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Lung cancer has become one of the most complex tumors to diagnose early, particularly with CT 

imaging, due to the intricacy and unpredictable nature of malignant patterns. Vision 

Transformers (ViTs) significantly improve feature extraction that captures insights in complex 

images for accurate diagnosis. However, extracting local spatial in small nodules while 

maintaining global features is challenging due to the patch merging in the hierarchical ViTs, 

which is ineffective for diversified images. Thus, this work introduces a Convolutional Neural 

Network (CNN) and Hierarchical Vision Transformer (ViT)-assisted hybrid model for lung 

cancer detection, enriched by multiscale patch embedding and cross-attention fusion to improve 

feature extraction and analysis of lung PET/CT images. Initially, the proposed approach applies 

the preprocessing and augmentation procedure to improve the generalization for lung cancer 

detection tasks. In the hybrid model, the CNN model extracts the local spatial features from the 

integrated multimodal PET/CT images and divides the feature maps of images into multiple 

scales to provide input to the hierarchical ViT succeeded by the multiscale patch embedding and 

position encoding. Moreover, the design of cross-attention fusion in hierarchical ViT combines 

the multiscale information, allowing the model to concentrate on relevant patterns and enhance 

diagnostic accuracy. Thus, experimental results show that the proposed model outperforms the 

existing lung cancer detection approaches, particularly in cases with small or indistinct lesions, 

by efficiently merging multiscale embeddings.  

Keywords: Lung Cancer Detection, Hierarchical ViT, CNN Feature Extraction, Hybrid Model, 

Multiscale Patch Embedding, and Cross-Attention   

INTRODUCTION 

Lung cancer is the primary cause of cancer-related mortalities globally, contributing to 18% of all such fatalities [1]. 

The main contributor to lung cancer is the smoking habit, and its occurrence has peaked or persistently escalated in 

several countries, signifying that lung cancer cases may rise further in the upcoming decades. Lung cancer is a 

heterogeneous disease, which is primarily classified into Small-Cell Lung Carcinoma (SCLC) and non-SCLC (NSCLC). 

NSCLC, including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma, comprise 85% of cases, 

whereas the remaining 15%, characterized by neuroendocrine differentiation, are SCLC cases [2]. For enhancing 

patient survival rates, early detection of lung cancer is performed based on lung nodule, which is a main indicator of 

lung cancer. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are the common imaging 

techniques that play a vital role in lung cancer detection [3].  

In the personalized medicine era, precise lung cancer diagnosis and classification deeply rely on histological and 

cytological subtyping through microscopic examination using normal histochemical and additional 

immunohistochemical staining. These conventional methods can be time-consuming, subjective, and susceptible to 

errors [4]. Hence, integrating Artificial Intelligence (AI)-based tools into clinical practice has led to significant 

progress in the digitization of medical imaging. Recently, AI has gained traction with deep learning (DL) 

breakthroughs. After an initial phase of heightened expectations when concerns arose about AI possibly substituting 
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radiologists, the field has transformed into a practical adoption phase [5]. By training on extensive medical datasets, 

DL algorithms can identify patterns beyond human perception, attaining state-of-the-art performance in cancer 

detection and frequently outperforming human expertise. This progression improves detection accuracy and patient 

experience with reduced diagnostic costs by facilitating rapid and more automated diagnoses [4]. Despite the 

advantages of the DL models, challenges such as the requirement for large medical datasets and bias from 

unrepresentative training data cause distrust in their results. However, the field of DL has witnessed substantial 

evolutions driven by significant computational power, vast amounts of data availability, and advances in neural 

network architectures. Combining medical images, genomics, clinical reports, and other patient-related data allows 

DL algorithms to extract complex features and offer a holistic view of cancer diagnosis. Incorporating different data 

modalities improves detection accuracy and contributes to a more personalized and accurate approach to cancer 

management [6]. 

Convolutional Neural Networks (CNNs) have revolutionized medical imaging by learning complex data 

representations across several modalities, including CT, radiography, MRI, and so on [7]. However, the stationary 

weights and local receptive fields can limit their capability to capture distant pixel relationships, prompting research 

into transformer models that efficiently encode these dependencies and enhance feature representation. Transformer 

acts as a framework for sequence-to-sequence prediction with remarkable capability for modeling long-range 

sequences and outstanding results in natural language processing and machine translation. By learning correlations 

across all input patches using self-attention, transformers capture long-range dependencies effectively among pixels 

[6]. Transformer has developed as a viable substitute to CNNs, representing competitive performance across several 

computer vision tasks such as object detection, semantic and instance segmentation, image recognition, and image 

generation. Particularly, a transformer-based architecture is utilized as the detection transformer to create the first 

fully end-to-end target detection model. The Vision Transformer (ViT) is the first image recognition model that 

depends on the transformer framework [8]. ViTs have achieved state-of-the-art results in numerous vision tasks, 

including object detection, image classification, and video understanding. 

Furthermore, ViTs show prediction errors closer to human judgment than CNNs, prompting rising interest in their 

adaptation for medical imaging applications to decrease the biases inherent in CNNs. During lung cancer diagnosis, 

vision transformers are utilized for nodule detection, tumor segmentation, cancer classification, and survival 

prediction [9]. Hierarchical ViTs, including swin transformers with window-based attention, MaxViT with multi-axis 

attention, and pyramid vision transformers with spatial reduction attention, have recently been developed to enhance 

performance in medical image segmentation tasks. However, these transformers' self-attention within a single 

attention window restricts feature processing capabilities [10]. 

The main contributions of the research work are outlined as follows. 

• This work presents a lung cancer detection model that integrates CNN feature extraction and hierarchical 

ViT, enabling localized feature extraction and global context awareness enhanced by multiscale patch 

embedding and cross-attention. 

• Modeling multiscale patch embeddings in hierarchical ViT allows capturing cancerous patterns from CNN 

feature maps across various spatial resolutions with position encoding, improving the ability to detect fine-

grained abnormalities in lung tissue. 

• Moreover, cross-attention mechanism-associated hierarchical ViT contextually integrates diverse feature 

scales from the feature representation of self-attention at each scale, leveraging to focus on cancer regions in 

the multimodal PET/CT images. 

• Thus, the experimental results demonstrated improved performance against conventionalung cancer 

detection and classification models, providing highly accurate and early detection aids in real-time clinical 

decision-making. 

LITERATURE REVIEW 

Radiologists encounter rising challenges, including higher workloads as well as diagnostic demands. Traditional lung 

cancer detection approaches need improved accuracy. Hence, recently, several studies have concentrated on 

diagnosing different diseases by implementing ViT to analyze medical images from different modalities. Some of 

them are discussed below. 
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A. Improved Vision Transformer for Medical Imaging 

Owing to the single-scale self-attention mechanism, the generalization ability of transformers is often limited. Hence, 

the Multiscale hiERarchical vIsion Transformer (MERIT) is proposed in [11] to overcome this issue by applying self-

attention at multiple scales. Cascaded attention decoding (CASCADE) refines multi-stage features. Furthermore, a 

multi-stage feature mixing loss aggregation method named MUTATION is utilized to improve model training. 

However, the dependence on complex architectures and attention mechanisms will increase computational 

requirements, affecting its real-time application. The combination of U-shaped and transformer architectures leads 

to the struggle to recover spatial information during up-sampling and the loss of image features during down-

sampling. An encoder-decoder architecture is proposed in [12] for medical image segmentation by combining a 

hybrid encoder with two expanding paths. It minimizes feature loss and enhances spatial information recovery. The 

hybrid encoder captures local and global pixel information. Spatial reconstruction and convergence are improved by 

retaining deep-supervised, independent expanding paths and the class-token sequence. Consecutive residual 

connections will support spatial recovery and decrease feature loss. 

For improved representation of 2D and 3D medical images, a ViT-based autoencoder called ViT-AE++ is proposed 

in [13] that utilizes two new loss functions. One loss function is for improving self-reconstruction by capturing 

structured dependencies, whereas the other is for contrastive loss. Moreover, ViT-AE++ can be extended to handle 

3D volumetric medical images. However, its dependence on hyperparameters like masking ratio complicates the 

training process and necessitates careful tuning for optimal performance. For addressing low accuracy in recognizing 

small or overlapping targets during image segmentation, a hybrid vision transformer with a unified-perceptual-

parsing network (ViT-UperNet) is proposed in [14] that embeds self-attention in a ViT. This helps extract multi-level 

features and process image features hierarchically. A UperNet fuses multiscale contextual features to enhance 

understanding of global context and semantic information. Pre-training is performed by a masked autoencoder that 

strengthens visual representation and feature learning efficiency. Even though morphology is the main standard for 

diagnosis, substantial tools must be developed to elucidate the diagnosis. The pre-trained ViT model is proposed in 

[15] for classifying multiple-label lung cancer on histologic slices in both few-shot and zero-shot scenarios. The Swin 

transformer (Swin-S) model [16] is proposed, and its performance is evaluated in lung cancer classification and 

segmentation. The Swin-S model shows improved mean Intersection over Union (mIoU) in segmentation tasks. The 

model's accuracy is improved by pre-training. However, Swin-S failed to adapt to 3D medical images that were 

extensively utilized in clinical settings. As the application of self-attention in understanding temporal distances 

among sparse, irregularly sampled spatial features has been explored previously, two approaches are proposed in 

[17] for a time-distance ViT: vector embeddings of continuous-time and a temporal emphasis model for adjusting 

self-attention weights. However, this approach was impacted by the overrepresentation of screen-detected cancers 

and slow-growing lung cancer subtypes in the cohort. 

A hybrid framework called HViT4Lung is proposed in [18] by combining transformers and CNNs to improve lung 

cancer diagnosis. Transfer learning is employed to extract features from chest CT images to detect nodules and 

malignancy and address challenges associated with size and location discrepancies of nodules in CAD systems. A 

computer-aided detection (CAD) scheme is proposed in [19] by utilizing a 3D multiscale ViT (3D-MSViT) to improve 

feature extraction and lung nodule prediction from 3-dimensional CT images. A local-global transformer block 

structure helps individually process scale patches before combining features at the global level based on the attention 

mechanism, thus reducing network parameters. Owing to the absence of research on evaluating the effectiveness of 

different optimizers for lung disease prediction within ViT models, various optimization methods like Adam, RAdam, 

NAdam, AdamW, Momentum, and SGDW are evaluated in [20] using a dataset with 19,003 chest X-ray images. ViT, 

FastViT, and CrossViT models were trained through these optimizers to compare their performance in predicting 

lung diseases, eventually providing strategies for enhancing ViT architectures. However, the evaluation is performed 

in diverse datasets with varied sample sizes. 

B. Vision Transformers in Lung Cancer Detection 

The work in [21] presented a lung cancer diagnosis model by analyzing multimodal imaging data using CNNs. 

Enhancing pathological categorization of lung cancer types with advanced image processing techniques improves 

classification accuracy. Combining CNNs with Swin Transformer proposes an automatic detection scheme for lung 

cancer cells [22]. A mask R-CNN-based network segments microscopic images of lung cells by highlighting target 

cells and retaining background information using Gaussian blurring. This scheme shows reduced computation with 
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improved performance. It proved to be beneficial for lung cancer cell detection and classification. However, its 

dependence on Gaussian blur affects the robustness of the model across different imaging conditions. A lung tumor 

segmentation method is proposed in [23] that combines CNNs and ViTs. An encoder-decoder structure is utilized for 

convolutional blocks in the initial and final layers. At the same time, deeper layers integrate transformer blocks with 

a self-attention mechanism for comprehensive global feature mapping. However, this complex architecture causes 

increased training times and problems tuning hyperparameters. For evaluating the effectiveness of PET/CT images, 

a new approach is proposed in [24] for detecting and classifying lung cancer using DL. The detection transformer 

(DETR) model employs a transformer-based approach to detect tumors and support physicians in staging lung cancer 

patients. Segmentation needs further improvement for better tumor localization and improved tumor delineation 

accuracy. 

Analyzing Whole Slide Images (WSIs) during histopathological examination can be error-prone and time-consuming 

for pathologists. Hence, the classification accuracy of histopathological images for NSCLC is improved using a DL 

architecture [25] that combines CNN and ViTs. ViTs analyze long-range relations between image patches, whereas 

CNNs capture local image features. However, its computational intensity will affect its practical deployment in 

resource-constrained environments. WSIs are difficult during manual pixel-wise annotation because of their high 

cost and large scale. Tumor heterogeneity and subtle morphological differences cause variability in expert 

annotations, affecting accuracy. Hence, Simple Shuffle-Remix ViT (SSRViT) [26] is proposed, which is a two-stage 

weakly supervised learning framework to recover discriminative tokens for creating sparse WSI representations. 

These representations are utilized by a transformer-based classifier called SViT to perform slide-level predictions. 

However, its dependence on weak labels will not fully capture the intricate details essential for accurate classification. 

Table 1 compares the approaches that utilize ViT for segmenting or classifying medical images. 

Table 1: Comparison of the ViT-based Existing Approaches for Medical Imaging 

Author 

(year) 

[ref] 

Architecture Method Dataset  Application 

task 

Rahman and 

Marculescu 

(2023) [11] 

Multiscale 

hierarchical vision 

transformer, 

cascaded attention 

decoding 

Compute self-attention across 

multiple windows to enhance 

the model's ability to capture 

multiscale features 

Synapse multi-organ 

dataset, ACDC 

dataset (MRI, CT) 

Medical image 

segmentation 

Chaoyang et 

al. (2024) 

[12] 

FDR-TransUNet Leverage class-token 

sequences and successive 

residual connections to 

improve accuracy and feature 

retention. 

COVID-19 

Radiography 

Database, e COVID-

Qu-Ex Dataset (X-

ray) 

Medical image 

segmentation 

Prabhakar et 

al. (2023) 

[13] 

ViT-AE++ Train an autoencoder for 

learning effective domain-

specific representations of 3D 

volumes without labeled data 

2D chest X-ray 

dataset, BraTS, 

Erasmus Glioma 

Database (MRI) 

Self-supervised 

medical image 

representations 

Ruiping et 

al. (2024) 

[14] 

ViT- unified-

perceptual-parsing 

network (UperNet) 

Improve long-range 

dependency modeling and 

feature fusion for small 

targets. 

ACDC2017 (MRI) Medical image 

segmentation 

Guo and Fan 

et al. (2022) 

[15] 

Pre-trained Vision 

Transformer 

Classify multiple-label lung 

cancer in both Zero- and Few-

Shot settings 

LC25000 

(histopathological 

images) 

Lung cancer 

multi-label 

classification 

Sun et al. 

(2023) [16] 

Improved Swin 

Transformer 

Employ the sliding window 

operation for the detection of 

lung cancer 

LUNA16 dataset 

(CT) 

Lung cancer 

image 

classification and 

segmentation 
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Li et al. 

(2023) [17] 

Time-distance 

vision transformer 

Incorporate temporal 

dynamics into the self-

attention process 

Tumor-CIFAR v1 

and v2, NLST 

dataset (CT) 

Medical imaging 

classification 

Ko et al. 

(2024) [20] 

ViT-B/16 model Identify the most effective 

optimization method for 

training ViT 

Chest X-ray dataset 

(chest X‑ray) 

Detection of lung 

diseases 

Chen et al. 

(2022) [22] 

Swin transformer Segment and defocus 

background noise in cell 

images 

Herlev and 

SIPaKMeD dataset 

(cervical cell 

images) 

Detection and 

classification of 

lung cancer cells 

Barbouchi et 

al. (2023) 

[24] 

Transformer-based 

DNN 

Achieve precise tumor 

localization and staging 

Lung-PET-CT-Dx 

dataset (PET/CT) 

Detection and 

classification of 

lung cancer 

Imran et al. 

(2024) [25] 

CNNs and ViT Eliminate the need for pre- or 

post-processing 

LC25000 dataset 

(histopathological 

images) 

Non-small cell 

lung cancer 

detection and 

classification 

 

PROBLEM STATEMENT 

Lung cancer has become one of the most hazardous and increasing causes of death worldwide. Identifying small 

early-stage lesions in medical imaging is challenging due to delayed diagnosis increases the death rate or health risks. 

A lung cancer diagnosis has extensively applied conventional deep learning models, especially CNNs. Even though 

CNN-based models ensure accurate and timely cancer diagnosis, there is a frequent inability to grasp contextual 

information and intricate spatial interactions in high-resolution medical images. Traditional ViT models fail to 

handle the different features scales in lung cancer imaging. Hence, recent developments in ViT models have 

demonstrated their effectiveness in capturing global contextual information through self-attention mechanisms. For 

instance, lung CT scan lesions vary from small nodules to massive masses, necessitating multiscale feature 

representation. In hierarchical ViTs, patch merging increases speed by reducing the number of tokens; however, it 

ignores fine-grained information, particularly in complex tasks like medical imaging. Even though downsampling in 

a hierarchical model improves global context, it degrades local precision. It misses important small features affecting 

lung cancer detection accuracy, such as nodules in lung scan images. In addition, several multiscale patch embedding 

models assist in efficiently and accurately examining large medical images, but analyzing small perturbations is 

challenging and limits the generalization. Hence, this work aims to improve diagnostic accuracy by allowing the 

model to concurrently capture highly generalized contextual features and fine-grained local features in the lung 

PET/CT images.  

      PROPOSED METHODOLOGY 

The primary goal of this work is to propose Vision Transformer Model-Assisted Lung Cancer Detection with 

Multiscale Patch Embedding and Cross-Attention Fusion system, increasing lung cancer detection accuracy. The 

proposed system initially normalizes and augments lung PET/CT images in order to standardize inputs and improve 

the robustness of the model, which aims to capture both the global features of lung regions and the fine-grained 

features of possible lesions by dividing the images into patches of different sizes after extracting convolutional feature 

maps from the augmented images. Moreover, the cross-attention method in the hierarchical ViT enables learning 

contextual information across different image patches. By learning local features, such as small or tiny nodules, and 

global structural patterns, the proposed approach enhances lung cancer detection capabilities from the multiscale 

patched embeddings through cross-attention rather than patch merging. Figure 1 illustrates the proposed lung 

detection methodology.  
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A.Medical Image Preprocessing and Augmentation 

To conduct the experiment, this work employed lung images from the Cancer Imaging Archive (TCIA), namely the 

Lung-PET-CT-DX dataset [27], a large-scale resource designed to perform lung cancer diagnosis research. It consists 

of imaging data for 355 patients, with 251,135 images for 1,295 series from 436 studies. It also comprises extensive 

images of both CT and PET-CT images in DICOM format, as well as XML files that designate tumor locations with 

bounding boxes. Class labels in the Lung-PET-CT-DX dataset are based on tumor histology type, including 'A' as 

adenocarcinoma, 'B' as small cell carcinoma, 'E' as large cell carcinoma, and 'G' as squamous cell carcinoma tagged 

as lung cancer disease types for each patient. 

Initially, the proposed approach applies the preprocessing procedures on the integrated lung PET/CT images, 

involving resizing to uniform dimensions, normalizing pixel intensities, and noise reduction to eliminate imaging 

artifacts. Owing to the images recorded from various CT devices, the input pixel arrays are transformed into a unified 

pixel range by rescaling. Subsequently, the pixel arrays of the input image are normalized into values between 0 and 

1, and to further normalize the images, the resizing is also applied regarding a particular shape, 300×300×3. 

Moreover, data augmentation [28] improves the robustness of the model by applying flipping and rotation as the 

geometric transformations for the normalized images. In the image augmentation process, geometric transformation 

with color jittering, such as contrast, brightness, and hue adjustment, increases the diversity of the training set, 

thereby improving generalization for lung cancer detection tasks.   

B. Feature Extraction and Multiscale Patch Embedding  

To enhance the image feature representation, the proposed approach intends to capture coarse-grained and fine-

grained features from the input images by integrating the hybrid model with CNN and hierarchical ViT [29]. 

CNN Feature Extraction: In the hybrid CNN-Transformer model, the convolutional layer initially learns the 

augmented input image to represent the feature maps from low-level to high-level, such as shapes, edges, and 

textures, thereby improving the extraction of local spatial patterns. In ViT-assisted lung cancer detection, spatial 

feature map extraction enables the CNN to capture the hierarchical structure of input image, which is highly 

significant for medical image analysis, such as lung scans, when information at various scales contributes towards 

precise cancer detection. In the subsequence of extracting comprehensive feature maps (𝐹𝐶𝐿) by the convolution layer, 

the feature maps are further separated into many scales to reflect different degrees of information. For the Vision 

Transformer, each scale is further embedded as patches and then transformed into token sequences. Thus, the CNN 

enables the ViT to focus on various granularity levels within the derived feature maps, enhancing the model's 

capability to determine multiscale patterns relevant to cancer. 
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𝐹𝐶𝐿 = 𝑅𝑒𝐿𝑈(𝑤𝐶𝐿 ∗ 𝐹𝐶𝐿−1 + 𝑏𝐶𝐿)                                                                   (1) 

In equation (1), convolutional layers apply the ReLU as a non-linear activation function for the image feature 

extraction at layer 'L' with the convolution kernel.'𝑤𝐶𝐿 ' and bias '𝑏𝐶𝐿 '. Thus, the CNN outcomes are a set of feature 

maps for the augmented input PET/CT image, which are further provided in a multiscale patch embedding and 

position encoding layer in hierarchical ViT.  

Multiscale Patch Embedding: The lung PET/CT images are further divided into patches at various scales 

regarding feature map representation to extract these contextual features. Multiscale patch partitioning aims to 

examine whether larger patches capture the wider context of lung regions. In contrast, smaller patches concentrate 

on finer details, such as small nodules. In the patch embedding procedure, positional encodings preserve spatial 

relationships between patches and improve the processing ability of ViT for intricate lung structures.  

In the proposed hierarchical ViT, multiscale patch embedding is a key design in capturing fine-grained and global 

context information from images by processing patches at multiple scales. Even though traditional hierarchical 

transformers achieve hierarchical representation learning through window-based multiscale patching for local and 

global information analysis in their early layers, patch merging in the hierarchical ViT tends to ignore the capture of 

fine-grained features at further layers. Even though deeper layers in the hierarchical ViTs enable the sharing of cross-

scale information, ensuring global self-attention is challenging across the features with finer details due to patch 

merging. Hence, in contrast to traditional ViTs, the hierarchical ViTs partition the image into non-overlapping 

windows and apply the self-attention locally to examine the local context at different windows via the transformer 

encoder in each scale 'S' with the embedding (𝐸𝑆𝑆′) representation of multiscale patches. In the multiscale patch 

embedding, each feature map (F) is partitioned into non-overlapping patches for each image with the dimensions of 

height (H), width (W), and depth (D), resulting. ([𝐻 × 𝑊] 𝑝2⁄ ) patches for each image for patch size' p'. 

𝐸𝑆𝑆′ =  𝑤𝑖 . 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃𝑆𝑆′) + 𝑏𝑖                                                                    (2) 

To enhance the ability of hierarchical transformer in lung cancer detection, the proposed approach embeds the patch 

representation at multiple scales (S, 𝑆′) as mentioned in equation (2) by flattening the patches (𝑃𝑆𝑆′) in 'F' into a vector 

transformation with the integration of weight matrix (𝑤𝑆) and bias (𝑏𝑆). Thus, the proposed approach provides an 

embedding representation (𝐸𝑆) for each feature map (F) at each scale to contextually extract the insights by the 

transformer encoder. 

C. Hierarchical Vision Transformer with Cross-Attention  

In the design of hierarchical ViT, the proposed lung cancer detection model integrates cross-attention instead of 

relying on self-attention for multiscale image representation, enabling efficient information transmission between 

various feature representations and resolution levels in different scales of images. By capturing long-range 

relationships and local features efficiently, cross-attention significantly enhances the performance of lung cancer 

diagnosis through accurate fine-grained features-based lung cancer detection. In contrast to patch merging, which 

progressively decreases the feature map resolution, cross-attention enables patches of different scales to be 

embedded and processed independently while maintaining fine-grained features and structural variations at each 

scale.  

Cross-attention allows the model to efficiently utilize both local and global context of input lung PET/CT images. As 

mentioned in equation (3-5), the proposed approach formulates the Query (Q), Key (K), and Value (V) for cross-

attention mechanism at multiple scales, S and 𝑆′ at layer (i) in the transformer architecture. 𝑊𝑞
𝑆, 𝑊𝑘

𝑆′
, and 𝑊𝑣

𝑆′
 are 

projection matrices for Q, K, and V, respectively, at S and 𝑆′ scales. 

𝑄𝑆 = 𝑋𝑆
𝑖𝑊𝑞

𝑆      ,     𝐾𝑆′ = 𝑋𝑆′
𝑖 𝑊𝑘

𝑆′
     ,       𝑉𝑆′ = 𝑋𝑆′

𝑖 𝑊𝑣
𝑆′

                                 (3) 

ℎ𝑒𝑎𝑑ℎ

(𝑆,𝑆′)
= 𝐴𝑡𝑡(𝑄𝑆

(ℎ)
, 𝐾

𝑆′
(ℎ)

, 𝑉
𝑆′
(ℎ)

)                                                                 (4) 

In the multiscale embedding representation, the proposed approach computes the cross-attention score for each head 

(h) with the pair of (𝑆, 𝑆′) scales in Q, K, V computation across 'n' number of multiple scales in which 'S' denotes a 

particular scale and 𝑆′ refers to another scale that excludes 'S'. The Multi-Head Attention (MHA) concatenates 

multiple heads of cross-attention with the output projection matrix. 
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𝑋𝐹𝑢𝑠𝑖𝑜𝑛
𝑖 = ∑ ∑ 𝑀𝐻𝐴(𝑄𝑆 , 𝐾𝑆′ , 𝑉𝑆′)                                                           (5)

𝑆′≠𝑆

𝑛

𝑆=1

 

In the proposed lung cancer detection system, cross-attention fusion (𝑋𝐹𝑢𝑠𝑖𝑜𝑛
𝑖 ) enables the model to assign weight to 

features from each scale based on their relevance to lung cancer patterns. The selected region of the input image at 

each scale ensures that potential fine features, such as small malignant lesions in lung PET/CT images, receive higher 

attention than loss-prone feature averaging in simple patch merging. Consequently, the cross-attention process 

inevitably contributes to interpretability by demonstrating lung cancer-influencing features from different scales 

from the attention maps focused on recognizing specific regions of interest in lung cancer images. Thus, the cross-

attention maps provide insights to clinicians to improve confidence and validate the effectiveness of the prediction 

model by highlighting potentially malignant regions in lung CTs, strengthening detection accuracy in regions with 

high cancer risk. Algorithm 1 describes the steps involved in the proposed lung cancer detection model.  

 

Algorithm 1: Pseudocode of the Proposed Lung Detection Methodology 

Input: Lung CT Images 

Output: Lung Cancer Categories/Types 

 

//Preprocessing and Augmentation// 

1 for all the input Lung Images do 

2 Apply normalization and resizing 

3 for all the preprocessed images do 

4  Apply the augmentation, including geometric transformation and color jittering 

5  if  𝐶(𝐴𝐿𝐼) ==  𝐶(𝑅𝐿𝐼)  then 

6  Generate the new training set with category-specific augmented images 

7  endif 

8 endfor 

//Feature Extraction// 

9  for all the augmented images do 

10   Extract the local spatial features using CNN 

11  Represent the feature maps for each image as in Equation (1) 

12 endfor 

//Multi-Scale Patch Embedding// 

13   for all the extracted feature maps of images do 

14   Divide each image into multiple scale patches in terms of feature maps 

15   for the multiple patches of images do 

16    Generate embedding representation with position encoding as in Equation (2) 

17   endfor 

18  endfor 

//Cross-Attention Fusion// 

19  for the embedded representation of multi-scale patches do 

20   Apply the hierarchical ViT 

21   for each patch do 

22    Design the transformer encoder for each patch in hierarchical ViT 

23    Learn the local feature representation by the self-attention 

24   endfor 

25   Apply the cross-attention for multiple scales using Equations (3) and (4) 

26   Perform the Cross-attention fusion using Equation (5) 

27    for integrated feature representation with attention maps do 

28     Execute classifier head 

29     Categorize the lung cancer types 

30    endfor 

31  endfor 

32    endfor 
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EXPERIMENTAL EVALUATION 

The experimental setup for the lung cancer detection model leverages Python machine learning libraries and OpenCV 

to build and train the image processing algorithm. Parameters for a hybrid model designed to handle lung PET/CT 

images for cancer detection are detailed in Table 2.  

Table 2: Implementation Parameters 

Parameters CNN-Hierarchical ViT 

Dropout Rate 0.3 

Learning Rate 0.0001 

Activation 
CNN ReLU 

ViT GELU 

Loss Function Cross-Entropy 

Epochs 100 

Batch Size 16 

Optimizer AdamW 

 

To assess the performance of the lung cancer detection model, the experimental model employs precision, recall, F1-

score, and accuracy. In the lung cancer detection task, True Positives (TP) correctly identified the target lung cancer 

type, True Negatives (TN) identified other lung cancer types, False Positives (FP) incorrectly classified lung cancer 

types, and False Negatives (FN) incorrectly detected lung cancer types.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑁 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
 

To evaluate the performance metrics on the multi-class lung image dataset, the experimental results provide the 

Average Precision (AP), Average Recall (AR), Average F1-Score (AF), and Average Accuracy (AA) across all the 

classes. 

A. Result Discussion on Histologic Classification 

For the evaluation, the experimental model utilizes the patients with lung image categories of Adenocarcinoma 

(ADC), Squamous Cell Carcinoma (SQC), and Small Cell Carcinoma (SCC). Due to the lack of CT/PET images in the 

5 Large Cell Carcinoma (LCC) category, the evaluation dataset contemplates only ADC, SCC, and SQC lung cancer 

types. Finally, this work exploits 1160 images belonging to 25 patients with ADC, SCC, and SQC categories.  

Table 3: Comparative Lung Cancer Detection Performance 

Author Dataset 
Number of 

Test Samples Model AP (%) AR (%) AF (%) AA (%) 

Jacob, C., & 

Menon, G. C. 

(2022) [21] 

Lung-PET-

CT-Dx 
204 Shallow CNN 95.5 93.76 94.63 95.0 

Sun, R et al 

(2023) [16] 
LUNA16 7076 

Swin 

Transformer 
- - - 82.3 

Chen, Y et al., 

(2022) [22] 
Lung Cell 932 

CNN + Swin 

Transformer 
95.2 92.6 93.88 96.14 
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Barbouchi, K 

et al (2023) 

[24] 

Lung-PET-

CT-Dx 
270 

DETR 

Transformer 
93.0 96.0 94.0 96.0 

Imran, M et 

al., (2023) 

[25] 

LC25000 1500 

CNN + 

Hierarchical 

ViT 

98.0 98.2 98.0 98.8 

Proposed 
Lung-PET-

CT-Dx 
270 

CNN + 

Hierarchical 

ViT 

98.92 98.99 98.95 99.5 

 

As mentioned in Table 3, prior research in lung cancer detection [22, 25] has utilized hybrid deep learning models, 

and limitations remain due to insufficient representation of evolving cancer patterns in training data, which reduces 

the accuracy in distinguishing between various malignant regions. Furthermore, the lung cancer detection 

approaches [16, 22, 24, 25] have employed the transformer models to potentially extract the features, resulting in 

relatively minimal performance due to the lack of cross-attention fusion from the multiple scales for the complex 

images. In contrast, the proposed model leverages Vision Transformers enhanced with CNN-based feature extraction, 

multiscale patch embedding, and cross-attention fusion, enabling a deeper understanding of complex cancer features 

across different scales and regions. Consequently, the proposed approach enables highly complex image learning and 

precise tumor detection, leading to improved accuracy of 99.5% on the Lung-PET-CT-Dx dataset. Even though the 

work in [21] achieved comparatively higher precision and recall than the research in [24] while testing on a specific 

Lung-PET-CT-Dx dataset, it fails to generalize across multiple lung cancer types due to limited data diversity and 

inadequate analysis of complex visual patterns, proved in producing comparatively minimal accuracy as 95% with 

overfitting. In addition, it is confronted with large-scale and complex image patterns due to the shallow CNN 

architecture, which tends to ignore the analysis of global feature relationships. 

Furthermore, the research works [16, 22] applied the Swin transformer, the hierarchical transformer for the lung 

cancer classification. However, patch merging without integrating various local spatial feature representations 

globally misleads the decision-making. Consequently, the work in [22] accomplished only a 93.88% F1-score while 

testing on the Lung cell image dataset, even though the CNN model extracts local spatial features. Also, in the 

comparative work [25], the combination of CNN and hierarchical ViT as similar employed in the proposed system, 

lack of modeling of the multiscale patch embedding in the hierarchical model, and cross-attention ignore the 

capturing of both the local and global features throughout the layers, resulting inaccurate detection of fine-grained 

lung cancer tissues in the diversified images. Thus, the proposed approach addresses these gaps, ensuring a highly 

adaptable, precise, and generalizable approach for lung cancer detection with a 98.95% F1 score. 

B. Evaluation on Lung-PET-CT-Dx Dataset 

To assess the lung cancer detection capabilities on the Lung-PET-CT-Dx dataset, Table 4 compares the performance 

metrics of the proposed Vision Transformer-based model on different lung cancer types. By designing a multiscale 

patch embedding for the CNN feature maps and cross-attention fusion, the proposed model accomplishes higher 

performance on all three categories, which is comparatively higher than the existing research works [21, 24], as 

mentioned in Table 5. Also, the proposed approach exhibits a higher F1 score and accuracy in all three classes such 

as ADC, SCC, and SQC. Results in Table 4 show that the augmented samples generated by the proposed model and 

multiscale embedding process significantly enforce the decision-making by providing comprehensive cancer patterns 

for each category. 

Table 4: Proposed Lung Cancer Detection Performance on Lung-CT Dataset 

Cancer Types Precision (%) Recall (%) 
F1-Score 

(%) 

Accuracy 

(%) 

ADC 98.81 100 99.4 99.58 

SCC 99.22 99.12 99.17 99.73 

SQC 98.72 97.86 98.29 99.19 



117  
 

J INFORM SYSTEMS ENG, 10(15s) 

The proposed system employs cross-attention-enabled hierarchical transformer architecture for PET/CT lung cancer 

detection, integrating image patches and spatial features to capture intricate malignancy regions. In contrast to only 

focusing on explicit features, the proposed approach learns the extracted patches at multiple levels of CNN feature 

maps that facilitate the accurate recognition of cancer regions even in complex images. Consequently, the proposed 

approach achieves higher accuracy at 99.58%, 99.73%, and 99.19% in the ADC, SCC, and SQC categories, respectively, 

demonstrating enhanced adaptability and generalization in lung cancer detection. 

C.Comparative Evaluation on Lung-PET-CT-Dx Dataset 

As depicted in Table 5, the proposed Vision Transformer-based approach, incorporating Transformer and cross-

attention, consistently exceeds the shallow CNN and DETR transformer in the research works [21, 24] in lung cancer 

detection tasks. The Vision Transformer with cross-attention excels at capturing long-term dependencies within 

image patches, aided by multiscale patch embedding. The cross-attention mechanism enhances the model's ability 

to prioritize critical lung patterns and align spatial features across different scales, significantly boosting detection 

accuracy. The existing work [24] is constrained by generalized feature extraction for capturing comprehensive lung 

features due to the limited exploration of the cross-attention of various scales while investigating the integrated 

multimodal PET/CT images. Because the complementary information is incorporated in the integrated PET/CT 

images, including metabolic activity and anatomical data, information loss is avoided significantly. To resolve this 

constraint, the proposed approach applies multiscale patch embedding, enabling the detection model to extract fine-

grained and large features by examining the tumor region and surrounding tissue at various scales.  

Table 5: Comparative Analysis of Histologic Classification Works 

Cancer 

Types 

Proposed 
Barbouchi, K et al (2023) 

[24] 

Jacob, C., & Menon, G. C. 

(2022) [21] 

Precisio

n (%) 

Recall 

(%) 

F1-

Score 

(%) 

Precisio

n (%) 

Recal

l (%) 

F1-

Score 

(%) 

Precisi

on (%) 

Recal

l (%) 

F1-

Score 

(%) 

ADC 98.81 100 99.4 89 100 94 96.4 95.3 95.8 

SCC 99.22 99.12 99.17 90 99 94 95.5 94.0 94.7 

SQC 98.72 97.86 98.29 99 88 93 94.8 92.0 93.4 

 

By leveraging the interaction between the CNN and Vision Transformer, the proposed model achieves 

superior feature learning and patch processing, yielding a recall of 100%, 99.12%, and 97.86% for the ADC, SCC, and 

SQC types, respectively. Thus, the proposed hybrid approach with multiscale patch embedding effectively adapts to 

dynamic imaging environments than the hybrid approach in [21] due to the information loss in the PET/CT image 

processing, ensuring higher precision, recall, and F1-score in lung cancer detection compared to the existing 

researches [21, 24] for the Lung-PET-CT-Dx dataset. 

D.Evaluation of Stages in the Proposed Lung Cancer Detection 

 Table 6 highlights that the proposed approach significantly enhances lung cancer detection by enhancing the 

ViT model with CNN-based feature extraction, multiscale patch embedding, and cross-attention fusion. This 

integration allows for robust feature extraction across various scales and image regions, enabling the model to detect 

intricate patterns in lung tissue with high accuracy. Combining CNN feature extraction to capture detailed local 

features with multiscale patch embedding enriches the ViT model's understanding of complex visual patterns. Cross-

attention fusion further strengthens this model by aligning and integrating features from multiple patches, which 

improves its ability to distinguish between benign and malignant regions. This method reduces false positives and 

negatives, enhancing the model's precision and recall. Automated multiscale patch selection and cross-attention 

integration serve as key contributions to optimizing training data and providing comprehensive representations that 

improve detection performance. 
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Table 6: Comparative Evaluation of Proposed Processes in Lung-PET-CT-Dx Dataset 

Stages in Proposed 

Algorithm 
Modality Model 

Lung Cancer Detection (Histologic Classification) 

Performance 

AP (%) AR (%) AF (%) AA (%) 

Augmentation + Feature 

Extraction 
CT CNN 90.19 89.37 89.78 90.24 

Augmentation + Feature 

Extraction + Hierarchical 

ViT 

CT  
CNN + 

ViT 
92.21 93.04 92.63 92.77 

Augmentation + Feature 

Extraction + Multiscale 

Patch Embedding + 

Hierarchical ViT 

CT 
CNN + 

ViT 
95.31 95.04 95.17 94.98 

Augmentation + Feature 

Extraction + Multi-scale 

Patch Embedding + 

Hierarchical ViT + Cross-

Attention 

CT 
CNN + 

ViT 
96.79 96.81 96.80 96.08 

Augmentation + Feature 

Extraction + Multi-scale 

Patch Embedding + 

Hierarchical ViT + Cross-

Attention 

PET/CT 
CNN + 

ViT 
98.92 98.99 98.95 99.5 

 

Moreover, by inherently learning the integrated PET and CT image features within a Vision Transformer framework, 

the proposed approach outperforms single-modality methods for lung cancer detection, achieving higher accuracy 

by capturing both local and global features of lung images. This demonstrates the effectiveness of combining CNN-

based feature extraction with multiscale patch embedding and cross-attention fusion, especially for detecting 

complex visual cues in complex lung tissue structures. In this model, CNNs enhance feature representation. At the 

same time, multiscale patch embedding improves spatial understanding, and cross-attention allows for refined 

feature alignment across scales, enabling the transformer architecture to recognize intricate patterns with minimal 

false positives and false negatives. The proposed approach overcomes these challenges by leveraging CNN features, 

patch embeddings, and cross-attention fusion, enhancing both recall and accuracy in lung cancer detection. 

CONCLUSION 

This work presented an improved lung cancer detection model that combines CNN feature extraction with a Vision 

Transformer (ViT) architecture, which employs multiscale embedding and cross-attention. The proposed algorithm 

effectively captured inherent complex malignant patterns in PET/CT images by integrating CNN-based localized 

feature extraction with the global context capabilities of ViT. The multiscale embedding design in the hierarchical 

ViT significantly captured the holistic features from the integrated multimodal PET/CT images, avoiding information 

loss through multiscale processing. Also, the cross-attention in the hierarchical ViT comprehensively highlighted the 

global cancerous features from the multiple scales to detect the cancerous regions in the images precisely. The 

experimental results show that the proposed model outperforms the existing hybrid CNN-ViT approaches with higher 

detection accuracy at 99.5%, highlighting its potential to assist clinicians in diagnosing lung cancer.  
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