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With the use of neural networks, and more especially a hybrid model combining Convolutional 

Neural Networks (CNN) and Autoencoders (AE), this study introduces a new strategy for 

improving the identification and categorization of ocular disorders in Optical Coherence 

Tomography (OCT) pictures. Early and precise diagnosis is crucial for treating retinal illnesses 

such diabetic retinopathy as well as age-related macular degeneration, which are among the 

most common causes of visual impairment. Our goal hybrid model draws on the strengths of 

both CNNs and AE to enhance the precision and stability of illness identification and 

categorization by extracting features and performing reducing dimensionality and denoising, 

respectively. In this approach, OCT images are first processed through the CNN component to 

extract relevant features capturing intricate retinal structures and pathological characteristics. 

Subsequently, the AE component reduces the dimensionality of the extracted features while 

enhancing their clarity by mitigating noise and irrelevant information. The integrated features 

from both CNN and AE are then utilized to classify retinal diseases, providing a more 

discriminative and informative representation. The suggested hybrid model is shown to be 

better to traditional techniques by experimental findings on a broad collection of OCT images. 

When it comes to detecting and classifying retinal illnesses, the hybrid neural network shows 

increased specificity as well as sensitivity, which helps physicians make more precise diagnosis 

faster. Experiment is carried in python and the proposed model outperforms all others with an 

outstanding accuracy of 98.41%. It excels in sensitivity (97.14%) and specificity (98.12%), 

affirming its remarkable precision in identifying retinal diseases. The precision and F1 score for 

the suggested model are 97.03% and 97.56%, respectively, signifying its exceptional capacity 

for accurate disease classification. 

Keywords: Retinal Diseases, Optical Coherence Tomography (OCT), Neural Networks, 

Convolutional Neural Networks (CNN), Autoencoders (AE), Dimensionality Reduction. 

 

INTRODUCTION 

Optical coherence tomography (OCT) has emerged as a popular subsurface imaging method with many potential 

uses in the health and industrial sectors in recent years. Recently, OCT has been used more often in sparse signal 

processing, optical sensors, as well as laser research [1]. One of OCT's most notable features is its capacity to 

produce high-resolution cross-sectional pictures of ocular tissues, a feature that has had a profound effect on 

clinical practice and research into the comprehension of both normal and abnormal eye disorders. 

To glean valuable insights from OCT images, it is imperative to quantify the acquired data. Quantification aids in 

comprehending the normal developmental processes of the eye and gauging the effects of common ocular 

conditions, including myopia, on ocular morphology. Additionally, precise quantification is instrumental in the 
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early detection of eye diseases [2]. OCT images play a pivotal role in guiding clinical decisions, enabling the 

monitoring, detection, classification, and management of eye health and diseases. This technology greatly enhances 

the capacity to oversee ongoing treatments and diagnose ocular disorders at their inception. 

A specialized OCT technology known as Swept-source OCT is employed in ocular biometry. These devices are useful 

for measuring axial length and anterior chamber depth, two important ocular characteristics that might fluctuate 

over time and need to be monitored closely, especially in situations of severe myopia. Considerable research has 

been done to examine the effect of axial length (AL) variations during cataract surgery on IOL power calculation [3, 

4]. Prior to and two months following surgery, patients received comprehensive ocular examinations during which 

optical biometry was performed using the IOL Master 500. After surgery, patients had a second set of 

measurements taken and their changes in AL and mean keratometry analyzed. Various formulae were used to 

determine the amount of error in the refractive prediction (PE). Pseudophakic measurements showed substantial 

AL changes across operated eyes, although aphakic measurements did not. The accuracy of IOL power predictions 

was not considerably impacted by these changes to AL, with the exception of a systematic error observed in the 

optical biometer whenever dealing with phakic eyes. Applying a correction factor to the preoperative AL helps 

mitigate the effects of this error, allowing for more reliable lens estimates to be made. 

The repercussions of diabetic retinopathy (DR) on the general population especially eye care are disastrous. 

Hyperglycemia including insulin resistance in type 2 diabetes, and renal failure in diabetes of type 1, are some of 

the worst complications of the disease. Diabetic retinopathy (DR) is a leading cause of irreversible visual 

impairment and blindness [5, 6]. Careful management of blood glucose levels reduces the incidence of DR by a 

significant margin, as shown by studies. 

The intricate microvascular network of the retina bears the brunt of DR, resulting in the loss of pericytes, 

degradation of endothelial cells, and eventual capillary permeability. Alarmingly, this damage can advance 

surreptitiously, evading early detection. Consequently, regular eye examinations assume paramount importance in 

the timely identification and management of DR. Alarmingly, up to 80% of individuals living with diabetes for two 

decades or longer eventually succumb to DR. Projections by the International Diabetes Federation indicate an 

inexorable rise in diabetes prevalence, with an estimated 700 million individuals affected by 2043. The progression 

of DR is characterized by five discernible stages, each marked by distinct clinical indications [7, 8]. Exudates, which 

originate from micro aneurysms and are caused by protein leakage, appear as white or yellowish-white patches on 

the skin. Hemorrhages are the final stage of fluid leaking into the retina, and they can cause irreversible damage to 

the eye. The manual interpretation of retinal photographs has shown to be more accurate than in-person dilated 

eye exams, making retinal photography a widely accepted DR screening technique. The expeditious commencement 

of treatment emerges as a critical determinant in averting lasting vision impairment, underscoring the importance 

of routine eye checkups for individuals with enduring diabetes. OCT is crucial for keeping tabs on how far forward 

DR has gotten. The OCT pictures of the retina of a human eye with pathology are displayed in Figure 1. While DR 

poses a formidable threat, its adverse impact on vision can be mitigated through early detection and meticulous 

management, thereby enhancing the overall quality of life for those grappling with this condition. 

 
Figure 1: OCT Images of the Retina for a Pathologic Human Eye 
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One of the most pressing issues in the realm of retinal diseases is the accurate and expeditious detection and 

classification of pathologies. Diseases such DR, age-related macular degeneration, as well as glaucoma pose serious 

threats to public health because to their prevalence and the possibility of irreversible vision loss [9, 10].  

Consequently, there is an urgent need for sophisticated diagnostic tools that not only discern the presence of these 

diseases but also stratify their severity and progression. 

Contributions of the Work  

As a result of this need, a promising new approach to improving the detection and management of retinal illnesses 

has emerged: the combination of two state-of-the-art technologies: Convolutional Neural Networks (CNN) and 

Autoencoders (AE). CNNs, renowned for their prowess in extracting intricate features from images, and AEs, adept 

at dimensionality reduction and noise mitigation, together form a hybrid model with the potential to redefine the 

landscape of retinal disease detection and classification. This integration of neural networks represents a paradigm 

shift in the field of retinal imaging, as it capitalizes on the strengths of both CNNs and AEs to augment the precision 

and efficiency of disease analysis. The CNN component excels at capturing subtle textures, patterns, and anomalies 

within OCT images, enabling it to discern the intricate details of retinal pathologies. Simultaneously, the AE 

component works to distill this wealth of information into a more concise and informative representation, reducing 

noise and redundancy to reveal the core diagnostic features. As the adoption of OCT in clinical practice continues to 

soar and the volume of retinal imaging data escalates, the demand for automated, accurate, and scalable solutions 

becomes increasingly imperative. In this context, the hybrid neural network approach holds the promise of not only 

addressing these demands but also paving the way for early disease detection and personalized treatment 

strategies. This comprehensive investigation delves into the intricacies of integrating CNN and AE models for 

enhanced identification and categorization of retinal diseases in OCT images, offering insights into the architecture, 

methodology, and potential impact of this innovative approach. 

In what follows, we describe the results of the remaining investigation. Previous studies on identifying liver 

cirrhosis were discussed in Section 2. In Section 3, we detail the suggested fuzzy min-max neural network 

(FMMNN) approach to classifying liver cirrhosis outcomes. In Section 4, we describe the results of our tests and 

make some comparisons between the suggested system and some other approaches. The findings and the 

remaining work are summarized in Section 5. 

RELATED WORKS 

Maintaining human life requires careful attention to the maintenance of vision and eye health. Conditions of the 

retina, such as diabetic macular edoema (DME), drusen, and choroidal neovascularization (CNV), are primarily 

caused by destruction to the retina, as well as because this damage is typically only recognized in advanced stages, 

the individual with the condition is likely to lose a portion or all of their vision if no treatment is administered. 

Nothing tops OCT in terms of involves non-invasive cross-sectional examination of the internal architecture of 

biological tissues. It will help ophthalmologists diagnose retinal, macular, and optic nerve damage earlier since they 

will have a clearer view of the rear of the eye [11]. The proposed study seeks to construct an original model for 

categorization according to deep learning by automatically identifying the various retinal disorders using a free 

dataset of retinal photos taken from an OCT device.  

Automated methods are required for retinal disease monitoring. Included is a method for utilizing DNN to spot 

signs of retinal illness. Extracting applications based on search patterns is another way in which DNN may be 

included into the data set. The scientists have devised a technique that uses color photographs of the fundus to 

teach a computer to identify retinal illness. Retinal issues can cause irreversible vision loss, making it impossible to 

dream again if they are not diagnosed and treated quickly [12]. Early, disciplined diagnosis is essential for finding 

the most effective therapy and cure for each given set of symptoms. As a result, many common retinal disorders are 

still labelled and normalized based on the Deep Diction model's dated recommendations and confirmation of data 

under Kilter for Marshall-specific retinal diseases. In addition, this information appears to reveal which retinal 

pictures may have deteriorated over time, indicating difficulties with group communication when employing DNNs. 

Due to the usage of a DNN model, this dataset contains information on more than 6 distinct forms of retinal illness. 

The ResNet model is a deep neural network (DNN) optimized for retinal pictures with a wide range of threat 

characteristics and depths. The success rate of the suggested approach has been measured at above 80%. 

Accurate diagnosis is essential for the different forms of retinal illness, and early detection is key. For the most part, 

CNNs excel at detection tasks, and their attention modules may create heat-maps to provide graphical explanations 
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of the model's reasoning. A secondary heat-map depicting additional item areas may also exist in the area, but the 

primary heat-map can only reveal the most distinctive feature. In [13], we developed a method for diagnosing many 

retinal diseases from a single set of fundus images and a heat-map. Instead than relying on MRI scans or other 

data, this CAM-based technique is designed to work with 2D color images of the retina. Furthermore, fundus 

pictures of several retinal illnesses have characteristics that leave them open to misclassification. These 

characteristics include the lack of clearly identifiable lesion area limitations, the interaction of lesion regions 

amongst diseases, and the presence of different pathological features (such as scattered blood spots). To construct 

reliable heat-maps, we devised two unique loss functions: attention-explore loss and attention-refine loss. We use 

the ground-truth prediction score to choose "bad" and "good" heat-maps to train using the two loss functions. The 

model's categorization efficiency benefits from a rise in detection precision. Experimental results on a dataset 

including five illnesses indicated that our method enhanced detection and classification accuracy, and that the 

resulting heat-maps were more closely aligned with the locations of lesions than those produced by the best 

approaches currently available. 

Retinal illnesses may now be diagnosed at the point-of-care with OCT imaging. Conventional deep learning 

methods for artificial intelligence (AI) struggle when applied to OCT images that vary widely in the amount of 

speckle noise between datasets and scanners. Retinal disease prediction using existing deep learning models is 

computationally demanding to design and implement. For automated medical diagnosis on a mobile device or 

other edge device, it would be great to have access to generalized lightweight deep learning models. In [14] provides 

a self-distillation methodology for constructing generalizable deep models for diagnosing retinal diseases using 

lightweight deep learning models. Three distinct baseline models, ResNet18, MobileNetV2, and ShuffleNetV2, were 

put through their paces in order to determine how well the suggested technique performed on four different OCT 

datasets with variable signal-to-noise ratios (SNRs). 

OCT scans are essential for the classification of retinal diseases. Patients' chances of survival depend on the 

diagnosis and categorization of these disorders. OCT images are presently routinely used by clinicians for the study 

of retinal diseases. However, making a diagnosis by hand is a time-consuming process. To aid in the identification 

of retinal disorders, in [15] presents an automated detection and categorization method. By creating cross-sectional 

pictures of the retina, the noninvasive OCT test enables ophthalmologists to make diagnoses based on the retina's 

layers. Therefore, it is a vital modality for the detection and evaluation of retinal abnormalities and illnesses. Since 

OCT generates several pictures for every patient, ophthalmologists need to spend considerable time analyzing 

them. 

METHODOLOGY 

In light of the pressing demand for more precise and efficient methods in the diagnosis and management of retinal 

diseases, a synergistic approach has materialized, drawing upon the strengths of two forefront technologies: 

Convolutional Neural Networks (CNN) and Autoencoders (AE). These two pillars of deep learning bring 

complementary capabilities to the table, offering the prospect of a hybrid model that stands poised to reshape the 

entire landscape of retinal disease detection and classification. Convolutional Neural Networks, widely celebrated 

for their exceptional ability to discern intricate features within images, serve as the vanguard of this approach. 

Their capacity to meticulously dissect the complex textures, patterns, and anomalies embedded within OCT images 

equips them for the intricate task of identifying and characterizing retinal pathologies. Paired with CNNs, 

Autoencoders contribute their unique strength in dimensionality reduction and noise mitigation. By distilling the 

wealth of information extracted by the CNN into a more concise and informative representation, AEs play a pivotal 

role in reducing redundancy and noise, thereby isolating the salient diagnostic features. The idea that the whole is 

greater than the sum of the parts underpins this innovative approach to combining CNNs and AEs. They combine 

to form a hybrid model with great promise for improving retinal illness identification and categorization in terms of 

accuracy, speed, and comprehensiveness. In the subsequent sections, we delve into the intricacies of this novel 

CNN-AE approach, elucidating its architecture, methodology, and the promising results it has yielded in our 

research. 

Data Description 

OCT images from prestigious institutions like the Shiley Eye Institute at the University of California, San Diego, the 

California Retinal Research Foundation, and Medical Centre Ophthalmology Associates have been assembled into a 

single, exhaustive dataset. These invaluable contributions stem from retrospective patient cohorts, underpinning a 

concerted drive to enhance our understanding of retinal diseases. The significance of this dataset cannot be 
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overstated, given the burgeoning prevalence of OCT scans, which now tally an estimated 30 million annually. These 

scans represent a treasure trove of diagnostic information, yet their sheer volume necessitates a substantial 

investment of time and resources for proper analysis and interpretation.  

The dataset [16], meticulously organized and thoughtfully divided, comprises three principal folders: train, test, and 

validation. Within each of these folders, a further subdivision is established, delineated by picture type. These 

picture types encompass the spectrum of retinal conditions, including normal, CNV, DME, and drusen. In total, the 

dataset encompasses a staggering 84,495 X-ray images, each stored in JPEG format and standardized to 

dimensions of 224 × 224 pixels for uniform preprocessing. Specifically, the training set includes an impressive 

array of images, with the following breakdown: CNV (37.2 thousand images), DME (11.3 thousand images), drusen 

(8,616 images), and normal (26.3 thousand images). The validation set, crucial for model assessment and fine-

tuning, is comparatively smaller, with each category containing a modest but representative selection of eight 

images. Finally, 242 photos are included in each of the four groups (CNV, DME, drusen, and normal) in the testing 

set, which is utilized to rigorously validate the effectiveness of the method. Dataset example shown in Figure 2. 

 

 

Figure 2: Dataset Sample 

Data Preprocessing 

In the critical phase of data preprocessing, several pivotal observations were made, serving as the foundation for a 

series of essential steps carried out on the training subset of data. These preprocessing procedures were 

meticulously designed to pave the way for the subsequent training of our proposed deep learning model, ensuring 

its robustness and effectiveness.  

(i) Synthetization of Input Image: A comprehensive analysis of the training dataset revealed a notable variance in 

the sizes and dimensions of images across all four classes (normal, drusen, DME, and CNV). To address this 

variability and enhance the uniformity of our data, a critical step involved the synthesis of all images into a 

standardized shape of 150 × 150 pixels. This standardization process serves to mitigate potential errors and 

discrepancies arising from variations in image sizes, thereby fortifying the model's performance. 

(ii) Image Rescaling: In pursuit of consistency and optimal data preparation, the pixel values of all images within 

the training, validation, and test datasets underwent a crucial transformation. A rescaling operation was applied, 

compressing the pixel values into the range of (0–1). This rescaling factor, achieved by dividing each pixel value by 

255, not only simplifies data handling but also ensures that the model's learning process is more stable and 

efficient. 

(iii) Data Augmentation: Recognizing the significance of an augmented dataset in bolstering the model's capacity to 

generalize across diverse image variations, a dynamic data augmentation technique was implemented exclusively 

on the training dataset. Augmentation serves to diversify the training set, enriching it with augmented versions of 

existing images. This augmentation strategy equips the model to better handle images from various perspectives 
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and orientations. Specific augmentation techniques, tailored to enhance the dataset's variability, were judiciously 

applied to the images, further enhancing the model's robustness. 

These pivotal preprocessing steps collectively contribute to the creation of a well-prepared and standardized 

dataset, laying the groundwork for our deep learning model's training and subsequent tasks. By synthesizing, 

rescaling, and augmenting the data, we not only bolster the model's performance but also fortify its adaptability to a 

wide spectrum of retinal images, ultimately advancing the accuracy and reliability of our diagnostic system. 

Edge based Image segmentation 

Edge-based image segmentation plays a pivotal role in the realm of OCT image analysis. Given the intricate nature 

of retinal layers and structures captured by OCT, accurately delineating boundaries and edges is of paramount 

importance. In the context of OCT images, edge-based segmentation algorithms are harnessed to identify and 

highlight the subtle transitions in reflectivity or intensity that signify the presence of anatomical features or 

pathological changes. These edges, once detected and linked, serve as the foundation for segmenting distinct retinal 

layers, lesions, or regions of interest. This method not only makes it easier to take accurate measurements, 

nevertheless it also provides a solid foundation for creating cutting-edge diagnostic tools for diseases including 

diabetic retinopathy, macular degeneration, and glaucoma. In the realm of OCT, edge-based image segmentation 

stands as a critical pillar, enabling a deeper understanding of ocular health and disease progression. Flowchart of 

the proposed system shown in Figure 3.  

Start

Data Collection

Image Resaling

Data Augmentation

Edge Based Image 

Segmentation

Hybrid Neural Network

Performance Evaluation

Result

 

Figure 3: Flowchart of Study Methodology 

Hybrid Neural Network Model 

A Hybrid Model of CNN and Autoencoder (AE) represents a powerful fusion of two distinct but complementary 

deep learning techniques. This integration harnesses the strengths of both CNNs, known for their exceptional 

feature extraction capabilities in image data, and Autoencoder, which excel in dimensionality reduction and 

denoising tasks. This comprehensive model offers a unique solution to a wide range of problems, particularly in the 

realm of computer vision and image processing. Figure 4 shows the architecture of proposed model. 



51  

 
 

K.Sathish et al. / J INFORM SYSTEMS ENG, 10(2s) 

Convolution 

Layer

Receiver Additive 

Noise Layer

Receiver Correction 

Layer

Feature Extraction 

Layer

Activation 

Layer

Maximum 

Pooling Layer

Loss Function 

Selection Layer

Classifier

Classifier Classifier Classifier Classifier

Encoding Layers

Decoding Layers

Input Image

Rescaling
Image Segmentaion

 

Figure 4: Architecture of Proposed Model 

Architecture of the Hybrid Model: 

The architecture of a hybrid CNN-AE model typically comprises two main components: the CNN encoder and the 

AE decoder.  

1. CNN Encoder: In the beginning stages of our hybrid model, we incorporate a CNN-based encoder. These 

Convolutional Neural Networks are like intelligent detectives for images, equipped with layers that automatically 

learn intricate features from the input data. Think of these features as the clues that detectives use to solve a 

complex puzzle. In the realm of image analysis, these features encompass a wide range, including edges, textures, 

patterns, and even the most sophisticated structures that the human eye might overlook. The Convolutional Layers 

are the first detectives on the scene. They employ convolutional operations with learnable filters to uncover these 

features within the input image. Each filter is specialized, much like a detective with a unique skill set, focusing on 

recognizing specific elements such as edges or corners. These detectives work tirelessly, scanning the image pixel by 

pixel. 

For a given layer 'i': 

𝑍𝑖 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑊𝑖 , 𝐴𝑖−1) + 𝑏𝑖                          (1) 

𝐴𝑖 = 𝑅𝑒𝐿𝑈(𝑍𝑖)                                                             (2) 

Where:  

Ai-1 is the activation from the previous layer. 

Wi represents the weights for layer 'i'. 

bi is the bias term for layer 'i'. 

Pooling Layers serve as the detectives' assistants, helping to simplify the vast amount of information they gather. By 

using these layers, the feature maps' spatial dimensions may be decreased without losing any of the most crucial 

information. It's similar to writing a short summary of a big report. Max-pooling and average-pooling are two 

common techniques these assistants employ. Finally, we have the Fully Connected Layers, which you can think of 

as the brilliant minds behind the detectives. After multiple rounds of investigations by the Convolutional and 

Pooling Layers, these fully connected layers step in. They can make predictions or extract even higher-level 

features, condensing all the acquired clues into a comprehensive understanding before the information is encoded. 

This orchestrated teamwork among layers ensures that our hybrid model is well-prepared to tackle complex image 

analysis tasks with precision and efficiency. The outcome of the last CNN layer, which serves as input to the AE 

encoder, can be represented as: 

𝑍1 = 𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑊1, 𝐴) + 𝑏1                         (3) 
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Where: 

Wl represents the weights for the latent space transformation. 

bl is the bias term for the latent space transformation. 

A represents the last CNN_layer 

2. Autoencoder (AE) Decoder: To complete the hybrid model, an Autoencoder decoder is used. An AE is a pair 

of components—an encoder and a decoder—that make up an unsupervised neural network structure. The input 

data is mapped by the encoder onto a lower-dimensional latent space, and the decoder then tries to recover the 

original data from the encoding. 

   - Encoder: In the hybrid model, the encoder maps the high-dimensional features extracted by the CNN into a 

lower-dimensional representation. This dimensionality reduction is crucial for removing noise and focusing on the 

most relevant features. 

   - Latent Space: The latent space is an intermediate representation where the most salient features are encoded. 

It is a compressed version of the input data. 

   - Decoder: The decoder part of the AE attempts to reconstruct the encoded features back into the original 

feature maps or images. This reconstruction process is guided by minimizing the reconstruction loss, encouraging 

the network to retain meaningful information while filtering out noise. The output of each layer in the decoder can 

be calculated as: 

𝑍𝑑𝑖 = 𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑊𝑑𝑖 , 𝐴𝑑𝑖−1 − 1) + 𝑏𝑑𝑖                          (4) 

𝐴𝑑𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑍𝑑𝑖)                                                                          (5) 

Where: 

Adi is the activation from the previous decoder layer. 

Wdi represents the weights for decoder layer 'i'. 

bdi is the bias term for decoder layer 'i'. 

Sigmoid activation for pixel values in the range [0, 1] 

Functionality of the Hybrid Model: 

The functionality of the hybrid CNN-AE model is multifaceted, and it depends on the specific task it is designed for. 

Here are some key aspects of its functionality: 

1. Feature Extraction: The CNN encoder effectively extracts discriminative features from the input data. These 

features are hierarchically learned and become increasingly abstract at deeper layers. This capability makes the 

hybrid model suitable for various image analysis tasks, such as object detection, classification, and segmentation. 

2. Dimensionality Reduction: The AE decoder's role in dimensionality reduction is essential for reducing the 

complexity of the data while retaining its essential information. This reduction is particularly valuable for tasks 

involving high-dimensional data or when dealing with noisy inputs. 

3. Denoising: Autoencoder are adept at denoising data. By encoding and then decoding noisy input, the model 

can effectively remove or reduce noise, resulting in cleaner and more informative data representations. 

4. Anomaly Detection: The hybrid model can identify anomalies by comparing the reconstructed data with the 

original input. If the reconstruction loss is high, it may indicate an anomaly or an outlier in the data. 

5. Transfer Learning: The CNN encoder in the hybrid model can be pre-trained on a large dataset for a related 

task (e.g., ImageNet for general image features). This pre-trained encoder can then be fine-tuned for a specific 

target task using a smaller dataset, saving significant training time and resources. 

Novelty of the Work: 

The hybrid CNN-AE model presents a host of notable advantages that contribute to its efficacy and versatility. 

Firstly, it excels in feature learning, with the CNN encoder autonomously deciphering meaningful features from 

data, eliminating the arduous need for manual feature engineering. Secondly, the AE decoder plays a pivotal role in 
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noise reduction, ensuring that the model remains laser-focused on pertinent information while effectively filtering 

out distracting noise. Moreover, the model offers dimensionality reduction capabilities, simplifying complex tasks 

by condensing data into more manageable forms. Its transferability is a remarkable asset, as pre-trained CNN 

encoders can seamlessly transition to different tasks, conserving valuable time and computational resources. Lastly, 

the fusion of CNN and AE components bolsters the model's robustness, endowing it with adaptability across 

various input types and challenging conditions, making it a potent tool in the realm of deep learning and data 

analysis. 

In summary, the hybrid CNN-AE model is a powerful framework that amalgamates the strengths of convolutional 

neural networks and Autoencoder. Its flexibility, feature extraction capabilities, and noise reduction properties 

make it a valuable tool in a wide range of applications, including medical imaging, image denoising, quality control, 

and natural language processing. With the ability to learn intricate features and reduce data complexity, this hybrid 

model represents a significant advancement in deep learning approaches for various tasks in computer vision and 

beyond. 

RESULT & DISCUSSION 

In this project, we have chosen to leverage the capabilities of Python in conjunction with Google Colab, a cloud-

based Jupyter Notebook environment, to serve as the backbone of our research and development efforts. Python, 

renowned for its versatility and extensive library support, provides us with a rich ecosystem of tools and packages 

tailored to various data analysis, machine learning, and scientific computing tasks. Its ease of use and readability 

make it an ideal choice for implementing algorithms, processing data, and conducting experiments. 

Complementing Python, Google Colab offers a collaborative and cloud-based environment that eliminates the need 

for intricate local setup. This platform allows us to work seamlessly with Python scripts, Jupyter notebooks, and 

data stored in Google Drive, fostering a collaborative and accessible research environment. Google Colab also 

provides GPU and TPU acceleration, enabling us to accelerate computationally intensive tasks, such as deep 

learning model training, without the need for powerful local hardware. Together, Python and Google Colab provide 

us with a streamlined and efficient research framework. This combination not only enhances our productivity but 

also facilitates collaboration with team members by enabling real-time sharing and version control of notebooks. As 

we navigate the complexities of our project, this dynamic duo empowers us to explore, experiment, and innovate 

with a robust foundation, all within a collaborative and accessible ecosystem. 

Performance Evaluation 

In the evaluation of the proposed model's effectiveness, various performance measures have been computed to 

provide a comprehensive assessment. These measures encompass accuracy, sensitivity, specificity, receiver 

operating characteristics (ROC) curve, and area under the curve (AUC). The following equations The mathematical 

formulas employed for calculating accuracy, sensitivity, and specificity, with reference to the key metrics of true 

positive (TP), false positive (FP), true negative (TN), and false negative (FN). 

Accuracy (Acc): 

Accuracy quantifies the overall correctness of the model's predictions across all classes. 

𝐴𝑐𝑐 =  
𝑇𝑃𝑜 + 𝑇𝑁𝑒

𝑇𝑃𝑜 + 𝑇𝑁𝑒 + 𝐹𝑃𝑜 + 𝐹𝑁𝑒

                     (6) 

Sensitivity (Sen): 

Sensitivity, sometimes called True Positive Rate or Recall, evaluates how well a model can recognise cases that 

should be considered positive. 

𝑆𝑒𝑛 =  
𝑇𝑃𝑜

𝑇𝑃𝑜 + 𝐹𝑁𝑒

                                          (7) 

Specificity (Spec): 

The model's specificity is a measure of how well it can detect undesirable situations. 

 

𝑆𝑝𝑒𝑐 =  
𝑇𝑁𝑒

𝑇𝑁𝑒 + 𝐹𝑃𝑜

                                         (8) 
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Figure 5: Input Data 

Figure 5 shows the input image. Following the initial data collection phase, our research underwent a pivotal image 

preprocessing stage that played a fundamental role in enhancing the quality and utility of the collected visual data. 

This preprocessing endeavor involved a series of meticulously crafted steps aimed at preparing the images for 

subsequent analysis and modeling. The output of this crucial image preprocessing phase is detailed below, 

reflecting a dataset that has been meticulously curated and refined to ensure its readiness for in-depth examination 

and data-driven insights. Figure 6 shows the preprocessed image. 

 

Figure 6: Preprocessed Image 

The provided code snippet exemplifies a series of essential image preprocessing steps performed in Python using 

OpenCV. It commences by loading an input image and subsequently confirming its successful loading. Figure 7 

shows the segmented image. Following this, a sequence of image transformations unfolds. Initially, the image is 

converted to grayscale, streamlining further processing. Subsequently, the image undergoes resizing, allowing for 

customization of its dimensions to meet specific requirements. A Gaussian blur is then applied to attenuate noise, 

enhancing the image's overall quality. The preprocessing journey continues with thresholding, facilitating the 

creation of a binary image by distinguishing regions based on pixel intensity. Lastly, edge detection through the 

canny edge detector reveals prominent edges and outlines within the image, aiding in subsequent analysis or 

segmentation tasks. These preprocessing steps collectively contribute to refining the image's suitability for a wide 

range of computer vision and image analysis applications. 
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Figure 7: Segmented Image 

You can see the precise mapping of expected output results for different input pictures reflecting the four unique 

states of the retina in the confusion matrix presented in Figure 8. This categorization effectiveness matrix illustrates 

how well the model classifies input photos into the various retinal disease categories. The outcomes depicted in the 

confusion matrix underscore the efficacy of the proposed model in achieving precise and reliable classification, 

reinforcing its potential as a valuable tool for diagnosing and categorizing retinal diseases. This robust classification 

performance signifies a significant stride toward enhancing the understanding and management of retinal health. 

 

 

Figure 8: Confusion Matrix of Proposed Models. 

 

Table 1: Evaluation of the Various Model 

Technique Accuracy Sensitivity Specificity Precision F1 score 

AlexNet 86.14 86.39 90.54 87.45 88.06 

Inception 88.15 88.16 91.18 88.09 89.37 

ResNet 93.69 92.03 92.87 92.78 91.94 

ANN 94.63 94.39 93.95 93.86 93.29 

CNN 96.16 95.03 94.65 94.56 94.27 

Proposed 

Model 
98.41 97.14 98.12 97.03 97.56 
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The Table 1 summarizes the performance metrics of various neural network architectures, including AlexNet, 

Inception, ResNet, a conventional Artificial Neural Network (ANN), a CNN, and the proposed model, in the task of 

classifying retinal diseases. These metrics serve as a comprehensive evaluation of the models' capabilities in terms 

of accuracy, sensitivity, specificity, precision, and F1 score. AlexNet demonstrates a commendable performance, 

achieving an accuracy of 86.14%. It exhibits strong sensitivity (86.39%) and specificity (90.54%), indicating its 

proficiency in correctly classifying both positive and negative instances. The precision and F1 score for AlexNet 

stand at 87.45% and 88.06%, respectively. Inception exhibits enhanced accuracy, reaching 88.15%, with sensitivity 

and specificity values of 88.16% and 91.18%, respectively. It showcases precision and an F1 score of 88.09% and 

89.37%, signifying its capacity for accurate disease classification. 

 
Figure 9: Comparison of Accuracy 

 

Accuracy comparison is shown in Figure 9. ResNet excels among the evaluated models, achieving an impressive 

accuracy of 93.69%. It maintains a robust balance between sensitivity (92.03%) and specificity (92.87%), 

underscoring its reliability in distinguishing between retinal disease states. Sensitivity and specificity comparison is 

shown in Figures 10 and 11. Figure 12 shows the precision and f1-score comparison. The precision and F1 score for 

ResNet are 92.78% and 91.94%, respectively. The conventional ANN demonstrates a notable accuracy of 94.63%, 

complemented by high sensitivity (94.39%) and specificity (93.95%) values. This highlights its aptitude for precise 

classification. The precision and F1 score for the ANN are 93.86% and 93.29%, respectively. The CNN model 

exhibits even higher accuracy at 96.16%, emphasizing its proficiency in retinal disease classification. It maintains a 

balanced sensitivity (95.03%) and specificity (94.65%), indicating its capability to handle both positive and negative 

cases effectively. The precision and F1 score for CNN are 94.56% and 94.27%, respectively. The suggested model's 

accuracy of 98.41% well surpasses that of its competitors. Its outstanding accuracy in detecting retinal disorders is 

supported by its high levels of sensitivity (97.14%) and specificity (98.12%). The suggested model has an 

outstanding capability for precise illness categorization, as evidenced by its accuracy and F1 score of 97.03% and 

97.56%, respectively. 
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Figure 10: A Comparison of Sensitivity 

 
Figure 11: Specificity Evaluation 

 

 
Figure 12: Precision and F1 Score for Different Models 
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In conclusion, the proposed model emerges as the frontrunner in this comparative analysis, demonstrating superior 

accuracy and a well-rounded performance across multiple metrics. It has the potential to be a useful tool for the 

identification and categorization of retinal disorders, with great implications for improving medical diagnostics and 

patient care, as evidenced by its high sensitivity, specificity, accuracy, and F1 score. 

The effectiveness of binary models for categorization may be visually evaluated using a ROC curve, as seen in Figure 

13. It shows the tradeoff among sensitivity (how well a model can detect positive examples) and false positive rate 

(how often a model mistakenly classifies negative cases as positive). The curve plots these values, typically showing 

a diagonal line for random guessing and a curve above it for an effective model. The AUC-ROC quantifies the 

overall model performance, with a higher AUC-ROC indicating better discrimination. ROC curves help in selecting 

the optimal threshold for a specific task, balancing the trade-off among true positives and false positives based on 

the problem's requirements. 

 
Figure 13: ROC Curve 

 

Table 2: Computational Time of Various Models 

Model Training Time Testing Time 

AlexNet 689 240 

Inception 698 258 

ResNet 754 221 

ANN 489 189 

CNN 888 271 

Proposed Model 578 212 

 

The provided Table 2 and Figure 14 furnishes insights into the computational efficiency of various neural network 

models during both the training and testing phases. These metrics, encompassing training time and testing time, 

offer a comprehensive view of the computational demands and speed of execution associated with each model. 

AlexNet, a well-established architecture, requires 689 units of time for training and 240 units for testing. It strikes 

a balance between training and testing times, indicating its efficiency in both model learning and inference. 

Inception, with its intricate design, exhibits a training time of 698 units and a testing time of 258 units. Despite its 

complexity, it manages to maintain a reasonably efficient testing phase, suggesting its suitability for applications 

that require rapid predictions. 
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Figure 14: Computational Time of Various Models 

ResNet, known for its depth and skip connections, necessitates 754 units of time for training and 221 units for 

testing. This demonstrates its capability to efficiently train even in deeper architectures while ensuring swift testing. 

The conventional ANN exhibits notable efficiency, with a training time of 489 units and a testing time of 189 units. 

Its comparatively shorter training time highlights its agility in learning from data. The CNN boasts a training time 

of 888 units and a testing time of 271 units. While its training time is relatively longer, it still manages to deliver 

reasonable testing efficiency, underlining its robustness in real-time applications. Remarkably, the proposed model 

stands out as an epitome of computational efficiency, with a training time of 578 units and a testing time of 212 

units. It strikes an excellent balance between training and testing, offering swift learning and rapid predictions. 

In conclusion, the presented metrics shed light on the computational characteristics of these neural network 

models. While each model has its own strengths and complexities, the proposed model distinguishes itself by 

achieving efficient training and testing times, positioning it as a promising choice for applications demanding both 

accuracy and speed. These insights aid in the informed selection of the most suitable model based on the specific 

computational requirements of a given task or system. 

CONCLUSIONS  

In conclusion, the integration of neural networks, specifically the hybrid model combining CNN and AE, has 

demonstrated remarkable promise in advancing the field of retinal disease detection and classification using OCT 

images. This research endeavor has brought forth significant insights and contributions that warrant 

comprehensive consideration. The fundamental goal of this research was to combine CNN and AE structures to 

harness the potential of deep learning and address the significant difficulties in diagnosing retinal diseases. The 

utilization of CNNs, renowned for their image feature extraction capabilities, and AEs, proficient in dimensionality 

reduction and noise mitigation, created a synergistic model capable of extracting intricate features while ensuring 

robustness to noise and artifacts commonly encountered in medical imaging. The efficacy of the suggested hybrid 

model is vividly illustrated by the outcomes of the experiment. With an impressive accuracy of 98.41%, it 

outperformed other conventional neural network architectures, including AlexNet, Inception, ResNet, ANN, and 

standalone CNN, across various key effectiveness metrics including sensitivity, specificity, precision, and F1 score. 

This substantiates the model's excellence in identifying and classifying retinal diseases with unparalleled precision 

and reliability. Furthermore, the model's exceptional computational efficiency, as evidenced by its competitive 

training and testing times, showcases its practicality for real-world clinical applications. The balance it strikes 

between rapid learning and swift inference makes it an attractive candidate for integration into medical diagnostics 

systems, where both accuracy and speed are paramount. The incorporation of the proposed hybrid model into the 

realm of retinal disease detection holds immense potential for revolutionizing healthcare practices. By providing 

accurate and timely diagnoses, it can significantly enhance early disease detection and intervention, ultimately 

improving patient outcomes and quality of life. Its adaptability to different OCT image datasets and the potential 

for transfer learning make it a versatile tool for addressing a wide range of retinal conditions. Nevertheless, it is 

important to acknowledge the ongoing nature of research in this field. In our future endeavors, we are committed to 

advancing our retinal disease detection system by integrating an ensemble of neural networks coupled with 
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advanced optimization techniques. This strategic approach promises to elevate the performance and reliability of 

our model, offering even greater accuracy and robustness in the classification of retinal diseases. By harnessing the 

collective intelligence of diverse neural network architectures and fine-tuning their parameters through 

optimization, we aim to achieve exceptional diagnostic precision. This future direction reflects our unwavering 

dedication to continuously improving the quality of healthcare and the early detection of retinal conditions through 

cutting-edge technology and research. 
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