
Journal of Information Systems Engineering and Management
2025, 10(15s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Applying Ensemble Machine Learning Techniques to Malware

Detection

Saad Mamoun AbdelRahman Ahmed

Applied College, King Faisal University, KSA. smaahmed@kfu.edu.sa

ARTICLE INFO ABSTRACT

Received: 28 Nov 2024

Revised: 22 Jan 2025

Accepted: 01 Feb 2025

Cybersecurity is facing serious problems with the proliferation of malware in the internet world.

The ever-changing nature of malicious software makes it difficult for traditional detection

technologies to keep up. In order to make malware detection systems more accurate and

resilient, this study investigates how to apply ensemble machine learning techniques. Using

meta-learning frameworks like stacking and boosting in conjunction with various base models

like logistic regression, Gaussian Naïve Bayes, and random forest allows the suggested method

to make the most of each model's strengths while reducing their shortcomings. By utilizing a

large dataset that includes both malicious and benign samples, the stacking algorithm surpassed

the rivals in the prediction process, with a recall, precision, and f1-score of 100 after using the

encoding method to convert the dataset from a numerical to a categorical format.

Keywords: lorem ipsum.

INTRODUCTION

The digital revolution has brought immense convenience and connectivity to modern life, but it has also introduced

significant security challenges. Malware, or malicious software, remains one of the most persistent threats to

information systems. Malware's ability to infiltrate networks, compromise data, and disrupt operations poses serious

risks to both individuals and organizations. Despite advances in cybersecurity technologies, the rapid evolution of

malware techniques continues to outpace traditional defense mechanisms. Signature-based methods, which rely on

known patterns of malware behavior, are often ineffective against sophisticated, previously unseen variants. This

growing threat highlights the urgent need for innovative detection methods capable of adapting to the complex and

dynamic nature of malware [1, 2].

One promising solution lie is using machine learning (ML) techniques, particularly ensemble methods, to malware

detection. Machine learning has revolutionized cybersecurity by enabling systems to identify patterns and anomalies

indicative of malicious activity. Ensemble learning, a subfield of machine learning, combines the predictive power of

multiple models to achieve higher accuracy and resilience. By aggregating the outputs of algorithms, ensemble

techniques address the limitations of individual models, such as overfitting and poor generalization. This makes them

particularly well-suited for the multifaceted nature of malware detection, where distinguishing between legitimate

and malicious behavior often requires nuanced analysis [3].

Ensemble methods like stacking, bagging, and boosting have shown exceptional promise in malware detection

applications. Bagging techniques, like Random Forest, train multiple decision trees on random subsets of data,

enhancing robustness and reducing variance. Boosting algorithms like XGBoost, focus on correcting the weaknesses

of previous models by iteratively improving predictions. Stacking, on the other hand, combines the outputs of

multiple base models using a meta-model, achieving a synergistic effect. These techniques not only improve detection

accuracy but also reduce false positives, a critical factor in maintaining user trust and system performance [4].

Pretium vulputate sapien nec sagittis aliquam malesuada. Auctor neque vitae tempus quam. Aenean sed adipiscing

diam donec adipiscing. Magnis dis parturient montes nascetur ridiculus mus mauris. Placerat in egestas erat

imperdiet sed euismod nisi porta lorem. Vel facilisis volutpat est velit egestas dui. Ultrices gravida dictum fusce ut

placerat orci nulla pellentesque dignissim. Egestas tellus rutrum tellus pellentesque eu tincidunt tortor aliquam nulla.

Mattis pellentesque id nibh tortor id. Ut venenatis tellus in metus vulputate.

The success of ensemble learning in malware detection hinges on its ability to analyze large, complex datasets

generated by modern computing systems. Malware detection systems often process vast amounts of data, including

389

 J INFORM SYSTEMS ENG, 10(15s)

network logs, file metadata, and application behavior, to identify potential threats. Ensemble models excel in

handling such datasets due to their capacity to process diverse features and learn intricate patterns. Feature

engineering plays a vital role in this context, enabling the extraction of relevant characteristics that differentiate

between benign and malicious entities. Advanced techniques like natural language processing (NLP) for analyzing

code snippets and deep feature extraction for behavioral analysis further enhance the capabilities of ensemble-based

models [5, 6].

In practice, deploying ensemble learning for malware detection requires overcoming several challenges. First, the

dynamic nature of malware necessitates regular model updates to maintain accuracy. Techniques such as transfer

learning and online learning can be employed to adapt models to new threats. Second, computational complexity can

be a barrier, especially for resource-constrained environments like mobile devices. Optimizing ensemble

architectures and employing lightweight models can address this issue. Finally, interpretability remains a key

concern, as ensemble models are often seen as "black boxes." Enhancing model transparency through explainable AI

(XAI) techniques is essential to building trust and ensuring compliance with regulatory standards [7, 8].

This research explores the potential of ensemble techniques to redefine malware detection systems. Through rigorous

experimentation on real-world datasets, it evaluates the effectiveness of various ensemble approaches in identifying

known and novel malware threats. By integrating advanced feature engineering, adaptive learning strategies, and

explainability tools, the study aims to develop a framework for malware detection that balances accuracy, efficiency,

and transparency [9].

The findings of this research have significant implications for cybersecurity, particularly in protecting critical

infrastructure and sensitive data. Ensemble-based malware detection systems can provide organizations with a

proactive defense mechanism, capable of identifying and mitigating threats before they cause harm. Furthermore,

the scalability of these systems makes them suitable for a wide range of applications, from enterprise networks to

individual devices. As the digital landscape continues to evolve, the adoption of ensemble machine learning

techniques in malware detection represents a vital step toward building resilient and secure computing environments

[10].

OBJECTIVES

The objective of this research is to utilize a hybrid machine learning algorithms to enhance the accuracy of

predictions. Figure 1 shows the problem statement of this paper.

The sections reminder for this paper is as follows: Section 2 presents the summary of previous papers. Section 3

describes the methodology. Section 4 illustrates the proposed ensemble algorithm. Section 5 explains the results

based on performance metrics. Finally, we conclude this paper and suggest some future works.

390

 J INFORM SYSTEMS ENG, 10(15s)

LITERATURE REVIEW

Table 1 shows the summarization of the related papers terms of the algorithms used, the dataset, and the results

based on evaluation metrics.

Gupta et al. [11] conducted two approaches to enhance malware detection performance on a wide scale, one using

ensemble learning and the other utilizing big data. The first approach uses ensemble learning's weighted voting

process, whereas the second selects the best set of base classifiers to stack. We test and assess the performance of the

suggested approaches using a dataset including 98,150 benign and 100,200 malicious samples. Results from

experiments showed that the suggested method works, as it enhances generalization performance for identifying new

malware.

A hybrid deep learning model including gate recurrent unit (GRU) and deep belief network (DBN) was proposed by

[12] as the basis for an algorithm for Android virus detection. Before anything else, examine the Android virus; not

only are static features taken, but dynamic behavioral features with significant antiobfuscation ability are as well.

create an Android malware detection model that combines deep learning with a hybrid approach. they used the DBN

to process the static characteristics because they are generally independent. The GRU is employed to process the

series of dynamic features because to their temporal correlation. In the end, the BP neural network receives the

training data from DBN and GRU and produces the final classification results. Android malware detection model

based on hybrid deep learning techniques outperforms other algorithms.

Akhtar et al. [13] employed a many machine learning algorithms to detect harmful threats and malware. The ML

algorithms are Naive Byes, J48, RF, SVM, and proposed approach). The findings demonstrated that DT 99%,

outperformed other classifiers in terms of detection accuracy. Malware detection results on a tiny FPR were evaluated

for the DT, CNN, and SVM algorithms on a specific dataset. DT achieved 2.01%, CNN achieved 3.97%, and SVM

achieved 4.63%. Since harmful software is growing in both prevalence and sophistication, these findings are

noteworthy.

Using a number of static and dynamic features, Aurangzeb et al. [14] suggested BigRC-EML as a ransomware

detection and classification tool. For better ransomware detection results, they employed ensemble machine learning

techniques on large datasets. In addition, a novel method for selecting features that reduces feature dimensions is

introduced, which is based on Principle Component Analysis (PCA). The study used two types of datasets: one

dynamic, which included 582 ransomware and 942 clean programs, and another hybrid, which included 500

applications. In this case, they were using XGBoost, Neural Network, SVM, Random Forest, and KNN as their

classification models. According to their testing data, BigRC-EML attained a 98% accuracy rate, and Neural Network

performed better than the other models.

TABLE 1: PREVIOUS PAPERS SUMMARIZATION
Ref Year Techniques Dataset Size Performance

Metrics

Experimental Results

[11] 2020 Voting Stacking 193,530 Windows

files

Precision, Recall,

Accuracy, F1-

score

Enhancing parameterization

to improve the identification

of new malware.

[12] 2020 DBN and GRU 7000 benign files

and 6298 malware

files

Precision, Recall,

Accuracy

Accuracy = 96.82%

[13] 2022 Naive Bayes, SVM, J48,

RF, Proposed Approach

17,394 files Accuracy, TPR,

FPR

Decision Tree (DT) accuracy

= 99%

[14] 2022 BigRC-EML, XGBoost,

Neural Network, SVM,

Random Forest, KNN

582 ransomware

files and 942 clean

files

Accuracy BigRC-EML accuracy = 98%

METHODS

A. Malware Dataset

In this paper, we used the Malware Detection in Network Traffic Dataset obtained from the Kaggle website that

includes 23145 samples with 23 columns labels that shown in Table 2. In order to give researchers and analysts of

391

 J INFORM SYSTEMS ENG, 10(15s)

network malware more complete information, this dataset describes the links between flows associated with harmful

or potentially malicious activity. Using malware capture analysis, the Stratosphere labs meticulously developed these

labels.

TABLE. 2 DATASET FEATURES
Field Name Description Type

ts The timestamp of the connection event. string

uid A unique identifier for the connection. string

id.orig_h The source IP address. addr

id.orig_p The source port. port

id.resp_h The destination IP address. addr

id.resp_p The destination port. port

proto The network protocol used (e.g., tcp). string

service The service associated with the connection. string

duration The duration of the connection in seconds. interval

orig_bytes The number of bytes sent from the source to the destination. count

resp_bytes The number of bytes sent from the destination to the source. count

conn_state The state of the connection. string

local_orig Indicates whether the source is considered local or not. bool

local_resp Indicates whether the destination is considered local or not. bool

missed_bytes The amount of missed data in the connection. count

history A history of data events related to the connection. string

orig_pkts The number of packets sent from the source to the destination. count

orig_ip_bytes The number of IP bytes sent from the source to the destination. count

resp_pkts The number of packets sent from the destination to the source. count

resp_ip_bytes The number of IP bytes sent from the destination to the source. count

tunnel parents Indicates if this connection is part of a tunnel. set[string]

label A label associated with the connection (e.g., “Malicious” or “Benign”). string

detailed-label A more detailed description or label for the connection. string
1 https://www.kaggle.com/datasets/agungpambudi/network-malware-detection-connection-analysis/data

Figure 2 presents a first and last five rows of the dataset before we applied any preprocessing steps.

Fig2: Dataset Sample.

Table 3 and Figure 3 shows frequency of these labels.

TABLE 3: FREQUENCY OF THE LABELS
Label Type Count

Benign Normal 1923

C&C Malicious 6707

392

 J INFORM SYSTEMS ENG, 10(15s)

DDoS Malicious 14394

PartOfAHorizontalPortScan Malicious 122

Fig. 3: Frequency of the Labels

B. Building Models

In order to determine if a file was benign or malicious, we used four different machine learning methods for

classification on malware dataset. Computers may learn from data and generate inferences or predictions without

human intervention through the use of machine learning algorithms, which are models for computational

intelligence.

1- Random Forest (RF) Algorithm

Ensemble learning, which random forests use, combines several decision trees to produce predictions for regression

and classification jobs. Among the many benefits of ensemble learning in machine learning are improved

performance, resilience, and the capacity to handle complex problems. To improve their predictive power, random

forests use ensemble learning techniques. While calculating the mean for the regression task, the RF calculates the

average prediction for all trees in the classification job. At its heart, random forests are structured around decision

trees. As illustrated in Figure 4, decision trees are hierarchical models that provide predictions by utilizing binary

splits on features. In order to forecast a target variable, each division first divides the data into smaller subsets based

on certain criteria.

Fig. 4: RF Algorithm

Through the amalgamation of numerous decision trees' predictions, random forests are able to improve accuracy,

reduce overfitting, and efficiently handle complex situations. Random forests improve prediction accuracy by

incorporating many decision trees to better understand the data and provide more robust forecasts. Equation 1 shows

how the RF calculates the final prediction, indicated by y, number of trees refers to N and hi(x) is the prediction for

each decisions tree.

𝑦 (𝑥) =
1

𝑁
∑ ℎ𝑖(𝑥) 𝐸𝑞. (1)

𝑁

𝑖=1

393

 J INFORM SYSTEMS ENG, 10(15s)

1- Gaussian Naïve Bayes (NB) Algorithm

An adaptation of the Naïve Bayes method, Gaussian Naïve Bayes (GNB) is created with continuous data in mind. For

issues where this assumption holds true, it is especially successful because it assumes that the characteristics follow

a normal distribution, or Gaussian distribution. Based on Bayes' theorem, all features are independent given the class

label, it is similar to all Naïve Bayes classifiers, as shown in Equation 2.

There are three Important Features about GNB:

• Using the input features, GNB determines the posterior probability of each class and then chooses the class

that has the highest probability. This makes GNB a probabilistic classifier.

• Modeling the feature likelihood using a Gaussian distribution, defined by the mean and variance of the data,

is the Gaussian distribution assumption.

• Quick and Scalable: GNB's processing efficiency and ability to handle big datasets are both contributed by its

simplicity.

𝑃(𝐶𝑘\X) =
𝑃(𝑋\𝐶𝑘) 𝑃(𝐶𝑘)

P(X)
 𝐸𝑞. (2)

 Where:

• P(Ck\X): X is the feature vector, and Ck is the posterior class.

• P(Ck): Prior probability.

• P(X\Ck): Likelihood of the feature vector X given class Ck.

• P(X): Marginal likelihood (constant for all classes).

2- Logistic Regression (LR) Algorithm

When it comes to binary classification tasks, one popular supervised learning approach is logistic regression. To be

clear, it's not a regression model; rather, it's a categorization model. By mapping predictions to a range between 0

and 1, logistic regression commonly employs the logistic (sigmoid) function. It then uses this range to estimate the

likelihood that an input belongs to a certain class. The following is an example of how logistic regression models the

relationship between input attributes (𝑋) and the likelihood of a binary target variable (Y):

P(Y = 1|X) = σ(z) =
1

1 + e−z

C. Performance Metrics

F1-score, accuracy, recall, and precision are the four metrics utilized to evaluate a classification task. TP: True Positive,
FN: False Negative, TN: True Negative, and FP: False Positive are acronyms used in the following formula and
simplified explanation:

Accuracy: is the percentage of correctly predicted relative to all samples.

Accuracy =
TP + TN

TP + TN + FP + FN
 (3)

Precision: is the proportion of anticipated positive samples that really.

Precision =
TP

TP + FP
 (4)

The recall is the proportion of correctly predicted positive samples to the total number of expected positive samples.

Recall =
TP

TP + FN
 (5)

F1-score: is calculated by computing the weighted average of Precision and Recall.

394

 J INFORM SYSTEMS ENG, 10(15s)

F1 − Score = 2 ∗
Precision ∗ Recall

Precision + Recall
 (6)

PROPOSED ENSEMBLE LEARNING APPROACH

Proposed Technique Overview

The proposed Technique used is a Stacking classifier that included three algorithms: RF, GNB and LR.

Preprocessing

We applied a label encoding method as a preprocessing step. this preprocessing method employed to convert the

categorical data to numerical data a following: A unique integer is assigned to each distinct category (label) in the

data. It is frequently employed in situations where the categorical data lacks an intrinsic order.

Training Machine Learning Classifiers

There were labels in the training data that showed whether a certain output was predicted to be in a certain class. By

comparing it to the reference data, the main goal is to teach the learning model to correctly pinpoint the position of

unknown data. However, we found that in some cases, the best results or the fewest mistakes could have been

achieved with just one learning model. In order to correctly determine the sample's location, we used an ensemble

learning strategy, which comprised developing numerous hypotheses from the training data and then combining

them. By combining the results of multiple models, this method greatly enhanced the model's overall efficiency,

which in turn increased the outputs' accuracy. More so than with individual models, this approach produced a robust

and stable model. We train each machine learning classifier in our ensemble in a systematic way so that we can build

our ensemble model. The LR Classifier, Random Forest, and GNB are all part of the classifiers discussed in previous

Section. Each classifier's unique structure, hyperparameters, and capabilities are vital to a thorough learning process.

After training, these classifiers form the basis of the ensemble method. By utilizing the Stacking method, this strategy

improves the ensemble's capability.

Ensemble Stacking Classifier

Stacking, also known as Stacked Generalization, is a method of ensemble learning that constructs a more robust
meta-model by integrating the predictions of numerous base models, which are considered weak learners
individually. By learning to integrate the outputs of multiple models through a meta-model, stacking takes
advantage of the strengths of each model, unlike other ensemble methods such as bagging or boosting, as shown
in Figure 5.

The Process of Stacking:

• Level-0 Base Models: A number of models are trained separately using the same dataset. The dataset is used
to create predictions for each base model.

• A meta-model is a distinct model that is trained using the base models' predictions. The meta-model figures
out how to merge these forecasts for maximum efficiency. Although more complicated models (such as Gradient
Boosting) are also possible, the meta-model is typically a simpler one, such Logistic Regression.

• The basic models use additional data to construct predictions during inference, which leads to the final
prediction. The meta-model takes these forecasts and produces a final forecast.

Fig. 5: Flow Chart of Stacking Algorithm

395

 J INFORM SYSTEMS ENG, 10(15s)

RESULTS

Here we detailed the experimental outcomes of using four ML methods on malware dataset and evaluating them using
four metrics: f1-score, accuracy, recall, and precision. After that, we have a look at the experimental setups for each
algorithm, which contain the values of the parameters.

Experimental Setup

This section presents the parameters used for each algorithm, as shown in Table 4.

TABLE 4: PARAMETERS OF MACHINE LEARNING ALGORITHMS
Algorithm Parameters

RF n_estimators is 100

criterion is gini

max_depth is 2

random_state is 42.

GNB Priors = None

var_smoothing= 1e-9

LR Penalty = l2

Solver = lbfgs

max_iter = 100

Stacking classifier estimators = RF, GNB

final_estimator = LR

The dataset needs to be split into two halves, called training and testing, before it can be fed into machine learning

algorithms. It is possible to construct models using these techniques on the training dataset and then evaluate their

efficacy on the testing dataset. The following is the training-to-testing ratio used in this paper: During training,

80% of the dataset is utilized, while the remaining portion is utilized for testing.

Experimental Results

Here we show the outcomes of applying the three machine learning algorithms discussed in this article—RF, GNB,

and LR—to the malware dataset. Following that, we contrasted the outcomes with a stacking classifier using four

assessment metrics: accuracy, f1-score, recall, and precision.

After applying the four machine learning algorithms to the dataset, the performance results are shown in Figure 6

and Table 5. In comparison to other machine learning algorithms, Stacking outperforms them in the prediction

process, with scores of 99.9 for accuracy, 100 for precision, 100 for recall, and 100 for f1-score.

Table 5:Performance Results

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

GNB 99.24 99 99 99

RF 99.15 99 99 99

LR 97.66 98 98 98

Stacking 99.9 100 100 100

396

 J INFORM SYSTEMS ENG, 10(15s)

Fig 6:Performance Results

DISCUSSION

Here we go over the results of our experiment to identify malware assaults using the dataset that was described

earlier. These results are derived from a stacking classifier, RF, GNB, LR. The stacking classifier achieved better. The

authors of [19] used deep learning algorithms on the malware dataset, and the results reveal an accuracy of 96.82, as

shown in Table 6. Using 7 classifiers, other articles achieved 98% accuracy, such as [14]. Using the same dataset, our

results showed an improvement of 99.9 percent accuracy.

TABLE 6:COMPARISON BETWEEN PREVIOUS AND OUR WORK
Ref Year Algorithms Results

[12] 2020 DBN and GRU Accuracy = 96.82

[14] 2022 BigRC-EML, XGBoost, Neural Network, SVM, Random Forest,

and KNN

BigRC-EML accuracy =

98%

Our

Work

2024 RF, GNB, LR, Stacking Accuracy of stacking =

99.9

The following objectives were met in light of our findings:

• In order to achieve the highest detection accuracy in the dataset when compared to other algorithms in this

study or earlier work, we constructed a strong ensemble learning method using three algorithms: RF, GNB, and LR.

• Even though we used the same computer settings, our detection method was faster than prior studies.

• The robust technique embedded into the dataset enables a greater accuracy value.

Here are the main points that highlight the contributions of this paper:

• To distinguish benign from malicious files in a bigger malware dataset, we need to create an ensemble

learning approach that makes use of resilient machine learning techniques.

• Minimizing false positives and missed detections by attaining a high degree of accuracy in differentiating

between benign and malicious files. Our top priority is to minimize the possibility of falsely tagging reputable files

while also making sure that the detection system can properly identify malware assaults.

• Greater Detection Precision: By sifting through mountains of data, machine learning systems can spot the

telltale signs of malware attempts. As a result, the detection accuracy is higher than with more conventional

approaches.

CONCLUSION

In order to determine the file type and normalcy, this research applies four machine learning algorithms to malware

datasets. Afterwards, we transformed the dataset from a categorical to a numerical format by applying the encoding

technique. With a precision of 100, a recall of 100, and a f1-score of 100, the results showed that the stacking

algorithm outperformed the competitors in the prediction process. The aforementioned dataset, along with another

machine learning dataset, will be subject to the deep learning algorithms in future study.

397

 J INFORM SYSTEMS ENG, 10(15s)

REFRENCES

[1] Aboaoja, F. A., Zainal, A., Ghaleb, F. A., Al-Rimy, B. A. S., Eisa, T. A. E., & Elnour, A. A. H. (2022). Malware

detection issues, challenges, and future directions: A survey. Applied Sciences, 12(17), 8482.

[2] Aslan, Ö. A., & Samet, R. (2020). A comprehensive review on malware detection approaches. IEEE access, 8,

6249-6271.

[3] Rincy, T. N., & Gupta, R. (2020, February). Ensemble learning techniques and its efficiency in machine learning:

A survey. In 2nd international conference on data, engineering and applications (IDEA) (pp. 1-6). IEEE.

[4] Zounemat-Kermani, M., Batelaan, O., Fadaee, M., & Hinkelmann, R. (2021). Ensemble machine learning

paradigms in hydrology: A review. Journal of Hydrology, 598, 126266.

[5] Damaševičius, R., Venčkauskas, A., Toldinas, J., & Grigaliūnas, Š. (2021). Ensemble-based classification using

neural networks and machine learning models for windows pe malware detection. Electronics, 10(4), 485.

[6] Azeez, N. A., Odufuwa, O. E., Misra, S., Oluranti, J., & Damaševičius, R. (2021, February). Windows PE malware

detection using ensemble learning. In Informatics (Vol. 8, No. 1, p. 10). MDPI.

[7] Al Sarah, N., Rifat, F. Y., Hossain, M. S., & Narman, H. S. (2021). An efficient android malware prediction using

Ensemble machine learning algorithms. Procedia Computer Science, 191, 184-191.

[8] Islam, R., Sayed, M. I., Saha, S., Hossain, M. J., & Masud, M. A. (2023). Android malware classification using

optimum feature selection and ensemble machine learning. Internet of Things and Cyber-Physical Systems, 3,

100-111.

[9] Alamro, H., Mtouaa, W., Aljameel, S., Salama, A. S., Hamza, M. A., & Othman, A. Y. (2023). Automated android

malware detection using optimal ensemble learning approach for cybersecurity. IEEE Access.

[10] Al-Andoli, M. N., Sim, K. S., Tan, S. C., Goh, P. Y., & Lim, C. P. (2023). An ensemble-based parallel deep learning

classifier with PSO-BP optimization for malware detection. IEEE Access.

[11] Gupta, D., & Rani, R. (2020). Improving malware detection using big data and ensemble learning. Computers

& Electrical Engineering, 86, 106729.

[12] Lu, T., Du, Y., Ouyang, L., Chen, Q., & Wang, X. (2020). Android malware detection based on a hybrid deep

learning model. Security and Communication Networks, 2020(1), 8863617.

[13] Akhtar, M. S., & Feng, T. (2022). Malware analysis and detection using machine learning algorithms. Symmetry,

14(11), 2304.

[14] Aurangzeb, S., Anwar, H., Naeem, M. A., & Aleem, M. (2022). BigRC-EML: big-data based ransomware

classification using ensemble machine learning. Cluster Computing, 25(5), 3405-3422.

