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As the integration of the Internet of Things (IoT) and Wireless Sensor Networks (WSN) 

continues to grow and its security and trust becomes a major issue. Due to transmission of 

sensitive between various networks, it is necessary to provide higher security such networks as 

well as nodes. Direct trust and indirect trust calculation models which are successful in a 

comparatively smaller network, but cannot deliver the requirements of adaptability of trust 

level in each instant for this smart environment such as IoT and complex WSN. Therefore, the 

aim of this paper is to design and develop a dynamic trust computational model to enhance 

data security in IoT and WSN.  The framework describes the calculation of trust values 

assigned to different nodes depending on the values of data credibility, node’s behavior, the 

frequency of communicating with other nodes. It also calculated the reliability coefficients to 

determine the current overall trust values for the nodes. The model incorporates machine 

learning algorithms to monitor and identify abnormal node activities and learn from the 

network’s changes and identify possible security threats. In extensive experimental analysis we 

built IoT and WSN environments, the work showed a marked improvement over state-of-art 

approaches and decreased the loss of data and reduces the compromised node activity. 

Compared to the traditional static trust models, this proposed model ensured a more effective 

secure data routing with up to 99.40% accuracy in identifying the malicious nodes. In contrast 

to static and dynamic procedures for calculating trust, this model proposes an innovative, 

context-based system for estimating trust with reference to genuine-time node action. The use 

of the proposed framework rather than static models produces better security outcomes by 

enhancing work with 30% due to real-time metrics dependent on the context and adaptive 

threat identification. 

Keywords: lightweight attack, IoT security, Security Architecture, Secure communication 

protocols, trust computation. 

 

INTRODUCTION 

Wireless Sensor Networks (WSNs) refer to the networks of small, low-cost sensor nodes, which are capable of 
detecting, computation and communication. These nodes monitor different conditions within their 
surroundings, for instance, heat, noise, oscillations, pressure, motion, and pollution. Data received from these 
sensors is then transferred to a common station where it is processed and loaded on the Internet for users to 
access. To collect data from the sensor field, there must be many nodes in open and, perhaps, perilous areas. 
This sprawling mesh of interconnected nodes serves to maintains ongoing vigilance over a variety of states and 
immediately report any deviations back to a centralized point. Because the nodes lack sufficient sensing and 
transmission capacity, they require cooperation in order to operate effectively. Therefore the cooperation 
between and within nodes in a WSN is very important in order to achieve the best result. 
However, WSNs have features that make them prone to attacks such as low-powered devices, less 
computational power which prevents the integration of fortified security measures. They entirely depend on 
wireless communication hence prone to both eavesdropping and jamming attacks. Due to frequent and 
spontaneous deployment in insecure settings, physical manipulation or total obliteration can occur. Besides, 
they are limited by the battery capacity and cannot always push a new security update or patch for a known 
vulnerability. This also hampers protocols for interoperability and security measures and all this due to lack of 
standardization. Altogether this generates the environment that make wireless sensors susceptible to multiple 
types of security threats and attacks. Below are the vulnerabilities we identified in WSN. 
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• Based on the physical architecture of the network, sensor nodes are vulnerable to being captured by 
the attacker who explores the messages and change information that is within it. 

• WSNs data broadcast is most of the time without being encrypted; therefore, it is exposed to 
eavesdropping or even unlawful interception, which is equal to data leakage, and ultimately a privacy problem. 

• WSNs need low energy nodes. This can be abused by a number of large requests to consume battery 
resources and lead to temporary network unavailability (e.g., Denial of Service). 

• Generally, WSNs are fragmented for various routing attacks such as sinkhole and blackhole attacks, in 
which some nodes intentionally misroute or drop packets. 

• Due to limited resources on nodes, there is high probability of attacks that include malware and rouge 
software which can affect the integrity and security of the network. 

If behavior and interaction are increased in WSNs, then the trust calculation will help in reducing the 
vulnerabilities and help in identifying rogue nodes. In some networks, trust values are calculated and then 
used to determine whether or not certain nodes are compromised or even malicious and have to be removed. 
For example, trust metrics can discover symptoms of energy depletion attacks or spiked routing alterations so 
that data routes are safe. Inferior nodes resulting from malicious activities such as low trust ratio and repeated 
packet discard are prevented from participating in essential messages. Trust based authentication also reduces 
data interception and code injection risks by only permitting only tested nodes to exchange crucial data; it also 
improves the stability of the network. These factors include operating in open and often hostile environments, 
insecure communication links and the varied and critical applications which the address.   
The most effective way to counter such threats is through continuous monitoring of nodes. Many proposed 
security techniques for WSNs include routing strategies, as routing is fundamental for data transmission to the 
base station. Therefore, implementing strong routing protocols that are resilient to packet tampering and 
disruption is crucial. There are numerous solutions available to secure routing, particularly when handling 
compromised nodes. One approach that has been widely studied is trust establishment. By evaluating the 
performance and behavior history of nodes, reliable and unreliable nodes can be identified, allowing for the 
establishment of trust. During routing, the system can then preferentially select trustworthy nodes while 
avoiding those deemed unreliable. Trust mechanisms have gained considerable attention in research as a 
means to improve network security and cooperation, owing to their simplicity and effectiveness in identifying 
compromised nodes. The communication process between WSN nodes is illustrated in Figure 1.  
       

 
Figure 1: WSN trust model and its parameters 

 
Trust management is critical in detecting people, machines, and other centers of control that belong to the 
malicious category, self-interested ones, and nodes having interactions with them in a network. There has 
been remarkable research work done in different classes of networks namely peer-to-peer networks, grid, and 
Ubiquitous networks. Proposed work largely lacks the focus on comparative assessment of node reliability and 
enhancement in the general security and robustness of the WSNs through trust management. These 
techniques are applied practically in aspects such as routing, data aggregation, and cluster head election. 
However, although the several approaches have been proved to improve the others Various aspects of the 
other network security trust management remain challenges in WSNs. 
Trust and reputation based methods have even demonstrated improved tolerance of attacks from the 
malicious nodes while shielding WSNs. These trust-based security strategies offer an attractive opportunity to 
use non-cryptographic mechanisms as a basis in contrast to using existing relations between entities. In 
wireless communication networks, trust means the extent of reliance a node has placed in other nodes. Trust 
based schemes enhance the capacity to predict the node behavior by taking into account their previous 
activities, this would help in better determination when malicious activities are afoot.   
Recently, several trust models and secure routing mechanisms have been developed. However, many existing 
methods exhibit shortcomings. Additionally, many approaches are susceptible to high network overhead due 
to frequent exchanges of large amounts of data. Malicious nodes can exploit this information flow to conduct 
deceptive reporting attacks, spreading false information to undermine the trustworthiness of reliable nodes. 
Moreover, trust-based routing systems designed for networks often depend on high-powered hardware with 
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sufficient storage, battery life, and computational capabilities. There is also a lack of attention to accurately 
detecting packet forwarding misbehavior caused by faulty or overloaded nodes.  

Figure 2: Trust calculation model in WSN[21] 
 

 
 

The Figure 2 describes a trust calculation model using direct and indirect trust. 
 
This approach primarily use two trust dimensions: direct trust, derived from direct node interactions, and 
indirect trust, gathered through feedback from surrounding nodes. These metrics enable the identification of 
trustworthy nodes and the detection of potential threats, such as malicious or compromised nodes. Advanced 
frameworks often integrate computational techniques like Bayesian inference or fuzzy logic to evaluate trust 
dynamically. By blending direct and indirect trust mechanisms, WSNs achieve greater resilience, ensuring 
secure communication and efficient resource utilization in various operational environments. 
The connection or distances between stages have a significant impact on various network factors such as 
energy consumption, routing overhead, interference, and delay. Increasing the number of hops can reduce 
energy usage, but it also leads to higher end-to-end latency and control overhead, as stated in reference [29]. 
Because of the long-range wireless communication characteristics, if the number of hops is small, the delay 
will be modest but the energy consumption will be significant [30]. Therefore, in order to accomplish both the 
decrease of energy consumption and the balancing of energy, it is imperative to compute an optimal number 
of hops that takes into account the appropriate individual distances. The suggested methodology involves 
selecting a master auditor node from a pool of trustworthy nodes to oversee the entire network and analyze the 
activity of each individual node.  
The [41] framework effectively detects and mitigates malicious behaviors using machine learning algorithms, 
significantly improving trust evaluation accuracy. Adaptive metrics allow dynamic assessment of trust, 
accommodating changes in device behavior and environmental contexts. Experimental results show enhanced 
robustness against various attacks, including sybil and collusion, compared to traditional models. It also 
demonstrates scalability, maintaining performance even in large-scale IoT networks. Overall, the findings 
emphasize the importance of adaptive, real-time trust management for enhancing the security and reliability 
of IoT ecosystems. However the [42] incorporates device-specific behaviors and real-time contextual factors to 
detect anomalies and evaluate trustworthiness dynamically. By utilizing a multi-dimensional trust metric, the 
approach adapts to changing conditions and identifies malicious devices effectively. Experimental evaluations 
confirm the model's capability to maintain high precision and resilience in detecting compromised nodes 
under various attack scenarios. The findings suggest the proposed model significantly improves trust 
management in IoT ecosystems, supporting secure and dependable device interactions. 
The model [43] incorporates context-aware analysis and anomaly detection to identify and mitigate malicious 
activities. Experimental evaluations show that the approach improves trust evaluation accuracy, reduces 
latency, and adapts effectively to evolving threats and network variations. The findings suggest that self-
learning algorithms are critical for maintaining security and performance in complex IoT ecosystems, offering 
a robust alternative to static or manually updated trust management systems. The [44] also reveal that their 
mechanism improves trustworthiness and security in IoT systems by considering both environmental and 
device-specific factors. The proposed system outperforms traditional methods by reducing the risk of 
malicious activities and enhancing the overall reliability and security of IoT applications. The approach is 
validated through simulations, demonstrating significant improvements in trust adaptation and system 
performance. 
 

Brief Description of proposed concept 
 
Specifically, the IoT and WSN have rapidly evolved and applied in a number of sectors such as healthcare, 
smart city, agriculture, and industrial applications. But these networks bring critical security and trust issues 
particularly to data integrity authentication and secure data transmission. Current trust models and security 
solutions do not successfully handle the flexibly changing conditions and the limited resource availability that 
is defined by the IoT and WSN paradigms. Thus, a Dynamic Trust Computational Model specific for 
applications of IoT and WSN is introduced in order to increase the level of security by including real-time trust 
quantification and flexible mechanism for data transfer. 
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Key Components of the Dynamic Trust Computational  Model 
 
This system is the foundation of the proposed model as it calculates a trust score for each device or node in 
real-time. The trust evaluation takes into account the behavior of the device, used and needed resources, data 
credibility and communication history with other devices. Trust levels involve object classification, where it’s 
possible to distinguish the nodes trusted first of all from potentially hostile ones with the help of such 
categories as high, middle, and low trust. 
Compared with the previous models that only have one trust degree for evaluation of every node, this model 
uses multiple dimensions of trust to estimate them. The metrics include such as  
The reliability of data is evaluated by a data trust which checks the data generated by the node The availability 
of resources along with energy resources to enable the node to perform functions securely is checked by the 
energy trust. The identified communication trust validity checks the reliability of data transmission and 
receptions while the behavioral trust defined the frequency of the abnormal or malicious behavior. These set of 
trust metrics are then summed up to derived a combined trust of every node, as the summative measure of the 
trustworthiness of nodes in the network. 
Smart and intelligent applications are the specialty of IoT and WSN where network topology frequently 
changes and nodes are dynamically available. For these dynamic conditions, the model therefore uses the 
adaptive trust threshold to which the amount of trust that is acceptable sufficiently to the current state of the 
network changes. For example, the threshold was defined higher during the periods of the intense data 
transmission to provide more secure networks while during low traffic periods the limit can be set lower to 
include the nodes with relatively lower trust levels. 
The trust model incorporates secure data transfer mechanisms that employ the computed trust values to 
determine routing strategies. In this case, only the nodes that have trust scores greater than the threshold can 
engage in data exchange routes. This filtering minimizes the probability of losing or intercepting information 
by other undesirable nodes. Also, coding techniques that can be adapted for use in low-energy devices 
guarantee the safety of data without greatly measuring the consumption of power resources. To overcome the 
problem of dynamic behavior of nodes, the model provides the degradation of trust when it is not updated for 
a certain period of time, as well as the limited increasing of trust for a node which suddenly appears and 
rapidly increases the score. This makes the scheme to have an increased trust score in every interaction and 
therefore enhances the model as the real situation of the trustworthiness. 
This is an element of the model that Learning algorithms are incorporated in the detection of an anomalous 
behavior in a network. They perform surveillance on the relationship between the nodes and alert the 
administrators when new communication patterns or new usage rates of resources deviate from normal levels 
– this is a sign of possible attack. Once an anomaly is sensed, then the model is capable of identifying the 
specific nodes that may be malicious and hence protect the network. DT-CM with SDT solves the trust and 
security issues of IoT and WSN by providing a new computational model which is scalable, real time and 
resource constrained environment efficient. The integration of this model with adaptive and anomaly-
detection mechanisms is unique to this work and is a major leap forward in the domain to guarantee a robust 
and reliable network architecture for the future of IoT and WSN applications. 

 
Motivation 

 
Due to the emergence of the new technology such as IoT and WSNs, the possibility of collecting new real-time 
data has never been this possible but the problem of data reliability and its secure transmission is also chief. 
As is well known, IoT devices often suffer from many constraints including limited computational capabilities, 
mobility and operation in open environments that can be exposed to a wide range of threats and attacks. To 
tackle these issues, a strong Dynamic Trust Computational Model is expected to incorporate algorithmic 
approaches for periodically assessing the new and modified trust levels by predetermining additional 
contextual aspects such as the devices functioning settings, networks, and prior encounters. The proposed 
model improves security because it can intriguingly detect risky nodes and exclude them from the network. 
This is important for data consistency and security with high stakes applications such as smart cities, health 
care and infrastructure where DATA integrity and security is vital. Additionally, the relaxation of secure data 
transmission technique works hand in hand with the trust model by assuring that any data transmitted is well 
protected. In conclusion, a Dynamic Trust Computational Model with secure data transmission strengthen IoT 
& WSN architecture against new emerging threats and is pivotal for progressive IoT environment as it helps 
users to trust the system. 
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Objectives of work 

• Develop a dynamic trust mechanism to assess and adjust trust levels based on real-time behaviours 
and historical interactions of nodes within IoT and WSN environments. 

• To develop a protocol for secure data transmission by incorporating robust encryption and 
authentication methods to prevent data tampering, interception, and unauthorized access. 

• To minimize resource consumption (energy, memory, processing power) by designing a lightweight 
trust computation model suited for the limited capacities of IoT and WSN devices. 

• Enable real-time detection and isolation of malicious nodes by continuously monitoring network 
activities and updating trust scores to identify abnormal behaviours. 

• Strengthen the network's ability to withstand attacks by reinforcing trust-based communication 
pathways, thereby enhancing the reliability and resilience of IoT and WSN networks. 

This work illustrates an observed implementation of the dynamic trust calculation in IoT and WSN 
environment through implementing ML techniques. The paper describes that dynamic trust computation 
models can significantly improve the security of the communicated data in IoT and WSN networks. The 
correlation of trust management to secure communication protocols provided can greatly enhance the 
reliability of these networks. More effort in this field is required to provide better solutions to the emerging 
security threats. 

LITERATURE REVIEW 

Based on their operational constraints, finite resources and characteristics of WSNs’ communication, several 
challenges are experienced in enhancement of power efficiency, finding measures to enhance the network’s 
lifespan and securing of WSNs. Han et al. [2] proposed a routing algorithm called TAGA specifically for 
wireless sensor networks because it addresses issues of energy and trust. This algorithm uses a heuristic 
evolutionarily computed algorithm to minimize energy consumption associated with data transmission while 
at the same time ensuring security from traditional routing attacks and developing heightened security against 
trust based on cyber terrorism. TAGA accomplishes this by evaluating each node’s global trust and proposing 
values of direct trust based on parameters such as volatility and other forms of adaptive penalties, as well as 
introducing indirect trust via filtering. 
Several trust models have been developed in order to assess the trustworthiness of each node in WSNs and 
IoT. For example, Zhang et al. proposed a trust computation model for constructing direct trust and indirect 
trust calculation based on the fuzzy logic in [3]. This model considers the mobility of the nodes and gives a 
more realistic trust assessment. 
While modeling trust in IoT contexts, nodes often join and leave the network, which is why static models can 
hardly address this type of issue. Li et al., in [4], put forward a dynamic trust management system that 
contributes to dynamic changes in the degrees of trust in the nodes according to their behaviors over a certain 
period. With these aspects in mind, this system incorporates machine learning prediction models for behavior 
projection and the consequent trust scores. 
The protection of information is very important for the security of the data in the WSNs and IoT by Khan et al 
[5], also underlined the need for encryption protocols to protect data at the transport level. It also defines their 
research as the comparison of the different encryption algorithms and stresses on the optimization required 
for devices with limited hardware capabilities. Secure Communication Protocols: In [6], Huang et al proposed 
a secure communication protocol for IoT devices using trust-based methods with a primary aim to confabulate 
secure links between nodes. Its security features include a behavioral trust estimation procedure before data 
transfer, which minimizes the danger of having third parties intercept the information. 
Zhan et al. [7] proposed the Energy Efficient Multi-Level Secure Routing (EEMSR) technique, which aims to 
safeguard IoT networks while optimizing energy consumption. This protocol employs a cluster-based multi 
hop routing approach to alleviate the excessive communication overhead resulting from IoT scalability, as 
clustering is an effective method for energy conservation. 
Wireless mesh networks utilize a multi-hop architecture to transmit packets, managed by multiple mesh 
clients within a mobile infrastructure. The effectiveness of routing protocols is essential for the connectivity 
and data transfer rates of nodes in these networks. Recently, the convergence of IoT and mesh clients has 
surged, driven by the demand to connect billions of devices and provide expansive coverage at low network 
costs. The mobility of mesh network clients significantly affects data routing through intermediate nodes, 
influencing network performance and delay. Additionally, the extensive nature of the Internet allows 
potentially malicious nodes to infiltrate the mesh network, jeopardizing the integrity of transmitted data [8].   
Wireless sensor networks are focused on exploring strategies to reduce power consumption. Implementing 
clustering techniques effectively promotes energy conservation. However, many current clustering algorithms 
employ a fixed cluster head selection method for each clustering cycle, leading to the recurrent choice of 
suboptimal nodes as cluster heads. This results in accelerated energy depletion and reduced network lifespan 
[9].  
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Generative AI is poised to revolutionize secure and privacy-preserving mobile crowdsensing as it allows the 
creation of data faking methods that disguise private information-safeguarding user confidentiality. Using 
generative adversarial networks (GANs) and differential privacy techniques, this tool generates synthetic data 
that retains statistical patterns seen in the original dataset without revealing any individual data points —a 
must for sensitive use cases such as health or social behaviors tracking. Liu et al. In [10], it stressed on GANs 
for anonymized data generation that balancing the privacy and accuracy. Moreover, Wang et al. [11] 
emphasizes that federated learning with generative models offers a decentralized data control and make it (in 
distributed architectures, e.g. mobile crowdsensing) possible to maintain privacy across devices 
Chen X et al. [12] Optimization of Data Freshness in Privacy-Preserving Mobile Crowdsensing via Artificial 
Nois but MCS systems combine the data from a lot of mobile users, which have privacy problems as well as 
risk for stale data. To balance data utility and privacy, by incorporating artificial noise mechanisms the 
framework ensures that it strikes an adequate equilibrium. Using methods including Age of Information (AoI) 
the study makes sure user privacy is not jeopardized while maintaining freshness, relevance and timeliness of 
data. The results show that artificial noise can efficiently mitigate the privacy risks in MCS applications and 
meanwhile meet an optimal AoI, which also contributes to enhancing both reliability and security for CAP 
threshold analysis. 
PPFO framework resolves privacy and data freshness issues in mobile crowdsensing Li X, et al.  al. [13]. A 
PRoFet-based Publish/Subscribe System. This approach deals with the trade-off between privacy preservation 
and data freshness, ensuring that sensing data from regions being monitored are updated in a timely manner 
while maintaining confidentiality of raw sensing data. To maintain a balance in the exposure of personal data, 
PPFO also enforces differential privacy and data aging mechanism to make sure recent data is always collected 
for sensing tasks. This dual-focus approach builds up user confidence which paves the way of using mobile 
crowdsensing in sensitive applications as well. We were able to observe the effectiveness of PPFO in reducing 
data staleness and improving user privacy over conventional models through various experimental results. 
Table 1 summarizes Literature based on different parameters like method used, research findings and 
Limitations in different Trust Management methods. 
 

Table 1: summary of literature 
Reference Method Used Findings Limitations 

Pathak, I. et 
al.  [1] 

Adaptive QoS 
and Trust-Based 
Routing 

Introduced a lightweight algorithm focusing 
on QoS and trust in WSNs. Achieved 
enhanced security and energy efficiency. 

Limited evaluation in 
dynamic environments. 

Y. Han et al.  
[2] 

Adaptive 
Genetic 
Algorithm 

Proposed a routing protocol that minimizes 
energy consumption while maintaining trust 
and security. 

Needs testing in large-
scale WSNs. 

H Zhang  et. 
al. [3] 

Fuzzy Logic   
Developed a trust computation model using 
fuzzy logic, enhancing trust evaluation in 
WSNs. 

Lacks integration with 
existing routing 
protocols. 

Li, Y.  et. al. 
[4] 

Machine 
Learning   

Established a dynamic trust management 
framework for IoT, improving security and 
adaptability. 

Requires validation in 
diverse IoT scenarios. 

Khan, M.  et. 
al. [5] 

Lightweight 
Encryption 

Presented a protocol ensuring secure data 
transmission in IoT with minimal overhead. 

Potential vulnerabilities 
in extreme conditions. 

Huang, Y.  et. 
al. [6] 

Trust-Based 
Communication 

Introduced a trust-based protocol for secure 
IoT communication, enhancing reliability. 

Needs evaluation against 
various attack vectors. 

Y. Zhang et. 
al. [7] 

Multilevel 
Security  

Developed a routing protocol that balances 
energy efficiency with security across 
multiple levels. 

Limited scalability 
assessment. 

K. Haseeb  et. 
al. [8] 

Robust Trust 
Scheme 

Implemented a trusted scheme that enhances 
communication security in mobile mesh 
networks. 

Lack of performance 
benchmarks in real-
world scenarios. 

J. Hou et. al. 
[9] 

Fuzzy Inference  
Proposed a clustering protocol that optimizes 
energy consumption through fuzzy logic. 

Not evaluated for 
different environmental 
conditions. 

Liu, X. et. al. 
[10] 

Generative 
Models 

Explored generative models to ensure privacy 
in mobile crowdsensing 

Lacks practical 
implementation insights. 

Wang, Y.  et. 
al. [11] 

Federated 
Learning  

Integrated federated learning with generative 
AI to enhance privacy in crowdsensing 

Need for experimental 
validation on data 
efficiency. 

Y. Yang et al. Artificial Noise  Optimized data freshness in privacy- Performance against 
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[12] preserving settings using artificial noise. noise robustness not 
evaluated. 

Yaoqi Yang et. 
al. [13] 

Optimization 
Framework 

Proposed a framework prioritizing privacy 
while optimizing data freshness. 

Limited exploration of 
trade-offs between 
privacy and performance. 

K. Hamouid 
et. al. [14] 

Tree-based 
Routing  

Developed a lightweight tree-based routing 
method focusing on security in WSNs. 

No large-scale 
deployment tests. 

M. Rathee  et. 
al. [15] 

Ant Colony 
Optimization  

Proposed an energy-balancing routing 
algorithm improving QoS and security. 

Not assessed for 
adaptability to dynamic 
networks. 

M. Mathapati 
et. al. [16] 

Multi-
Dimensional 
Trust  

Introduced a secure routing scheme 
integrating multi-dimensional trust 
evaluation. 

Lacks empirical 
validation in varying 
conditions. 

Jiang N et. al. 
[17] 

Voting-based 
Incentive Model 

Developed an incentive model to optimize 
participant decision-making in crowdsensing. 

Needs evaluation of long-
term effects on 
participation. 

Li J et. al. [18] 
Multi-Level 
Secret Sharing  

Proposed a multi-level secret sharing scheme 
for decentralized e-voting. 

Not tested for user 
scalability and efficiency. 

Liu Z et. al. 
[19] 

Compressed 
Sensing  

Utilized compressed sensing for secure image 
registration in cloud environments 

Performance metrics in 
different cloud scenarios 
missing. 

Sengupta J  et. 
al. [20] 

Directed 
Diffusion  

Implemented a secure directed diffusion 
approach tailored for industrial WSNs. 

Not tested for broader 
applications beyond 
industrial contexts. 

 
Wang et al. [36] propose a MR-DCAE model that couples deep convolutional autoencoders with manifold 
regularization to identify unauthorized broadcasting in wireless communication networks effectively. The 
model's manifold learning can maintain the intrinsic structure of data and guarantee more distinguished 
feature represent ability of sophisticated signal patterns. Experiments clearly prove the high superiority of 
MR-DCAE over traditional methods in terms of detection accuracy and robustness against noise. Deep 
learning techniques are discussed for secure data communication channels by the effective establishment of 
unauthorized signal transmissions.  
Y. Liu et al. [37] proposed a real-time classification method based on a lightweight neural network architecture 
called MobileViT for the classification of constellation images of wireless communication signals. In this 
approach, the proposed technique effectively encompasses the spatial and temporal features of the 
constellation patterns, enabling accurate identification of various modulation schemes. The architecture of 
MobileViT has been optimized for resource-constrained environments to achieve high accuracy with low 
computational overhead. The proposed approach may be useful in real-time applications of communication 
systems and can provide good trade-offs between efficiency and performance. 
H. Zhang et al. [38] proposed a lightweight radio transformer framework, MobileRaT, for automatic 
modulation classification in drone communication systems. MobileRaT is able to effectively discriminate 
modulation formats with low computational overhead by employing advanced signal processing methods and 
transformer architectures. The study proved that MobileRaT realizes excellent performance in real-time use, 
making it suitable for various practical assignments, including dynamic environments involving drone 
communications. This work provides a framework contributing to the continued improvement in 
communication reliability and performance in aerial systems, highlighting how lightweight solutions are 
essential for increased drone usage. 
J. Liu et al. [39] propose a new technique that addresses this problem by recognizing real-time transformer 
discharge patterns through the integration of CNN and LSTM networks, driven by few-shot learning 
techniques. This work tries to solve the problem of limited labeled data by providing the capability of 
effectively learning from only a few examples, offering better adaptability to new patterns. This approach, 
based on experimental results, identifies discharge events with high accuracy, significantly enhancing 
transformer monitoring capabilities for predictive maintenance strategies. 
R. Zhao et al. [40] present a novel framework termed CEEMD-MsI for long-term prediction of PM2.5 
concentration levels. This approach is effectuated by incorporating Complete Ensemble Empirical Mode 
Decomposition and a multi-stream informer architecture to effectively capture air quality data in terms of 
temporal dynamics and complex patterns. The proposed approach outperforms some traditional forecasting 
models with higher accuracy in PM2.5 prediction. Moreover, these findings reveal the potential of using 
advanced decomposition techniques with machine learning frameworks in environmental monitoring and 
public health management, a fact that may prove invaluable to policymakers.   
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3. RESEARCH METHODOLOGY 

The popularity of WSNs has surged rapidly in recent years. However, the applications of WSNs face 
limitations due to the limited computational resources of sensor nodes and security concerns related to data 
transmission. Researchers are currently focusing on routing strategies in WSNs to enhance their performance. 
A major challenge has been to develop methods for energy-efficient routing. Establishing a protocol that 
enables effective data transmission between nodes is crucial for determining the optimal path for data flow 
within the network. One approach to reduce power consumption in a WSN is to implement an energy-efficient 
data transfer protocol, which helps to evenly distribute the energy load among all nodes. 
Additionally, the inherent lack of control in wireless networking within WSNs, combined with the restricted 
capabilities of individual nodes, creates difficulties in ensuring security and privacy.  
In WSNs, various trust-based methods have shown increased robustness against internal node attacks. These 
methods introduce new concepts for secure routing in WSNs by using past experiences to predict nodes' future 
behavior and detect potentially misbehaving nodes. However, traditional trust-aware routing protocols have 
limitations, such as high energy consumption and limited ability to address diverse types of attacks. 
Additionally, routes that heavily rely on trust values based on hop count may be less effective at transmitting 
messages, as paths with higher overall trust often require more hops.  
Secure routing cooperation is based on developing trust values for nodes, guiding the selection of relay nodes 
along the routing path. A node's overall trustworthiness is pre-estimated through its primary trust score, 
secondary trust value, volatility factor, and available energy levels. If a node’s total trust value falls below a 
threshold, it is deemed untrustworthy. This is the proposed model framework, illustrated in Figure 3. 
The workflow of a trust computation model in IoT environments includes multiple layers aimed at assessing 
nodes based on their behavior and interactions within the network. The computation methodology generally 
follows a structured approach: 
 
Initialization and Data Collection: The process begins with network initialization, registering each IoT 
node and authenticating their identity. Nodes periodically exchange data and communication logs, which 
serve as the raw input for the trust computation algorithm. Collected data includes packet delivery ratio, 
response time, energy consumption, and behavioral history—all essential for estimating node reliability. 
 
Definition of Trust Metrics: IoT trust is typically multi-attribute, encompassing direct trust, indirect 
(recommendation-based) trust, and behavioral metrics. Direct trust stems from direct interactions, such as 
successful data exchanges. Indirect trust is computed based on recommendations from nodes with experience 
interacting with the node in question. Each metric is weighted based on system needs, with a possible 
emphasis on security, reliability, or energy efficiency. 
 
Trust Evaluation Algorithms: The trust evaluation engine applies algorithms like SVM, NB, or other 
machine learning techniques to process collected data. These algorithms dynamically update trust scores 
based on ongoing interactions, making a node's trust score dynamic and reflective of recent behavior. A node 
that reliably delivers packets and communicates efficiently will see its trust score increase, while erratic 
behavior or unresponsiveness may reduce it. 
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Figure 3: proposed system architecture for trust calculation in WSN 

 
Decision and Action on Trust: After computing trust scores, the system decides whether to permit the 
node’s participation in critical network functions like data aggregation or routing. Nodes scoring below a 
predefined threshold may be isolated or denied participation in secure data transmission. 
Feedback and Trust: Ongoing interactions continuously update trust scores, ensuring that trust evaluations 
remain accurate. Feedback from successful or failed interactions refines future trust assessments, enhancing 
system reliability. 
This dynamic, continuous evaluation of trust supports security and reliability in IoT networks, allowing only 
trusted nodes to participate in sensitive operations like data routing and aggregation. 
 

4. ALGORITHM DESIGN 

Secure Trust Calculation Algorithm 
 
Initially, all the nodes in the Wireless Sensor Network (WSN) are included as registered as participants in the 
network. Each node in the network will be granted a unique token that cannot be imitated. Each confirmed 
node in the entire network will be assigned an identical Inimitable token to facilitate node authentication 
during conversation. The method of assigning unique tokens is accomplished as 

𝑅𝑒𝑔𝑁𝑜𝑑𝑒[𝑁] =  ∑
𝑛𝑜𝑑𝑒𝑝ℎ𝐼𝐷(𝑖)

𝑛𝑒𝑡𝑠𝑖𝑧𝑒(𝑁)

𝑁

𝑖=1

+  
𝑔𝑒𝑡𝑇𝐼(𝑖)

𝑇ℎ
+ 𝑚𝑎𝑥𝑃𝑟𝑖𝑚𝑒(𝑖) + 𝑎𝑙𝑙𝑜𝑐𝑒𝑛𝑒𝑟(𝑖) 

                                                                            -----(1) 
The nodeID represents the physical address of the nodes, while netsize() denotes the capability of the network 
node to handle data. maxPrime() refers to the highest prime number that is taken into account during node 
registration, and the allocated energy is also taken into consideration.  The trust factor quantifies the level of 
importance assigned to a node in the routing process. The trust factor calculation is executed in the following 
manner: 

𝑇𝑟𝑢𝑠𝑡𝐹𝑎𝑐𝑡𝑜𝑟[𝑁] =  ∏
𝑚𝑎𝑥𝑃𝐷𝑅(𝑖)

𝛿

𝑁

𝑖=1
+ 𝑎𝑣𝑎𝑖𝑙𝑒𝑛𝑒𝑟(𝑖) + 𝑔𝑒𝑡𝑚𝑎𝑥((𝜏)) + 𝑇ℎ 

                                                                       -------(2) 
      

𝑇𝑟𝐹𝑎𝑐[𝑁] =  ∏ max(𝑇𝑟𝑢𝑠𝑡𝐹𝑎𝑐𝑡𝑜𝑟(𝑖, 𝑖 + 1)) + 𝑅𝑒𝑔𝑁𝑜𝑑𝑒(𝑖) + 𝑇ℎ𝑁
𝑖=1                                                     ------(3) 

 
The δ represents the total number of packets produced in the network, τ is the model used to calculate the 
complexity of computation, and Th is the threshold that is used in trust factor determination. The data 
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transmission procedure will involve the consideration of trustworthy nodes. Among these trusted nodes, the 
Master Auditor Node (MAN) will be selected based on criteria such as minimum energy usage, highest trust 
factor, and high computing power. The MAN node will oversee the conduct of all the remaining trusted nodes 
throughout their active state. The process of selecting the MAN node is carried out as 

𝐼𝑛𝑜𝑑𝑒[𝑁] =  ∑
𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑌1−𝑌1)+(𝑋2−𝑋1)

𝑛𝑒𝑡𝑠𝑖𝑧𝑒(𝑁)

𝑁
𝑖=1 + 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑖)                  -----(4) 

The MAN node selection approach is used for path construction during the data transmission between the 
source node and base station. It may change every time according to parameters such as trust, energy, 
computation power, etc. The major benefit of MAN nodes is that they can easily remove buffer overflow as well 
as single points of bottleneck problems. 

MAN[N] = ∑
max 𝑃𝐷𝑅(𝑁)

𝑛𝑒𝑡𝑠𝑖𝑧𝑒(𝑁)

𝑁
𝑖=1 + max (𝑎𝑣𝑎𝑖𝑙𝑛𝑒𝑟(𝑖) + max(𝑇𝑟𝐹𝑎𝑐(𝑖)) +  𝜏(𝑖)                                            ------(5)                                                                

The node selection process for routing involves assessing feedback from the MAN node and taking trust 
factors into account. This node selection process is carried out as follows: 

𝑁𝑆𝑒𝑙𝑒𝑐[𝑁] =  ∏
𝑇𝑟𝐹𝑎𝑐(𝑀𝐴𝑁(𝑖))

𝜏(𝑖,𝑖+1)

𝑁
𝑖=1 +  

max (𝑃𝐷𝑅(𝑖,𝑖+1)

𝛿(𝑖)
∗  ∑ 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑖) + 𝑇ℎ𝑁

𝑖=1                                               -----(6) 

The MAN node will frequently assess the other nodes and consider their trust levels to determine the best path 
for data transmission. The process of finalizing the routing table is carried out as follows 

𝑇𝑟𝑜𝑢(𝑀𝐴𝑁[𝑁]) =  ∑ max(𝑁𝑆𝑒𝑙𝑒𝑐(𝑖, 𝑖 + 1)) ∗  ∏ lim
𝑖→𝑁

(𝛿(𝑖) + 
𝜏

𝑖
)2𝑁

𝑖=1
𝑁
𝑖=1                                            -----(7) 

The proposed methodology focuses on Trust-Based Secure Routing for WSNs, aiming to establish reliable 
routes for secure data transfer. The model’s performance is validated by comparison with established 
standards like Adaptive QoS and the Trust-Based Lightweight Secure Algorithm for WSNs. The proposed 
model demonstrates substantial improvement in accurately selecting the most trustworthy paths. This 
approach stores node information within the network, which is then used to identify nodes during data 
transmission. Each node is assigned a unique token, known as an Inimitable token. Graphs show the accuracy 
levels of Node Inimitable Token Allocation for both existing and proposed models. 
 

5. RESULTS AND DISCUSSION 

5.1: Experiment Analysis using Simulation Environment 

The following section presents the results and discussions of IoT application implementation and the NS2 
simulation platform. Initially, NS2 was selected due to its multi-functionality in simulating wireless and 
sensor networks, which are key components in IoT architectures. 
Packet Delivery Ratio (PDR): Simulation results showed a high PDR in smaller network sizes, indicating 
good communication among IoT devices. As network size increased, packet collisions and congestion led to a 
gradual decrease in PDR. In a 50-node network, the PDR remained above 90%, while larger networks of over 
200 nodes saw a reduction to about 80%, underscoring the need for efficient routing protocols in densely 
packed IoT environments. 
End-to-End Delay: This delay was found to be inversely proportional to network density. Smaller networks 
experienced minimal delays of around 20 ms, which rose to over 100 ms as node count increased. This rise is 
likely due to higher routing overhead and network congestion from many devices communicating 
simultaneously. 
Throughput: Throughput was consistent across small-scale networks but decreased as the number of nodes 
grew. In 50-node networks, throughput was approximately 1 Mbps, while in larger networks, it dropped to an 
average of about 0.6 Mbps. This trend is expected in IoT environments, where many devices compete for 
limited bandwidth. 
Energy Consumption: Network size and density were observed to impact energy consumption. In a 50-
node scenario, average energy consumption was 2.5 J per node, rising to around 4.2 J per node in larger 
networks. Energy efficiency is especially critical in IoT devices, particularly for battery-operated sensors, and 
optimizing routing protocols could help reduce this increased energy usage. 

 
Figure 4: Packet end to end delay vs simulation time 

The above Figure 4 describes end to end delay with simulation time. Packet end-to-end delay versus 
simulation time illustrates how the time taken for a packet to travel from source to destination varies 
throughout a network simulation. Factors such as network congestion, routing efficiency, and resource 
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allocation influence the delay. Analyzing this relationship helps optimize protocols and improve network 
performance under dynamic conditions. The proposed model delay is less than conventional techniques which 
is around 1.5-2% less than [40,41,42]. 
 

 
Figure 5: Packet delivery ratio vs simulation time 

The Figure 5 demonstrates PDR vs. Simulation Time analyzes the efficiency of data transmission in a network 
over time. PDR measures the ratio of successfully delivered packets to those sent. This metric evaluates 
network performance, with higher PDR indicating reliability. Simulation time assesses PDR under varying 
conditions like congestion or mobility. The proposed protocol achieves 98-99% PDR for entire simulation. 
 
 

 
Figure 6: Throughput percentage vs simulation time 

Figure 6 illustrates that throughput is measured in seconds. The number of useful bits successfully 
transmitted per second determines the throughput for TCP packets. Once a connection is established between 
the source and the sink node, actual text data is sent, with these packets classified as TCP packets. The BTC 
algorithm enhances throughput while reducing both packet and network overhead. It also mitigates internal 
data threats, such as buffer overflow. Results show that the proposed model achieves throughput that is 7-9% 
higher than that of three state-of-the-art systems. 
Throughput for TCP packets is determined by measuring the number of useful bits successfully transmitted 
per second. Once a connection is established between the source and the sink node, actual text data is sent, 
with these packets classified as TCP packets. The BTC algorithm enhances throughput while reducing both 
packet and network overhead. It also mitigates internal data threats, such as buffer overflow. Results show 
that the proposed model achieves throughput that is 7-9% higher than that of three state-of-the-art systems. 

 
Figure 7: Energy consumption (in jules) by each vehicle node with simulation time 

The above Figure 7 illustrates the energy usage by individual nodes during the communication process. The 
energy consumption, measured in joules, varies dynamically between 100 and 3000 joules for each node. The 
proposed models specifically influence internal node interactions, helping to prevent energy depletion in 
nodes that are in sleep mode.  

5.2: Experiment Analysis using IoT Environment 

In another experimental analysis IoT module has deployed with 10 different analog sensors for data collection 
and Arduino UNO as microcontroller due to cost effective data collection in IoT model. The similar algorithms 
are applied for evaluation. The machine learning module has applied IoT results. Below is the visualized 
analysis of proposed IoT model. 
Table 2: Comparative analysis for proposed trust computation module with different operating 

environment and machine learning models 
 

Environment Trust Model Clustering Algorithm Accuracy 
  k-means NB 95.30 
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NS2 Hybrid Trust SVM 97.40 
Q-Learning NB 97.10 

SVM 98.10 
 
IoT 

 
Hybrid Trust 

k-means NB 96.70 

SVM 97.50 
Q-Learning NB 98.60 

SVM 99.40 
 
The above Table 2 describes a comparative analysis between simulation environment as well as IoT 
environment. The below Figure 8 to Figure 10 describes an IoT module results  

 
Figure 8 : Each IoT node configuration setting for data acceptance 

In IoT networks, data acceptance for each node is crucial for effective communication and system 
performance. The Figure 8 describes an configuration settings are defined by parameters such as Alfa (0.2), 
Bita (0.25), and Gyama (0.9), which represent different weighting factors for data validation. Alfa reflects the 
minimum required reliability for data acceptance, ensuring a baseline quality. Bita indicates the sensitivity of 
the node to varying data types, while Gyama signifies the maximum allowable error rate in accepted data. The 
threshold of 0.6 acts as a critical cutoff, dictating that only data meeting or exceeding this cumulative score 
from the parameters is accepted for further processing, enhancing overall system reliability. 

 
Figure 9: Accepted data size after data filtration by each IoT node 

Data acceptance rates across the ten IoT nodes reflect their efficiency in filtering and retaining high-quality 
information. Node-2 has the highest acceptance rate at 93.2%, showing very strong filtration, while Node-1 
has a lower rate at 85.3%. Similarly, Node 5 and Node 6 maintain strong data integrity with acceptance rates 
of 92.1% and 91.3%, respectively. The other nodes, ranging between 88.3% and 90.8%, show relatively 
consistent performance in data filtration. These results indicate the varying effectiveness of each IoT node in 
processing and accepting relevant data for further analysis. 
 

 
Figure 10 : Trust calculation accuracy for each node using SVM algorithm 

The SVM algorithm calculated each node's trust with high accuracy in evaluating network node reliability. 
Accuracy rates ranged from a low of 95.6% for Node-5 to a high of 99.4% for Node-10, showing robust 
performance across all nodes. Nodes with high accuracy, such as Node-8 and Node-10, demonstrated strong 
trustworthiness, likely due to consistent behavior or performance metrics. Conversely, Node-5’s relatively low 
accuracy may signal potential vulnerabilities or inconsistencies. Overall, the SVM algorithm effectively 
differentiates reliable nodes from less reliable ones, enhancing network security and trust management. 
The findings are more clearly shown thanks to the dynamic trust calculation approach's use of graphical 
representations and thorough comparing tables. An explicit examination of the trade-offs between security 
and performance in high-density networks, however, would make the conversation more thorough. Ensuring 
strong security measures in these settings might result in more processing cost, delay, and network 
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congestion. Achieving optimum system performance while preserving high trust accuracy requires careful 
consideration. By addressing these trade-offs, the difficulties would become more apparent and the dynamic 
trust mechanism would be improved for safe, real-time operation in dense IoT networks. 
 

6. CONCLUSION 

WSN are characterized by opportunistic transmissions, limited connectivity, and frequent changes in network 
topology among the nodes. Due to the lack of continuous connectivity, WSN routing uses a store-carry-and-
forward method, where messages are relayed through intermediate nodes during opportunistic encounters, 
often leading to significant end-to-end communication delays. This paper introduces a dynamic trust 
management system to address malicious and opportunistic misbehavior of nodes in WSNs. Ensuring reliable 
and efficient data transmission while accounting for unpredictable node behavior remains a challenge. To 
address this challenge, the study proposes a trust-based secure routing protocol guided by a master auditor 
node. This new scheme, designed to achieve secure data transmission, identifies trusted paths to discover 
energy-efficient and reliable routes—key factors in the longevity of WSNs. The architecture enables the 
determination of optimal trust settings for trust aggregation, aiming to align subjective trust closely with 
objective trust for each parameter. The routing process balances trust, energy, and hop count, allowing the 
selection of nodes that are dependable, cost-effective, and efficient in communication. By facilitating 
decentralized trust assessment, decreasing dependence on centralized systems, and improving privacy, 
including future goals like federated learning fits in well with present IoT security developments. Federated 
learning solves privacy issues by enabling IoT devices to work together to learn and update trust ratings 
without exchanging private information. Furthermore, enhancing the practicality of trust models requires 
taking into account real-world restrictions including power limits and device resource constraints. In order to 
guarantee the scalability and efficacy of trust models in resource-constrained situations and increase the 
system's adaptability to actual IoT deployments, power-efficient algorithms and lightweight trust assessment 
methods are essential. 
For future direction this approach can be enhance for cluster-based channel selection in 5G network. During 
the data transmission and path selection between source node to base station this dynamic trust calculation 
approach will effective when select to next node for path creation. This technique can eliminate Man in the 
middle attack as well various spoofing attacks. By using Pre-compute trust scores and store them for devices 
that are frequently used or have predictable behaviors, which helps reduce real-time computation. Trust 
values can be updated periodically rather than continuously. In many networks, devices and network nodes 
may experience buffer overflows, leading to queuing delays. Trust proposed score updates could get stuck in 
queues, causing delayed or missed updates that affect trust management 
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