifting through mountains of data, machine learning systems can spot the 

telltale signs of malware attempts. As a result, the detection accuracy is higher than with more conventional 

approaches.   

CONCLUSION  

In order to determine the file type and normalcy, this research applies four machine learning algorithms to malware 

datasets. Afterwards, we transformed the dataset from a categorical to a numerical format by applying the encoding 

technique. With a precision of 100, a recall of 100, and a f1-score of 100, the results showed that the stacking 

algorithm outperformed the competitors in the prediction process. The aforementioned dataset, along with another 

machine learning dataset, will be subject to the deep learning algorithms in future study. 
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