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The purpose of this endeavor is to create a system that is capable of accurately identifying each 

emotion that youngsters experience. In order to make children's life better, there is a need for 

study in the field of interpreting the mental condition of children, which is still developing. On 

the other hand, voice or image-based emotion recognition algorithms provide false findings 

due to the fact that children and adolescents will not easily expose their hidden emotions to 

anyone. The ability to articulate what is going on in their lives can be difficult for some 

children. People who are affected by this experience depression, which hinders them from 

living their life as they normally would. EEG waves are utilized to identify children's emotions 

more precisely than previous SOTA approaches. By doing so, it is possible to determine 

precisely the state of mind, which is something that cannot be ignored. The findings of this 

study include convolutional neural network (CNN) models that are merged with Bi-LSTM- 

SimCLR contrastive learning techniques for the purpose of achieving efficient emotion 

recognition. The DEAP, which is widely considered to be the most valuable EEG benchmark 

dataset, is utilized for classification purposes in this study. Additionally, its labels, valence and 

arousal, dominance and liking, are utilized. In order to represent the dataset, we make use of 

the Fast Fourier Transformation for the frequency domain features. SimCLR models achieve a 

flawless accuracy of 97.02% for EEG based image and 95.51% for EEG signal correspondingly, 

surpassing the performance of every other model that was considered to be state-of-the-art in 

the past. 

 

Keywords: DEAP dataset, EEG, Contrastive learning, Valence, Dominance, Liking, Arousal, 

CNN, Bi-LSTM, SimCLR. 

 

INTRODUCTION 

Electroencephalogram, sometimes known as EEG, is a type of electrical signal that is produced by the human 

brain's outermost layer. The signal in question demonstrates characteristics that are nonlinear and non-smooth. 

Significant difficulties have been encountered by researchers in the process of effectively identifying EEG signals 

and extracting useful information from those signals. A number of researchers have proposed algorithms for the 

extraction of features that make use of conventional approaches [9] for the purpose of emotion recognition. A 

number of deep learning techniques have also been developed for the purpose of emotion recognition. These 

techniques include convolution neural networks [10], deep learning networks [9], long and short - term memory 

neural networks (LSTM) [7], graph convolutional networks [11], and attention mechanisms [12]. In recent years, 

graph convolution neural networks (GCNN), and attention mechanisms have been increasingly prominent because 

to the increasing number of applications they have in the area. Nevertheless, we have to deal with the problem of 

improving the fusion of these unique networks and applying them in EEG-related sentiment identification. This is a 

task that we are currently facing. The implementation of an approach for emotion recognition that is founded on a 

deep learning model is something that we recommend doing in order to address the problems that have been stated 

above [13]. In order to improve the spatial related knowledge included in the EEG data, the first step of the 
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procedure entails making use of the similar spatial design. After that, the EEG source that has been filtered is put 

through a continuous wavelet transform, which ultimately results in a time-frequency map [13]. Specifically, this 

map is used as the starting point for the deep model, and this combines convolutional features. In addition to 

incorporating a multi-headed automatic-attentive mechanism on top of convolutional neural networks and bi-

directional long-term and short-term memory networks. The hybrid model makes use of several convolutional 

neural networks (CNNs) to derive feature information, acquires knowledge about upcoming and past time series, 

and extracts temporal characteristics by utilizing the Bi-LSTM algorithm. Furthermore, it enhances the feature data 

by allocating value to emotion characteristic using a multi-headed automatic-attention process. This results in an 

improvement of the feature information. In the end, we carried out exhaustive tests on the DEAP the database, and 

the outcomes of those experiments indicated that the method demonstrates greater classification performance in 

comparison to the classification methods that are currently available [13]. 

Several methodology have been suggested in the fascinating quest to comprehend and categorize human emotions. 

An exemplary model is the Circumplex 2D model [1]. This model employs a novel methodology that utilizes a two-

dimensional framework to map emotions, taking into account Valence and Arousal. Valence quantifies the inherent 

attractiveness of an emotion, predicting it as +ve or -ve. Conversely, Arousal measures the degree of excitement or 

intensity linked to the emotion. A more complex 3D model called Pleasure, Arousal, and Dominance (PAD), or 

Valence, Arousal and Dominance (VAD), gained prominence but only valence and arousal are considered in the 

study conducted [2]. Entering the domain of control, adding dominance evaluates how much a person feels in 

control of, or dominated by, a specific emotion [2]. 

Identifying the key features that fluctuate with changes in emotional state is the primary and difficult task in 

recognizing human emotion. For emotion recognition techniques based on shallow and deep learning, the following 

extracted EEG features are used: Time-domain features encompass statistical measures. The frequency domain 

features of EEG typically encompass a greater amount of pertinent information. The primary techniques utilized 

are Power Spectral Density (PSD), Fast Fourier Transform (FFT), and the Short Time Fourier Transform (STFT) [3] 

[4]. The Wavelet transform is an effective method for analyzing data in both the time and frequency domains [5]. It 

can be categorized into two types: Continuous Wavelet Transform [6] and Discrete Wavelet Transform [2]. This 

work employed the frequency domain approach, with a specific focus on power spectral density (PSD) analysis. 

Spectral density analysis (PSD) is a commonly employed method for investigating the spread power in various 

frequency components in an EEG signal. Figure 2 shows the PSD of subject 1 in various frequency components 

using welch’s periodogram. It provides valuable data about the frequency of the data. The characteristic of the EEG 

signal is suggested by the detection of frequency pattern. Furthermore, analysis of PSD enables the measurement of 

the proportional contributions of power for various frequency components, which offers important insights for the 

subsequent examination and understanding of the emotional and mind pressure of the participants. 

The detection of emotions through the use of EEG data has been the subject of study carried out by a number of 

researchers, who have utilized a variety of techniques for modeling, extraction of features, and preliminary 

processing [7]. On the other hand, the efficiency of an approach is not judged exclusively based on how accurate it 

is. Performance of an ideal system can take into account critical metrics such as resilience, execution speed, 

comprehension with little data, and training with restricted parameterized models [8]. In addition to recognition 

accuracy, efficiency of the best system can also take into consideration these metrics. 

This research focussed on which deep learning model is efficient in recognizing emotion from EEG signal and 

image? Does contrastive learning improve the recognition of accuracy of deep learning technique? Does 

Augmentation increased dataset and improved generalization of the model?  

The main contributions of this paper are: 

1. Our proposal offers a method for utilizing EEG signals and image as data sources for modeling the strategy that 

we propose. The CNN-BiLSTM-SimCLR model is utilized for this work. By taking this technique, the model's 

capacity to derive informative features is improved, which in turn leads to an increase in recognition accuracy. 

2. Extensive tests were conducted that our deep learning model achieved a higher level of accuracy than other 

models while taking into account the EEG image rather than the EEG signal as input and evaluates and compares 

their overall performance.  
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LITERATURE SURVEY 

The initial electroencephalogram (EEG) is utilized as source signal, a convolutional neural network and a support 

vector machine, Bi-LSTM model are utilized for the purpose of acquiring features and fusion, and in the end, the 

electrode channel strength are distributed through the utilization of the system’s attention. The procedure consists 

of each and every one of these steps. When everything is said and done, the signals that are produced by the 

electroencephalogram (EEG) are categorized according to the many types of feelings in this literature [24]. Within 

the scope of this investigation, we provide a novel method for the identification of emotions that is founded on deep 

learning models. After the electroencephalogram (EEG) data has been filtered with the common spatial pattern 

(CSP), and is then transformed into a time-frequency map using the continuous wavelet transform (CWT). 

This process is repeated until the desired result is achieved. Specifically, the network makes use of this information 

as input, and the deep learning model is the one responsible for extracting and classifying features. A model known 

as CNN-BiLSTM-MHSA is a model that combines CNN, Bi-LSTM, and multi-head automatic-attention into a single 

entity. It is possible for the network to gain the continuous and spatial data of EEG, extract deep features using 

CNN, interpret upcoming and previous time series using BiLSTM, and increase identification accuracy using MHSA 

by rearranging values to emotion characteristics is adapted in this work [13].  

SimCLR is a framework for visualized contrastive learning that is simple to use, and this study serves as an 

introduction to the framework. The contrastive self-supervised machine learning approaches that have been 

developed in recent times have been simplified by deleting specific structures and memory banks. This has 

occurred concurrently. A thorough investigation into the fundamental components of the system is carried out in 

order to get a grasp of the process by which activities involving contrastive forecasting acquire representations that 

can be utilized. (3) Contrastive learning is superior to supervised learning in terms of producing better results with 

larger batches and a greater number of training steps to complete [25]. Our findings demonstrate that the 

composition of data augmentation is necessary for predictive work, the use of nonlinear transformations enhances 

the quality of representation, and contrastive learning outperforms supervised learning in terms of the outcomes it 

produces. 

METHODS AND MATERIALS 

3.1 Preprocessing 

EEG signals are inherently noisy due to the addition of numerous artifacts during the recording process, including 

head, muscle, and eye movements. Thus, eliminating this noise turns into an essential phase in the analysis. 

Although the analysis may be hampered by the large amount of artifacts and unwanted noise in raw data, the DEAP 

dataset team has already supplied a pre-processed copy of their original EEG data. Figure 1 shows the EEG data. 

This removes all notable noise from it and facilitates analysis. The initial 512 Hz of this EEG data has been reduced 

to 128 Hz. Eye artifacts are removed using the blind source division technique. A band pass spectrum filter with a 

bandwidth of 4.0 Hz to 45.0 Hz is in place. The data is averaged through adherence to widely used references. The 

Geneva order is adhered for the EEG channels since the EEG data has been captured twice. Every single trial's 60s 

of data and the 3s pre-trial starting point comprise a total of 63s of trial data. The 3 seconds of pre-trial baseline are 

later eliminated. Lastly, the order of each video display is changed to match its experimental 2D. To get the 

expected emotion detection model, an initially processed group of data from the previously identified DEAP 

Dataset was used [16].  

 

Figure 1: EEG data 
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Figure 2: Power Spectral Density of a subject 

3.2 Conversion of Signal to Image 

Images utilizing the power spectrum of EEG data, which includes information about time, frequency, and 

electrodes, can be obtained through the utilization of CWT. In comparison to the Fourier transform, it is equipped 

with a greater capacity to identify certain MI patterns in EEG signals [26]. 

A signal can be analyzed in terms of its time and frequency simultaneously by employing a technique known as 

continuous wavelet transform. Coefficients, which are functions of scale or frequency and time, are the components 

that are produced by the CWT output. When compared to the initial signal, each scaled wavelet undergoes a shift in 

time throughout the whole length of the signal. This process is repeated for each of the scales, which ultimately 

results in coefficients that are functions of the scale parameter and the shift parameter of the wavelet itself. A signal 

that has 1500 samples and is processed using 20 scales will result in 30,000 coefficients. This is to put things into 

perspective. 

We want to be able to extract features from EEG signals that would be helpful in classifying events that correspond 

to waves that are collected from the brain cells [27]. 

3.3 Augmentation 

3.3.1 Image augmentation 

Two approaches are presented in the study. The first is called "VH-BC+," which blends BC+ with the outcomes of 

"Vertical Concat" and "Horizontal Concat." The second approach, called "VH-Mix," combines linearity with the 

advantages of these approaches. For each of the two results, the method generates two intermediate images, which 

are then fed into the mix function. The image's lower right corner is derived from x2, while the top left and fewer 

right areas are derived from x1. Different mixing coefficients are used to blend the upper and lower left corners [17]. 

When λ1, λ2, and λ3 ~ Beta (α, α) are combined, we obtain: x (r, c) = 

x1 (r, c), if r  ≤ λ1H  ∧  c  ≤  λ2W

 

λ3x1(r, c) + (1 − λ3) x2(r, c),  if r ≤ λ1H ∧ c > λ2W 

(1 − λ3) x1(r, c) + λ3x2(r, c),  if r > λ1H ∧ c ≤ λ2W  

x2 (r, c),     if r > λ1H ∧ c > λ2W               (1) 

Simply the probable percentage of the value that a random pixel takes from x1 vs x2. 

                ͠x = p(x1-μ1) + (1-p) (x2- μ2) / SRT (p2+ (1-p2))                   (2) 

Where p = 1/ ((1+ (σ1/ σ2). (1- λ/ λ)) 
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3.3.2 Signal augmentation 

Generating artificial signals from brain waves is a popular use of GAN in EEG. There are many potential uses for 

this EEG generation technology, including improving EEG following brain traumas. In this instance, we further 

examine the learning signals derived from max activation technology using GAN. We conjecture that additional 

evidence of the comparison among the training signal as well as the electroencephalogram signal will be provided, if 

the discriminator is unable to identify the artificial EEG. One way to conceptualize the adversarial process is as a 

min-max game with a loss function: 

  𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

L (D, G) = ᴇi∼qdata(i) [logD(i)] + ᴇi∼v(i) [log (1- D(G(j)))]            (3) 

First of all the formula above indicates that the parameter that discriminates is D(i;θd) and the training data 

distribution is qdata. It is able to assess the likelihood from qdata. The noise distribution is represented by vj, and 

the learning parameters are θd. In this case, the generator is indicated by G(j; θg), and the Gauss noise distribution 

is used. With deep neural networks, it can produce synthetic data from brain waves from gaussian noise by utilizing 

the opposite transformation parameter θg. In the event that the data's label is taken into account, the generator and 

discriminator receive the auxiliary label information [18], which causes the loss function to alter as shown by 

equation (3). 

3.4 Contrastive learning through CNN-BiLSTM proposed framework 

The Input given for the proposed work is EEG signal. Here we consider signal as input in first experiment and 

converting signal to image in second experiment. Figure 3 shows the flow of CNN-Bi-LSTM-SimCLR. 

 

Figure 3: Flow of proposed work 

3.4.1 First experiment  

A GAN with an EEG signal as its input is utilized in order to acquire two perspectives that are capable of blindly 

modifying any specific data instance. For the purpose of achieving a high level of efficiency, the two related 

representations of an analogous instance are referred to as xi and xj, respectively. These views are considered to be a 

positive pair as well as a negative pair. The raw data is processed by a network of convolutional neural networks 

that is two-dimensional and has a convolutional kernel that has a memory capacity of 128. After that, the 

information that was collected from the sequence is then put into the Bi-LSTM deep network, which contains layer 

of LSTM network with 256 hidden units. This is done after batch normalization (BN), the ReLu, and pooling using a 
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kernel size 3 [13]. A backward layer is incorporated into the Bi-LSTM model in order to gain information about 

future emotional states. By integrating the gating system and bidirectional features in a smooth manner, the Bi-

LSTM makes it possible for the two LSTM units to remember and process additional data [19]. The framework 

receives the time series as input, the forward layer correlates image data from earlier batches to the information 

that is currently available, the backward layer establishes a connection to the future, and the predicted outcome is 

considered the output. 

F (•) is an encoder that is based on neural networks and is capable of extracting representation vectors from 

augmented data samples. Without any restrictions, our system is capable of supporting a wide range of network 

structure configurations. For the purpose of achieving zi = f (yi) = ResNet (yi), where zi ∈ Rd is the outcome after the 

average pooling, we opt for ease and utilize the frequently utilized ResNet [20]. By mapping representations to the 

dimension where contrastive loss is utilized, a tiny neural network projection head denoted by the letter g (•) is 

utilized. To obtain zi = g (zi) = W(2) σ (W(1) zi), where σ is a ReLU nonlinearity, we employ a multilayer perceptron 

(MLP) that consists of a single hidden layer.  

3.4.2 Experiment 2 

The aforementioned system is utilized, besides the fact we use an EEG image through CWT transformation as data 

and apply VH-Mix and VH-BC+ augmentation. 

EXPERIMENT ANALYSIS 

4.1 Dataset 

In this work DEAP dataset is used which is downloaded from DEAP dataset website that provides data in three 

format such as in original. bdf format that includes EMG, EOG and other interference, or preprocessed data in .dat 

format or as csv file [21], [22]. Here we used preprocessed data which is available in s32 file and downsized data to 

128 Hz, eliminating EMG artifacts using 4.0 to 4.5 Hz band pass frequency filter as well as non-emotional facts. 

Using a threshold of 5, high and low valence, high and low arousal, were used to study different emotional states 

[14]. 

4.2  CNN-BiLSTM-SimCLR Model 

In this, Adam is used to build a loss function for back propagation, cross-entropy loss is used, a popular loss 

function for multi-class applications. With a greater depth of the two layer bidirectional LSTM, fewer iterations 

(epoch = 50 - 200) are needed to find the best converge, and dropout = 0.5 is used in the training network to reduce 

the impact of the over-fitting issue. A CNN with a 128-kernel single-layer architecture powers the convolutional 

layer. The EEG input sequence's frequency domain features are extracted using a convolutional network, and the 

time domain features are analyzed by an LSTM unit. Lastly, the projection head is employed to raise the accuracy of 

classification. This approach uses a bidirectional LSTM layer with 256 units. To choose the 256 units that produce 

the best results, the hidden layer, which has 128 vs 512 units, is also examined. Out of 1, 2, or 3, the projection head 

mechanism chooses the heads that have the most impact. This section examines how the amount of projection 

heads in the basic encoder, or parameter Head, affects performance. The execution of the suggested CNN-BiLSTM-

SimCLR on the DEAP file for various epoch is shown in Table 1. This shows that the CNN-BiLSTM-SimCLR (image) 

effectiveness is greatly seen suggesting that the method is reasonably resilient. Furthermore, the model produces 

more competitive identification results with Head = 2 than at any other parameter. Thus, we set the CNN-BiLSTM-

SimCLR system to projection Head = 2 in order to achieve higher performance. The influence of various parameter 

configurations is why multiple tests are conducted to determine the most appropriate values [13]. Figure 4 shows 

the comparison of accuracies under different epoch. 

Table 1: Accuracy of different models under each epoch 

Epoch 

CNN-LSTM-

SimCLR(signal) 

CNN-LSTM-

SimCLR(image) 

CNN-Bi-LSTM-

SimCLR(signal) 

CNN-Bi-LSTM-

SimCLR(image) 

10 35.58 43.77 45.54 47.33 

50 61.64 63.88 75.56 77.12 

100 77.28 82.09 85.79 89.41 

200 87.14 89.81 95.51 97.02 
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Figure 4: Comparison of accuracies under different epoch 

4.3 Evaluation  

The effectiveness of the model is done by calculating the accuracy, precision, recall rate, F1-score, and Matthews’s 

correlation coefficient (MCC). Accuracy shows both positive and negative scenarios, estimating the right amount as 

a percentage of totals. Precision tells the forecast's outcome determines the percentage of the data in which the 

prediction is accurate. Recall rate calculates on real samples, this is the ratio of expected correct samples to the 

overall number of actual samples. Neutralized accuracy and recall measures make up the F1-score. An ideal subject 

prediction is 1else 0 and complete difference then its -1. In essence, MCC is a coefficient that explains the relation 

among the exact value and the predicted value [13]. Table 2 shows the Accuracy, Precision, Recall, F1 Score and 

MCC values for EEG signal and EEG image input compared with other models. Figure 5 shows the validity of the 

Model. 

Accuracy = TP + TN/ (TP + FP + TN + FN)                        (4) 

   Precision = TP/ (TP + FP)     (5) 

   Recall = TP/ (TP + FN)     (6) 

   F1 score = 2 * (precision*recall)/ (precision + recall)  (7) 

  MCC = TP * TN – FP * FN/√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)  (8) 

Table 2: Validity of the model 

Model Accuracy Precision Recall 

F1 

score MCC 

CNN-Bi-LSTM 93.1 93.16 93.1 93.09 89.69 

CNN-LSTM 94.69 94.7 94.69 94.69 92.04 

DSCNN-Bi-

LSTM 91.1 91.3 91.1 91.08 86.76 

DSCNN-LSTM 94.03 94.04 94.03 94.03 91.05 

CNN-Bi-LSTM-

SimCLR(signal) 97.02 97.03 97.02 97.02 94.04 

CNN-Bi-LSTM-

SimCLR(image) 95.51 95.55 95.51 95.51 91.86 
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Figure 5: Comparisons of Metrics in different Model 

4.4 EEG Emotion Detection First Experiment Evaluation 

We made an effort to improve the input long-short time memory network before the Bi-LSTM by introducing CNN 

beforehand. This was done because CNN has the ability to assist in signal smoothing and minimize the total length 

of the EEG signal, which ultimately led to a considerable improvement in their performance. CNN modified the 

electrical brain signal after it was gathered and then put the analyzed data into BiLSTM in order to get a higher 

degree of accuracy in sentiment categorization. This was done rather than directly utilizing the raw information. In 

addition, we incorporate a down sampling layer, also known as a pooling layer, into the CNN network in order to 

reduce the total number of parameters and speed up the computing process. There will be no change to the length 

of the data. It is then possible for us to make use of BiLSTM in order to acquire a more profound comprehension of 

the temporal features that CNN goes through. BiLSTM is able to learn the future as well as the past information of 

the time series, detect the influence of the past and the future on the present, and merge the sentiment features 

obtained prior to and following as the last sentiment features. This is in contrast to LSTM, which can only take into 

account sentiment information over a shorter time span. Whether or not BiLSTM makes advantage of the 

relationship between labels, such as whether or not high valence influences low valence, or the association among 

other criteria that are presented in more categories, is something that is possible. The accuracy of emotion 

recognition is improved by the use of generalization of contrastive learning, which achieves this by giving priority to 

the essential information concerning EEG emotion traits [23].  

The pre-processed Python version of the raw data was selected for the scope of this investigation since it was more 

suitable. Following the extraction of the first 32 EEG channels, statistics were down sampled to a frequency of 128 

Hz. Therefore, there are approximately 7680 instances in a minute, which is equal to sixty seconds, while there are 

128 samples in a second. Nevertheless, it is important to note that the data should contain 8064 samples that are 

128 × 63 samples, and the duration of each test should be a standard of three seconds. Data augmentation is one 

method that can be utilized to generate additional data. In this article, a video that is one minute long is divided 

into twelve portions that are each five seconds long. This considerably increases the number of samples and, as a 

result, the probability of making a forecast or prediction. The data was initially presented in a format that was 1280 

× 32 × 8064 which was divided 12 pieces. The information is obtained by a CNN-BiLSTM-SimCLR network that 

has a batch size of 128 for the data. Following this, a threshold value of 5 is utilized in order to differentiate between 

the high and low states. The high label is assigned a value of 1 for values that are greater than 5, while the low label 

is assigned a value of 0 for values that are lower than 5. Within the framework of the validating split technique, this 

study determines that the training and validation ratio is 7:2, with the remaining data being utilized as a test model.  

4.5 Experiment 2 Evaluation 

EEG images are used as input data for the CNN-BiLSTM-SimCLR technique, which is put into practice. The 

resulting images are used as the data input for CNN-BiLSTM-SimCLR, which then generates a time-frequency map 

that is 20 ⅹ 65 ⅹ 3. For the purpose of improving the quality of image feature extraction, the CNN presented in this 

study is built as a two-dimensional convolution of two layers. The image is then placed through the pooling layer 

80
82
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Accuracy Precision Recall F1 score MCC



495  
 

J INFORM SYSTEMS ENG, 10(2) 

after being sent as an input to CNN in the form of padding. Optimization is carried out by the optimizer by the 

utilization of back-propagation of stochastic gradient descent and cross-entropy. With a learning rate of 0.0001, 

Adam is still utilized with a range of fifty to two hundred epochs. When the training accuracy is compared to the 

tests that were conducted utilizing the time series of the source EEG waveform and image, there is an improvement 

of around 1.51%. The percentage of recognition for an EEG image is 97.02%, whereas the rate of recognition for an 

EEG signal is 95.51%. 

Table 3: Values of Valance and Arousal of CNN-Bi-LSTM-SimCLR (EEG image) 

 

High Arousal 

High Valence 

High Arousal 

Low Valence 

Low Arousal 

Low Valence 

Low Arousal 

High Valence 

High Arousal High 

Valence 
97.02% 1.42% 1.63% 1.43% 

High Arousal Low 

Valence 
3.40% 91.77% 3.51% 1.32% 

Low Arousal Low 

Valence 
4.44% 1.43% 92.53% 1.60% 

Low Arousal High 

Valence 
3.71% 1.49% 3.10% 91.70% 

4.7 Experimental Comparison  

This research compares the suggested CNN-BiLSTM-SimCLR integration model, using DEAP dataset. Two CNN-

BiLSTM-SimCLR models—one with an EEG signal and the other with an EEG image—are compared. The DEAP 

dataset is utilized to test the models' efficacy and temporal complexity during training and testing. Every 

experiment's dataset was split into 7:2:1 patterns before being put to the test on the server. Table 3 and 4 shows the 

confusion matrix of EEG signal and EEG image.  

Table 4: Values of Valance and Arousal of CNN-Bi-LSTM-SimCLR (EEG signal) 

 

High Arousal 

High Valence 

High Arousal 

Low Valence 

Low Arousal 

Low Valence 

Low Arousal 

High Valence 

High Arousal High 

Valence 
95.51% 1.43% 1.63% 1.43% 

High Arousal Low 

Valence 
3.40% 91.77% 3.51% 1.32% 

Low Arousal Low 

Valence 
4.44% 1.43% 92.53% 1.60% 

Low Arousal High 

Valence 
3.71% 1.49% 3.10% 91.70% 

CONCLUSION 

It was suggested that the CNN-BiLSTM-SimCLR model be used for this work in order to identify the emotions that 

are hidden in youngsters. This was done for the goal of classifying emotions. For the purpose of this work, the 

DEAP dataset was utilized, which results in improved performance. Due to the fact that EEG data for children is 

extremely difficult to get, this method has the potential to be utilized in the future for the purpose of achieving 

efficient emotion detection in children. The evaluation was carried out using only valence and arousal data, which 

can be enhanced by including dominance into the equation in order to obtain dominant emotions that are 

maintained for a longer period of time. A CWT converted image was used for the experiment, and the results 

showed that the CWT converted image had a higher recognition rate than the EEG signal. The experiment was 

carried out in both using deep model. 
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