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The diversified, multifarious, and high-dimensional nature of remote-sensing photos makes 

remote-sensing image scene categorization (RSISC) an important and challenging challenge for 

understanding changes on Earth's surface. RSISC's main goal is to give acquired images semantic 

labels so that they can be arranged according to semantic content. Deep learning frameworks, 

especially in image analysis, have seen a sharp increase in interest and development in recent 

years. Even though deep learning approaches are more computationally costly than conventional 

machine learning techniques, they have demonstrated great potential in this field. This study 

provides a thorough evaluation of several deep learning (DL) methods, including Vision 

Transformers (ViTs) and Convolutional Neural Networks (CNNs) like ResNet, VGG16, 

InceptionV3, and DenseNet. We use the NWPU-RESISC45 and RSI-CB256 remote sensing 

datasets, which are both publically accessible, to assess how well these models perform. The 

findings show that although conventional CNN designs perform competitively, Vision 

Transformers (ViTs) are better at identifying intricate spatial correlations in the data for the 

categorization of remote sensing images. Because vision transformers use self-attention 

mechanisms to efficiently capture complicated spatial linkages and long-range dependencies, 

they perform exceptionally well in remote sensing picture classification. Furthermore, multi-

scale feature extraction is made possible by their patch-based processing, which improves 

accuracy, particularly in high-resolution images. 

Keywords: Image classification, vision transformer, deep learning, machine learning, CNN, 

SVM, VGG, XGBoost, KNN, Random Forest. 

 

I. INTRODUCTION 

In many applications, such as monitoring the environment and natural hazards, urban planning and development, 

item detection, and vegetation mapping, remote sensing image scene classification (RSISC) is a vital and essential 

task for precise analysis. RSISC systems have undergone a revolution thanks to developments in deep learning 

models, which have outperformed more conventional methods that depend on machine learning and image 

processing. In order to further improve RSISC, this work makes use of vision transformer and deep learning 

technologies. Image categorization and object/target recognition in a range of images, such as medical, thermal, 

infrared, and remotely sensed images, are among the many uses for deep learning and computer vision [1–4]. 

Satellite imagery stands out as a primary source for gathering geographic information [5], with numerous urban 
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infrastructure planning and development applications. The data acquired from satellite sources are immense and 

growing exponentially. Coping with this volume demands efficient techniques for data extraction is needed. 

Satellite image classification constitutes a multistage process, commencing with feature extraction from images 

and culminating in their categorization [6].Additionally, Chen [7] presented Extreme Gradient Boosting Trees 

(XGBoost), an improved gradient-boosting technique. A CNN and XGBoost-based image classification algorithm 

was presented by Ren et al. [8]. XGBoost serves as a recognizer, producing more accurate output, while CNN pulls 

features from the input. DRSNet, a modified CNN designed for Landsat 8 remote sensing employing small patch 

sizes, was created by Chen et al. [9]. In order to improve feature extraction, this architecture combines Inception-

ResNet with channel attention and includes a unique residual inception channel attention block. Reduction 

modules take the place of pooling layers to overcome representational constraints. Furthermore, retrieving 

information lost during earlier down-sampling stages is facilitated by the deliberate employment of up-sampling 

steps before to final pooling layers. Aggregated Features from Dual Paths (AFDP) was proposed by Shaheed et al. 

[10] using simplified convolutional neural networks for different image representations. For efficient learning of 

discriminative image features, the method combines bilinear pooling and feature connection principles with a dual-

branch feature extractor with fewer parameters and a novel feature fusion strategy. For remote sensing, Wang et 

al. [11] suggested a CNN with residual dense attention blocks that prioritizes local data and channel-based multi-

instance pooling.For computer vision applications, such as the classification of remote sensing images, deep 

learning has become a potent tool. The shortcomings of conventional shallow models like Support Vector Machines 

(SVM) and Random Forests (RF) have been outperformed by its deep architecture and capacity to learn intricate 

features [13]. In remote sensing applications such segmentation, object detection [17], and classification [18], deep 

convolutional neural networks (CNN) [16], deep belief networks (DBN) [14], and stacked auto-encoders (SAE) [15] 

have shown notable results.While deep learning has shown promising results in the classification of remote sensing 

images, its application to high-resolution imagery has been hindered by limited datasets and the computational 

demands of training complex models [19]. Vision transformers, which leverage self-attention mechanisms, offer 

potential solutions to these challenges. However, their computational complexity, especially for large images, 

remains a challenge [20].This paper examines various deep-learning approaches and vision transformer for remote 

sensing image classification. We compare state-of-the-art Convolution Neural Networks (CNNs) and vision 

transformers, evaluating their performance on NWPU-RESISC45 and RSI-CB256 datasets. 

II. METHODOLOGY 

This section comprehensively compares deep learning techniques and vision transformers for remote sensing image 

classification. 

A. ResNet 

The ResNet system utilizes deep residual networks to enhance classification performance by addressing the vanishing 

gradient problem in deeper networks through a residual process. The ResNet architecture [22] applies residual 

learning to groups of stacked layers. It also incorporates stacked convolutional layers for feature learning and 

extraction. The ResNet model consists of five blocks, each with the same convolutional layer size, except for the 

first block, which performs down-sampling. Each block includes a composite function made up of batch 

normalization (BN), a non-linear transformation unit, a rectified linear unit (ReLU), and a convolution layer. A skip 

connection is employed to bypass the non-linear transformations using an identity function. Deep features are 

extracted and down-sampled through integrated pooling units, including Maxpool, AdaptiveAvgPool, and 

AdaptiveMaxPool. 

Mathematical representation is defined as: 

y = F(x, Wi) + x ...................... (1) 

let the input and output vectors of a layer be represented by x and y, respectively. The function F(x, Wi) represents 

the residual mapping to be learned through multiple convolutional layers and operators. After this, the feature maps 

are added element-wise, channel by channel. 

The parameters of this model are outlined as follows: 

1. Total number of parameters: 44,611,648 



462  

 

J INFORM SYSTEMS ENG, 10(2) 

2. Trainable parameters: 2,216,832 

3. Non-trainable parameters: 42,394,816 

An overview of the ResNet50 layered architecture is summarized below: 

 Block A: 1 unit, Conv, ReLU, MaxPool, BatchNorm, 112 × 112 resolution, 64 channels 

 Block B: 15 units, Conv, ReLU, BatchNorm, resolutions: 56 × 56, 28 × 28, 14 × 14, 7 × 7, channels: 256, , 

2048 

 Block C: 10 units, Conv, BatchNorm, resolutions: 56 

× 56, 28 × 28, 14 × 14, 7 × 7, channels: 64, 128, , 

2048 

 Block D: 12 units, Conv, ReLU, BatchNorm, AdaptiveMaxPool, AdaptiveAvgPool, 7

 × 7 

resolution, 2048 channels 

 Block E: 1 unit, Linear, ReLU, BatchNorm, 7 × 7 resolution, 512 channels 

 Block F: 1 unit, Linear, 7 × 7 resolution, 10 channels. 

B. VGG16 

The VGG architecture [23] enhances the basic ConvNet design by progressively increasing the network's depth with 

additional convolutional layers, leading to a substantial improvement in accuracy. Input images are passed 

through a series of convolutional (conv) layers of varying sizes, followed by non-linearity via the ReLU activation 

function, batch normalization, and pooling units such as average pooling, max pooling, adaptive average pooling, 

and adaptive max pooling. These pooling layers are used to maintain spatial resolution after the convolution process 

and are applied over a 2 × 2-pixel window. The VGG16 model is organized into a series of blocks. The basic ConvNet 

uses Eq. (2) for feature extraction. 

Fi = ReLU (W × Fi−1 + bi)............... (2) 

Here, Fi represents the feature map of the current layer, Fi−1 denotes the feature map from the previous layer, W 

is the filter kernel, and bi is the bias added to the feature map of each layer. The rectified linear unit (ReLU) 

activation function is defined as: 

U(y)= max(0, y)=y if y ≥ 0 

0 if  y < 0 .................. (3) 

Where y is the resulting feature map. 

The parameters of this model are outlined as follows: 

1. Total number of parameters: 11,117,632 

2. Total trainable parameters: 532,480 

3. Total non-trainable parameters: 10,585,152 

C. Inceptionv3 

For dependable classification performance, the Inception model uses several Inception layers. Inception modules use 

layered 1 x 1 convolutions to reduce dimensionality, allowing for deeper networks and more efficient computing [24]. 

By using a multiscale approach, the Inception-v3 model increases the network's depth and breadth. Deeper structures 

that improve the classification effectiveness of remote-sensing satellite images are made possible by this design, 

which also helps to combat vanishing gradient problems. An integrated pooling system is used to extract and down-

sample deep features. The following are the model's parameters: 
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1. Total number of parameters: 23,897,056 

2. Trainable parameters: 2,145,920 

3. Non-trainable parameters: 21,751,136 

D. DenseNet 

The goal of DenseNets, which were first presented in [21], is to take advantage of feature reuse inside the network to 

produce small, extremely parameter-efficient models that are simple to train. The network is made up of several 

dense blocks, and before every three × three convolution layer, a 1 × 1 convolution layer is added to increase 

computational efficiency inside each block. As a result, fewer input feature maps—which are usually more than output 

feature maps—are produced. The following equation represents dense blocks and the concatenation process:  

y = Cn ([x0, x1, . . . , xn−1]) .................... (4) 

where x0, ,xn−1 represent the concatenation of input feature 

maps from the convolutional operators Cn. Here n denotes the number of blocks with the same structure, F refers 

to the operators, and H and W represent the resolutions. 

The parameters of this model are as follows: 

1. Total number of parameters: 8,012,672 

2. Trainable parameters: 1,142,464 

3. Non-trainable parameters: 6,870,208 

E. Vision transformer-based architecture 

Through the use of a multi-head attention mechanism, vision transformers effectively learn multi-scale, multi-

resolution, and high-level spatial characteristics by extracting both local and global contexts. A global average pooling 

system is used to concatenate and up-sample the dense feature maps that are generated. In order to efficiently collect 

complex characteristics in remote sensing satellite images, this method combines global average pooling with local 

and global attention. As seen in Figure 1, the total procedure includes processes like flattening, tokenization, position 

embedding, and classification. The Transformer encoder specifically splits the input image into fixed-size patches, 

flattens them, embeds them linearly, combines them with position embeddings, and then passes them through. The 

steps for training the vision transformer are shown in Algorithm 1. 

The parameters for this model are as follows: 

1. Total number of parameters: 4,166,151 

2. Trainable parameters: 4,166,151 

3. Non-trainable parameters: 0 

 

Fig 1. The basic layout diagram for Vision Transformer design 
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Algorithm 1: Vision Transformer Input: Training images 

Output: Predicted labels. 

1. B𝑎𝑡𝑐ℎ𝑠𝑖𝑧e is set to 100, the number of iterations is 30, image dimensions to 224, Optimizer Adam 

(learning rate: 0.0003) 

2. Set the number of mini-batches. 

3. For iteration = 1: Number of iterations 

a. For batch =1: 𝑛𝑏 

b. Select a batch from the training dataset., 

c. Create another batch of augmented images using a specific augmentation technique. 

d. Train the model using both the original and augmented images while minimizing the cross- 

entropy loss. 

e. Perform backpropagation to adjust the loss. 

f. Model parameters are updated. 

4. Classify test images. 

III. DATASETS 

We have experimented with remote sensing picture scene categorization utilizing the RSI-CB256 and NWPU-

RESISC45 datasets. 

The NWPU-RESISC [12] dataset is created by Northwestern Polytechnical University (NWPU) and serves as a 

baseline for the categorization of remote sensing images. This dataset consists of 31,500 256 x 256 pixel RGB photos 

from 45 different scene classes, each with 700 images. Its comprehensiveness, which includes a variety of scene types 

and a large number of photographs, is one of its noteworthy features. It also includes a broad range of variables, such 

as viewpoint, illumination, backdrop occlusion, translation, object posture, and spatial resolution. It is noteworthy 

that every class exhibits significant internal variety while retaining unique traits from other classes. The RSICB256 

Satellite Image Classification Dataset, which contains a set of sample images, is also used in this work. This dataset 

includes snapshots from Google Maps and photos of four different classes that were collected using different sensors. 

This dataset's visualization highlights how difficult it is. Points of Interest (POIs) from several nations are included, 

as are remote sensing photos obtained from Google Earth data and Bing Maps, respectively. 

IV. RSEULTS AND DISCUSSION 

Using standard criteria, we have assessed the performance of the Vision Transformer and five CNN-based deep 

learning frameworks on two publicly available datasets, RSI-CB256 and NWPU-RESISC45, in this section. The 

efficacy of each framework in identifying remote sensing images is evaluated using key performance criteria, such as 

accuracy, precision, recall, and F1-score. The evaluation results of each model on the RSI-CB256 and NWPU-

RESISC45 datasets are shown in Tables I and II, respectively. Figures 2 and 3 display the predictions made using 

Vision Transformer for the NWPU and RSI-CB256 datasets, respectively. Based on the results presented in table I 

and II vision transformer-based architecture has outperformed other DL-based architectures. However, the DenseNet 

framework has also shown excellent performance. While ResNet, Inceptionv3 and VGG16 have average performance. 

Because of its self-attention mechanism, patch-based processing, and increased flexibility, Vision Transformer-based 

architectures have special advantages that can improve performance. These advantages make Vision Transformer 

especially well-suited to capture the complex relationships in remote sensing data, which improves classification 

accuracy. Images that belong to different classes but share similar properties can be successfully distinguished by the 

Vision Transformer concept. According to this study, deeper CNNs—like DenseNet121 and ResNet101—perform 

better than shallower CNNs because they have more convolutional layers. Deeper and more intricate models, 

however, demand more processing power for both inference and training.A Windows 10 computer with an i5 9500 

CPU and 64 GB of RAM was used in this study. The Keras framework is used for deep learning studies. Every network 

was set up with the same hyperparameters to guarantee authenticity and fairness.  

Prior to training, pictures were transformed to the RGB color scheme and scaled to 256x256 pixels.  
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TABLE I COMPARISON OF MODEL PERFORMANCE ON THE RSI-CB256 DATASET. 

Methods Accur

acy 

Precis

ion 

Rec

all 

F1 

Sco

re 

Vision 

Transfor

mer 

98.4 98 98 98 

DenseNet

121 

98.1 97 97 97 

ResNet10

1 

81.97 81 80 80 

Inception

V3 

75.6 74 73 72 

VGG16 75.3 74 74 73 

 

TABLE II COMPARISON OF MODEL PERFORMANCE ON THE RSI-CB256 DATASET. 

Methods Accur

acy 

Precis

ion 

Rec

all 

F1 

Sco

re 

Vision 

Transfor

mer 

97.7 96 96 96 

DenseNet

121 

94.4 92 91 91 

ResNet10

1 

89.1 87 86 85 

Inception

V3 

75.1 73 73 72 

VGG16 74.8 72 72 72 

 

 

Fig 2. Prediction results of NWPU-RESISC45 dataset. 

V. CONCLUSION 

In this work, we carried out a comprehensive comparison of several deep learning methods for remote sensing 

image categorization, including Vision Transformers (ViTs) and conventional Convolutional Neural Networks 
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(CNNs) like ResNet, VGG16, InceptionV3, and DenseNet. According to our research, Vision Transformers provide 

significant improvements in accuracy and feature representation, even though CNN architectures have long served 

as the foundation for image classification tasks. The analysis of several publically accessible datasets showed that 

ViTs' self-attention mechanisms and patch-based processing methodology enable them to effectively capture 

intricate spatial linkages and dependencies. These features allow them to perform better in classification, especially 

when dealing with high-resolution remote sensing photos that contain complex details and a variety of land cover 

types.However, due to their high memory and processing demands, Vision Transformers may be less effective to 

train and implement, particularly on smaller datasets. All things considered, this study shows promise for 

classifying remote sensing data utilizing Vision Transformers and sophisticated deep learning techniques. Future 

research could look into hybrid models that combine the advantages of ViTs and CNNs, as well as how they might 

be used in real-time remote sensing situations.  

 

Fig 3. Prediction results of RSI-CB256 dataset. 
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