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Image denoising has a wide range of applications in obtaining better-quality noisy data, such as 

medical imaging and low-light photography. This work proposes a new CNN autoencoder 

architecture also equipped with a residual connection that advances state-of-the-art 

performance on this denoising benchmark. The proposed model is compared with state-of-the-

art methods, including conditional GAN, CNNs with advanced loss functions, and self-

supervised learning models in terms of PSNR, SSIM, and computational loss. It achieves the best 

results on metrics of PSNR at 44.82, SSIM at 0.970, and a loss value as low as 0.015 on a custom 

dataset of medical images. These results reveal the efficiency of the architecture in noise 

reduction while retaining the critical information about the structure and, hence, have many 

promises in real-world applications. The emphasis here is on an application of residual 

connections fused with deep learning models having superior state-of-the-art performance in 

image denoising. 

Keywords: Denoising, CNN, PSNR, SSIM, Mammogram, Cancer. 

 

Introduction 

Image denoising is one of the major issues in both digital image processing and computer vision. In the process of 

denoising, quality improvement of the image enables it to be used for further analysis and different applications in 

medical imaging, remote sensing, and low-light photography. The key issue of image denoising mainly consists of 

removing possible noise introduced in the acquisition, transmission, or storage while preserving important structural 

integrity and high frequency details of the original image. Over the last couple of years, deep learning-based 

techniques, especially Convolutional Neural Networks, have emerged as the state-of-the-art for this task since they 

have the capability to learn complex noise distributions and hierarchical features directly from data [1][2]. 

Traditional denoising methods, including median filtering, wavelet thresholding, and non-local means, are based on 

predefined assumptions about noise characteristics and image properties. Whereas such methods are usually 

computationally efficient, they typically have shortcomings regarding real diverse and complex kinds of noise, 

especially in natural scenes. For example, they may blur edges or fail to distinguish noise from fine structural details, 

which leads to the loss of usefulness of the denoised images in downstream tasks [3], [4]. Over the last few years, 

CNN-based autoencoders have indeed shown strong promise for overcoming some challenges associated with image 

denoising. Autoencoders, due to their encoder-decoder architecture, are really suited to learn compact 

representations of input data while reconstructing the input originally at the output layer. These models are usually 

trained to map noisy images to clean images when applied for denoising, hence finding and removing the noise 

artifacts. The variants, such as CDAE, have recently been equipped with state-of-the-art features that include skip 

connections, residual learning, and attention mechanisms, boosting the performance and efficiency in 

denoisingactallogoty [5], [6]. Improvements in denoising methods have benefited medical imaging, where noise-free 

images are of primary importance for diagnosis and treatment planning. The presence of noise in a medical image 

may mask its diagnostic features and can even lead to false diagnosis. In fact, one can achieve impressive noise 
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reduction with the preservation of clinically relevant details by incorporating denoising autoencoders. These enhance 

the diagnostic algorithm accuracies and radiologist assessments by improving the signal-to-noise ratios without the 

loss of clinically useful information 7. For instance, recent research has demonstrated that CNN-based autoencoders 

have great success in pre-processing medical images, removing Gaussian and Poisson noise with a large margin of 

increased PSNR and SSIM metrics []. 

Traditional pre-processing methods, such as wavelet-based denoising, in combination with deep learning models 

provide a hybrid approach that houses strength from both paradigms. For example, traditional methods may serve 

as a strong initialization step in noise reduction to which the deep learning models will further refine and fine-tune. 

This hybrid approach, especially in medical imaging, has enjoyed great success with most of the pre-processing steps 

using median filtering and wavelet transforms to deal with artifacts and noise patterns before the application of a 

machine learning model. The idea of the generalization of noise patterns in training is at the center of denoising 

autoencoders and is what enables it to denoise images previously unseen. It essentially compresses the input image 

into a latent representation by extracting from it all the important features, while the decoder reconstructs the clean 

image from this representation. The advances within the CNN architecture, combined with the addition of dilated 

convolutions, attention mechanisms, and batch normalization, have additionally made these denoising models 

robust and scalable. Attention-guided networks, for example, give preference to image regions with a high level of 

noise, hence allowing for more effective and selective denoising  [4]. Besides, residual learning together with skip 

connections enhance preservations of high-frequency details such as edges and textures that are crucial for 

maintaining the visual quality and interpretability of the denoised images  [7]. 

On this note of view, the CNN-based autoencoder is similar to traditional denoising techniques with very sound 

computational advantages, at least for large-scale and high-dimensional data. The parallel processing capability 

provided by modern GPUs along with the well-optimized architecture of CNNs enabled real-time denoising, which 

in turn is critical for autonomous vehicles, surveillance systems, or live video streaming. Moreover, the CNN-based 

schemes can be easily fine-tuned to multiple levels and types of noise by training on various datasets, hence making 

them extremely versatile and suitable for any general imaging scenario. Recent works have also interpreted and made 

the process of denoising autoencoders more robust. For example, self-supervised learning paradigms and diffusion-

based models have been adopted to enhance generalization capabilities for denoising networks when large annotated 

datasets are not required. These leverage inherent structure in the data to guide learning, thereby attaining state-of-

the-art performance across a broad set of noise types and intensities [2], [5]. Considering CNN-based autoencoders 

in image denoising is an important departure from traditional methods in that it focuses on learning from the data 

in an end-to-end fashion. This would further extend beyond the current advances in model architecture and training 

strategies, possibly also with hybrid approaches. The work presented here looks into the implementation of a CNN-

based autoencoder with residual connections for the preprocessing and denoising of noisy medical images. The 

proposed approach will employ a smart fusion of the traditional preprocessing methods with deep learning methods 

for offering a robust noise reduction and high-quality reconstruction of an image, opening a way towards improved 

diagnosis and analysis in medical domains. 

Related Work 

The authors in [10] proposed a method for learning robust classifiers using Denoising Masked Autoencoders 

(DMAE). DMAE injects noise into image pixels and masks patches during training while leveraging a transformer-

based encoder-decoder model for reconstructing clean images. The applications of this model to various datasets 

such as ImageNet and CIFAR-10 have led to large gains in terms of classification accuracy and outperformed state-

of-the-art methods on many robust classification tasks. The parameter efficiency and ease with which it generalizes 

to a wide variety of downstream tasks will likely make it of much value for image denoising and beyond. The authors, 

in, developed the performance analogy of the autoencoders for image denoising by comparing several autoencoder 

architectures: Basic, Denoising, and Convolutional Autoencoders. They showed that Convolutional Denoising 

Autoencoders outperform the other architectures when it comes to the quality of the reconstructed images. Such 

results provide insight into the strengths and weaknesses of each architecture, enabling one to choose the right 

autoencoder in a practical scenario. 

In, a novel approach of Fourier Autoencoder Model was proposed for image deblurring. A new model was presented, 

integrating a CNN model with a Fourier transform to remove motion blur for better clarity in an image. The system 

performed exceptionally well by deblurring using two autoencoders: one for extracting features and another for 
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optimization. Detailed experiments were developed to validate its effectiveness, especially preserving more image 

details, reducing computational complexity, and having potential real-time applications. 

In the work [13], the authors have dealt with Image Denoising Using Convolutional Neural Networks, wherein their 

concentration is on noisy medical images. A novel deep autoencoder network proposed effectively suppresses noise 

artifacts without necessarily performing large sets of datasets. The proposed model has excellent denoising 

performance for medical images of diverse heterogeneity, yielding high PSNR values. This shows that network 

architectures even with a simplified version generate considerable denoising performance, thus less computational 

for clinical usage. 

The authors of [14] proposed an Advanced Image Deblurring Framework by introducing a specially designed hidden 

layer combined with autoencoders. The model was optimized in terms of encoder and decoder networks, which helps 

to capture critical image details and sharpness. Extensive experiments show improvements of PSNR and SSIM scores 

with sharper reconstructed images compared to traditional approaches. This framework has marked the effectiveness 

of deep learning on challenging tasks such as image deblurring and denoising. 

Table I Literature Reviw 

Citation Dataset and Learning Model Used Results  Outcome 

[15] MNIST dataset, CNN combined with 

Non-Local Self-Similarity based 

denoising methods (NSS-UNet). 

PSNR: 33.8 dB, 

SSIM: 0.92 

NSS-UNet outperformed 

standard CNN and NSS models 

for repetitive structure image 

denoising. 

[16] Breast histopathology images, 

Variational Autoencoder (VAE) and 

Denoising Variational Autoencoder 

(DVAE). 

Accuracy: 73% DVAE produced better cancer 

detection rates compared to 

baseline CNNs. 

[17] Fashion MNIST dataset, Autoencoder 

with redundancy-reduction bottleneck 

loss. 

PSNR: 32.5 dB, 

SSIM: 0.89 

Improved representation diversity 

and reconstruction accuracy over 

standard autoencoders. 

[18] Custom hyperspectral X-ray dataset, 

Convolutional Autoencoder compared to 

Wiener filter. 

PSNR close to 

Wiener filter: ~31 

dB 

Achieved comparable denoising 

performance with less 

dependency on statistical 

knowledge. 

[19] CBIR (Content-Based Image Retrieval) 

using Fashion MNIST dataset, Denoising 

Autoencoder (DAE). 

Label Ranking 

Precision: 92% 

DAE outperformed basic and 

variational autoencoders for 

CBIR. 

[20] Custom CT datasets of intracranial 

hemorrhage, CNN-based Denoising 

Autoencoder (DAE) with preprocessing 

steps. 

Euclidean Distance: 

Reduced by 38% 

Effective for Salt & Pepper, 

Poisson, and Gaussian noise 

denoising. 

[21] Underwater heterogenous data, Stacked 

Convolutional Sparse Denoising 

Autoencoder (SCSDA). 

PSNR: 29.7 dB, 

SSIM: 0.85 

Preserved more edge features and 

processed faster than existing 

underwater denoising models. 

[22] Fashion MNIST, Modified CNN for 

dimensionality reduction and denoising. 

PSNR: 34 dB, 

Compression Ratio: 

3:1 

Achieved robust dimensionality 

reduction with high denoising 

quality. 

[23] Hyperspectral imaging for SAR images, 

Two-step Hybrid Stacked Denoising 

Autoencoder (HSDAE). 

Classification 

Accuracy: 94% 

Enhanced classification reliability 

in high-noise environments. 

[24] Histopathological dataset, Denoising 

Autoencoder and CNN. 

Accuracy: 90%, 

PSNR: 30 dB 

Effective cancer classification 

with enhanced denoising 

techniques. 

[25] Modified sRGB and RAW camera image 

datasets, Autoencoder with CycleISP 

framework. 

PSNR: 37 dB Improved RAW denoising and 

achieved realistic outputs for 

camera image processing. 
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[26] ImageNet and CIFAR-10 datasets, 

Denoising Masked AutoEncoder 

(DMAE). 

Classification 

Accuracy: 88%, 

PSNR: 35.6 dB 

Robust denoising and 

classification for real-world noisy 

datasets. 

 

Proposed Methodology 

The hybrid approach in this work involves the preprocessing and de-noising of brain tumor images by using 

traditional image processing techniques along with deep learning-based CNN autoencoder with residual connections. 

The detailed methodology is discussed as follows: 

a. Data Collection 

The dataset comprises brain tumor images in .jpg and .jpeg formats, located in a predefined directory. These images 

are read in grayscale to simplify the processing pipeline and reduce computational complexity, serving as the initial 

step toward denoising. 

b. Preprocessing 

1. Noise Removal with Median Filtering: A median filter is applied to the grayscale images to remove 

noise while preserving edge information. This process helps mitigate basic image artifacts. 

2. Wavelet Denoising: Following median filtering, wavelet-based denoising is implemented. Noise levels in 

each image are estimated using the estimate_sigma function, and this estimate is utilized for wavelet 

denoising. This two-step process ensures effective reduction of noise across the dataset. 

3. Image Resizing: The preprocessed images are resized to 224×224 pixels to standardize input dimensions 

for the CNN model, ensuring compatibility and efficient training. 

Further proposed the architecture of the denoiser in figure 1, representing the CNN-based autoencoder for image 

denoising. The model starts with an input layer, which takes 224×224×1 grayscale images. It further goes through 

convolutional layers consecutively while increasing the filter size from 64 to 128 and 256, with batch 

normalization inserted at each step to stabilize learning and ReLU for nonlinear feature extraction. The 

MaxPooling layers downsample the image in space, thereby compressing it and retaining important features. 

Further, after feature extraction on this compressed space, the reconstruction by the UpSampling layers is done 

so as to reach close to the original resolution of the image. Implicitly, skip connections are used to retain fine 

details from layer to layer. The last layer consists of a convolution with one filter and a sigmoid activation in order 

to obtain an output denoised image whose pixel values are normalized between 0 and 1, ensuring that structural 

consistency is kept and noise is reduced. A simplified architecture makes for a good tradeoff between 

computational efficiency and effective performance in pre-processing tasks. 
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Figure 1 Architecture of Proposed Model 

c. Data Preparation 

1. Normalization: The preprocessed images are normalized to scale pixel values between 0 and 1, which is 

essential for stable neural network training. 

2. Dataset Splitting: The dataset is divided into training and testing subsets with an 80:20 ratio using the 

train_test_split function, ensuring that the model is evaluated fairly. 

d. CNN Autoencoder Architecture 

A CNN autoencoder with residual connections is constructed to learn noise reduction from the input data: 

1. Input Layer: The model accepts images of size 224×224×1. 

2. Convolution Layers: Two initial convolutional layers are used to extract features from noisy input 

images. 

3. Downsampling: Max-pooling layers are applied to reduce spatial dimensions while preserving key 

features. 

4. Upsampling: Up-sampling layers reconstruct the spatial dimensions, effectively reversing the 

downsampling operation. 

5. Residual Connection: A residual connection combines intermediate feature maps from earlier layers 

with subsequent layers to refine the reconstructed image, preserving essential structural details. 

6. Output Layer: A final convolutional layer with a sigmoid activation ensures that the output image’s pixel 

values remain in the normalized range of [0, 1]. 
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e. Model Training 

1. Optimization and Loss Function: The model is trained using the Adam optimizer with a low learning 

rate of 1×10−51 \times 10^{-5}1×10−5, ensuring stable learning. Mean Squared Error (MSE) is employed 

as the loss function, while Peak Signal-to-Noise Ratio (PSNR) is used as an evaluation metric. 

2. Training Procedure: The model is trained for 100 epochs with a batch size of 32. The input and target 

data are identical, reflecting the autoencoder’s purpose of reconstructing denoised images from noisy 

inputs. 

3. Validation: A validation set is used during training to monitor performance and prevent overfitting. 

ALGORITHM: Image Preprocessing and Denoising Using CNN 

Autoencoder 

INPUT: 

    I_denoised : Set of denoised images 

    θ : Trained CNN autoencoder parameters 

1. Initialize preprocessing steps: 

    For each I ∈ I_raw: 

        (a) Apply median filtering: I_median ← MedianFilter(I, k=3) 

        (b) Estimate noise: σ_noise ← σ_estimate(I_median) 

        (c) Apply wavelet denoising: I_wavelet ← DenoiseWavelet(I_median, σ_noise) 

        (d) Resize image: I_resized ← Resize(I_wavelet, 224 × 224) 

2. Normalize images: 

    I_normalized ← Normalize({I_resized | ∀I_resized ∈ I_raw}, [0, 1]) 

3. Split dataset: 

    X_train, X_test ← Split(I_normalized, train=0.8, test=0.2, seed=42) 

4. Define CNN Autoencoder Architecture: 

    Let f_Conv(x; θ_{conv}) represent convolution with parameters θ_{conv} 

    Let f_Pool(x) = MaxPooling(x, pool_size=2) 

    Let f_Up(x) = UpSampling(x, scale=2) 

    Let f_Add(x_1, x_2) = x_1 + x_2    

    Define autoencoder f_AE(x; θ) as: 

    Input: x ∈ ℝ^{224×224×1} 

    (a) y_1 ← f_Conv(f_Conv(x; θ_{conv1}); θ_{conv2}) 

    (b) residual ← y_1 

    (c) y_2 ← f_Pool(y_1) 

    (d) y_3 ← f_Conv(y_2; θ_{conv3}) 

    (e) y_4 ← f_Up(y_3) 

    (f) y_5 ← f_Conv(y_4; θ_{conv4}) 

    (g) y_final ← f_Add(y_5, residual) 

    Output: y_out ← Sigmoid(f_Conv(y_final; θ_{output})) 

5. Compile model: 

    f_AE.compile(optimizer=Adam(η), loss=L, metrics=[f_PSNR]) 

6. Train model: 

    For epoch e = 1 to E: 

        For each batch (x_batch, y_batch) ∈ X_train: 

            (a) Forward pass: y_pred ← f_AE(x_batch; θ) 

            (b) Compute loss: ℓ ← L(y_pred, y_batch) 

            (c) Backpropagation: θ ← θ - η ∇_θ ℓ       

        Validate on X_test to compute validation loss and PSNR 

7. Save model: 

    Save θ as θ_saved 

8. Denoise test images: 
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    I_denoised ← {f_AE(I; θ_saved) | ∀I ∈ X_test} 

RETURN: 

    I_denoised, θ_saved 

SYMBOLS: 

    I_raw : Raw input images 

    H, W : Original height and width of images 

    MedianFilter(I, k) : Apply k×k median filter to image I 

    σ_noise : Estimated noise standard deviation 

    DenoiseWavelet(I, σ) : Apply wavelet denoising with noise σ 

    Resize(I, h×w) : Resize image I to dimensions h×w 

    Normalize(I, range) : Normalize image I to a given range 

    Split(I, train, test, seed) : Split dataset into train and test sets 

    θ : Trainable parameters of the CNN autoencoder 

    Sigmoid(x) : Sigmoid activation function 

    ∇_θ : Gradient with respect to parameters θ 

    η : Learning rate 

    E : Number of training epochs 

    B : Batch size 

    ℓ : Loss value 

 

Results and Discussion 

This section shows the evaluation of the proposed CNN-based denoising autoencoder model by its capability of 

preprocessing and enhancing noisy medical images effectively. These metrics for performance evaluation include 

PSNR, SSIM, and loss values measured across both training and testing datasets. It gives an indication of how well 

the model eliminates noise while preserving important information in the images. Comparisons with baselines, 

including traditional denoising methodologies and autoencoder architectures that are simpler in nature, have also 

been presented in order to validate the effectivness of the proposed model. Results will be visualized in terms of 

quantitative tables, graphical plots, and qualitative analysis to highlight enhancements achieved on noise reduction, 

structural preservation, and computational efficiency. Others relevant in this context include discussing the need to 

integrate traditional preprocessing approaches, such as wavelet denoising, into current deep-learning approaches for 

enhancing such models' performances. Figure 2,3 below shows the pre-processed images.   

 
Figure 2 a) Orignal Image                  b) Enhanced Image                 
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Figure 3 a) Orignal Image                         b) Enhanced Image                          

The proposed method had achieved better results in contrast with the existing methods. The table II below discuss 

the existing methods results with proposed model. 

Table II Comparsion of proposed model vs Existing Models 

Citation Dataset and Learning 

Model Used 

PSNR SSIM Loss Outcome 

[27] Conditional GAN and 

Wasserstein GAN 

38.18 0.95 - Achieved competitive denoising 

performance, especially for blurred 

textures and low-light images. 

[28] Low-dose CT images, CNN with 

Weighted Patch Loss and High-

Frequency Loss 

41.25 0.94 ~0.03 Balanced denoising with preserved 

texture details and better noise 

suppression. 

[29] CBCT images, Self-supervised 

CNN with Noise-to-Noise 

Learning 

27.08 0.839 - Effective denoising in the absence of 

clean reference data, restoring 

anatomical information. 

[30] JPEG2000 Test Images, 

Compact and Reconstruction 

CNN Framework 

38.45 0.9602 - Demonstrated state-of-the-art 

denoising with reduced compression 

artifacts. 

Proposed Custom Medical Image Dataset, 

CNN Autoencoder with Residual 

Connections 

44.82 0.970 0.015 Provided superior noise reduction 

with high structural preservation 

and low computational loss. 

 

Conclusion 

This study compares the performance of various state-of-the-art image denoising methods, including Conditional 

GANs, CNNs with advanced loss functions, and self-supervised learning models. Each method demonstrates 

significant improvements in reducing noise while preserving image details, but they vary in specific metrics such 

as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and loss. 

The proposed CNN autoencoder with residual connections significantly outperforms other methods, achieving 

the highest PSNR of 44.82, a near-optimal SSIM of 0.970, and the lowest loss of 0.015. This performance 

underscores its ability to maintain structural integrity while effectively suppressing noise. Compared to existing 

models like Weighted Patch Loss CNNs (PSNR: 41.25, SSIM: 0.94) and Compact CNN Frameworks (PSNR: 

38.45, SSIM: 0.9602), the proposed model demonstrates superior denoising capabilities. Additionally, it 

addresses limitations in existing approaches, such as handling low-quality noisy datasets and preserving intricate 

textures and edges. These results show the potential of integrating residual connections into CNN autoencoders 

for denoising applications, particularly in medical imaging, where accuracy and detail retention are critical. 

Future work could explore the adaptability of this architecture across diverse datasets and noise types to further 

generalize its applicability. 
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