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An unmanned aerial vehicle (UAV), is an aircraft that does not have a human pilot and is 

controlled either independently by the aircraft's computers or by remote control. Because of 

their high mobility, FANETs are often used in UAVs because they can disrupt communications 

as well as network stability due to frequent topology changes. In-depth exploration and 

implementation of UAV network development, concentrating on diverse topologies such as 

star, multi-star, and network configurations, we developed the Energy-Efficient Data 

Transmission Policy for UAV (EEDTP-UAV) model. It emphasizes mobility, energy efficiency, 

UAV distance control, and road availability in the context of Flying Ad-hoc Network (FANET) 

technology development. Special attention is given to path optimization techniques and 

different link types, which are crucial for effective UAV communication. By using a relay-based 

energy-efficient process, off-grid user connections are optimized according to energy 

consumption meters, and data is collected cooperatively between the UAV cluster and the 

mobile synchronous node, providing equal energy usage and efficient data transmission. Due to 

its flexibility and adaptive nature, the proposed algorithm is well-suited for real-time UAV 

swarm operations that tackle dynamic path planning, and energy efficient communication 

methods such as airborne navigation or crowd control. Compared with existing model EEDS, 

DSSPCA, EEUCH, and ESRD-PDCA models with our proposed EEDTP-UAV model. By the 

following parameters communication delay, energy efficiency, data success rate, throughput, 

and routing overhead have been calculated. 

Keywords: Energy-Efficient Data Transmission, Particle Swarm Optimization (PSO), 

Unmanned Aerial Vehicle (UAV) and UAV Path Optimization Algorithm. 

 

INTRODUCTION 

In the rapidly evolving landscape of technology, the convergence of Internet of Things (IoT) systems and 

Unmanned Aerial Vehicles (UAVs) represents a significant leap forward in data collection, analysis, and decision-

making capabilities. This integration, known as UAV-assisted IoT, leverages the strengths of both technologies to 

enhance various applications and industries [1]. 

Unmanned aerial vehicles (UAVs), also known as drones, are aircraft that fly without a human pilot present. They 

are equipped with an array of sensors and cameras, which allow them to gather high-resolution data from diverse 

environments. In contrast, the Internet of Things (IoT) refers to a network of networked devices that exchange data 

and communicate online. IoT systems collect, transmit, and analyze data to enable smart decision-making and 

automation. 

The integration of Unmanned Aerial Vehicles (UAVs) with Long Range Wide Area Network (LoRaWAN) technology 

represents a ground-breaking advancement in wireless communication and data collection. This fusion, known as 

UAV-assisted LoRaWAN, leverages the unique strengths of both UAVs and LoRaWAN to enhance connectivity and 

data transmission over long distances and challenging environments. Energy efficiency in UAVs (Unmanned Aerial 

Vehicles) is crucial for maximizing their operational capabilities and extending their flight times. Several factors 

contribute to energy efficiency, from design considerations to operational practices. Here’s an overview of how 
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energy efficiency can be achieved and improved in UAVs by Design Optimization, Battery Technology, proper 

Power Management, UAV path Planning and Operation, Data load Considerations and Other Environmental 

Factors [2-3]. 

In this paper, the proposed model Energy-Efficient Data Transmission Policy for UAV (EEDTP-UAV) model, that 

works to minimize the transmission energy consumption of the nodes and ensure timely data collection to UAV and 

also an energy efficient transmission policy is determined such that the optimum transmission mode is selected and 

the total transmission energy consumption of the nodes are minimized. 

In UAV-assisted IoT networks, data reliability and precision are critical. Reliable information guarantees the 

network's optimal performance, and accurate data is essential for making trustworthy decisions [4-5]. Techniques 

for error detection and repair are used to guarantee consistent data collecting. 

 

Figure 1: Network Model of UAV assisted LoRaWAN 

 

Custer has been formed based on optimization algorithm, and based on cluster policy, cluster head (CH) and cluster 

Agent (UAV/Drone) were categorized. Normally, CH will be a decision-making process like choosing the optimal 

path, deciding on transmission, which UAV has to communicate on time, etc. Based on the CH direction, the other 

UAV/Drone present in the cluster will function. Overall, the cluster will be communicated through Base station, 

which act as a transceiver. The network model of UAV assisted IOT is represented in Figure 1. In each cluster, the 

cluster members (UAV) send their collected data to the cluster head (CH), who aggregates the data. The CHs 

indicate the possible data collection points for the UAV. From the takeoff-point, the UAV visits each data collection 

point and communicates only with the CHs to complete the data gathering process. The blue dotted line denotes the 

initial trajectory of the UAV. 

The remaining portions of this paper are arranged as follows: The prior study on Relay Selection Technique for 

Energy-Efficient Data Transmission policy in UAVs is provided in Section 2. Section 3 provides the proposed 

algorithm. In Section 4, we discuss our proposed work simulation results and analysis, along with a comparison 

with the current routing protocols. The conclusion and recommended subsequent paths are provided in Section 5. 

EXISTING SYSTEM 

In [6], The use of a social learning approach and fully automatic max-min colony algorithm (MMACO) to improve 

the self-management of drone swarms has been proposed as an improvement. It starts with three colonies, with 

three randomly placed drones, and selects the best drone to guide through the multi-agency system (MAS). The 

algorithm organizes these UAVs into formations and synchronizes them into a swarm controlled by dynamic leader 

selection. The hybrid approach is deemed superior to the non-dominant genetic allocation algorithm II (NSGA-II), 

which offers better convergence and shorter route planning.  

In [7], explores a UAV-aided hybrid FSO/RF backhauling system to enhance B5G networks, particularly during 

adverse weather conditions that degrade FSO performance. A UAV is deployed to assist a ground base station 

(GBS) experiencing reduced backhaul capacity due to weather attenuation like fog. The GBS, typically connected to 

a macro-base station (MBS) via FSO, uses the UAV to offload users and maintain data transmission reliability. A 

matching game theory and reinforcement learning framework optimize UAV deployment and bandwidth 
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partitioning to maximize system throughput. Real weather data from Edinburgh and London demonstrate the 

proposed scheme's effectiveness over traditional methods.  

In [8], a rescue task distribution model using multiple UAVs has been developed to aid in post-earthquake search 

and rescue (SAR) operations. This model aims to lower drone emissions, reduce costs, and accelerate the recovery 

process. A new type of algorithm, PSOGWO, is a combination of particle swarm optimization (PSO) and gray wolf 

optimization (GWO), enhanced by a transformation, nonlinear transfer factor, individual update strategy, and 

dynamic weighting. PSO and GWO are examples of where the model has been tested in a case study. The analysis 

focuses on the sensitivity of UAV capability to factors such as rescue time and costs to develop VRP models for 

vehicle routing problems (VRP) and improve rescue strategies for SAR operations.  

In [9], a multi-UAV guidance planning algorithm with advanced processing capabilities, known as PPSwarm, is 

designed to handle challenging terrain and obstacles. The RRT* algorithm is utilized by PPSwarm to quickly 

determine the first feasible route, and then a priority scheduling method is employed to facilitate drone 

cooperation. The randomization strategy maximizes the diversity of particle swarms and avoids local optimal traps. 

PPSwarm outperforms algorithms such as DE, PSO, ABC, GWO, and SPSO in terms of path quality, transition 

speed, & processing time for unconventional conditions according to experimental results. Additionally, PPSwarm 

demonstrates excellent scalability and processing capability in large-scale experiments with 500 UAVs. 

In [10], the unfeasibility of human flight in challenging geographic conditions necessitates the planning and 

tracking of UAV routes. It uses the combined Harris-Hawk optimization (HHO) and GWO algorithm to optimize 

the route planning, ensuring obstacle avoidance and minimal energy and time consumption. The hybrid HHO-

GWO algorithm effectively avoids local minima and achieves rapid convergence. The study also examines the 

impact of UAV mass change uncertainty on path planning and tracking. Compared to PSO and GWO, the proposed 

approach demonstrates superior performance, generating fast, safe optimal paths and ensuring efficient 

quadcopter tracking with minimal energy and time usage.  

In [11], the authors introduced SSGWO technique that use gray wolf optimization algorithm which used for tracking 

UAVs in 3D agriculture. This algorithm uses a nonlinear transfer factor founded on trigonometric functions to 

equilibrium local and global searches. A method for achieving faster convergence has been devised using distance 

matching, and a simulated annealing (SA) based position update strategy is integrated to enhance the search 

process. A B-spline curve ensures path smoothness and feasibility. Simulation results demonstrate that SSGWO 

achieves better convergence accuracy, stability, and higher-quality paths compared to GWO, MGWO, IGWO, and 

SOGWO.  

In [12], to improve the flight control of UAVs in difficult terrains, a fractional memetic computing approach known 

as Fractional Velocity Particle Optimization (FO-VPPSO) is utilized. The adaptive fractional order (FO-VPPSO) and 

rate-limiting approach are utilized by the organization, which is a significant challenge for conventional PSO 

algorithms due to their fast convergence and poor balance between exploration and exploitation. This hybrid 

algorithm optimizes flying path length, reduces terrain navigation costs, and prevents collisions. Simulations and 

benchmark tests demonstrate FO-VPPSO's superior convergence, solution optimality, and performance in complex 

terrains, improving fitness functions, flight length, terrain costs, and collision avoidance compared to PSO and 

VPPSO.  

In [13], an improved algorithm for UAV path planning in urban pipe corridors syndicates using a accommodating 

game model founded on Nash trade-off theory, they optimized spherical vector particle swarm optimization (SPSO) 

and differential evolution (DE). A 3D network map of the city's pipelines is produced with a high level of accuracy, 

and supplementary information is provided to transform route planning into an optimization problem. Cost-

effectiveness enhancement for UAV surveillance techniques can be achieved with a hybrid GSPSODE algorithm. 

Comparisons with SPSO, DE, GA, and ACO show GSPSODE's superiority, though experimental parameters and 

conditions can impact accuracy. The RflySim platform emulates UAV inspection routes in urban pipeline systems. 

In [14], multi-UAV dynamic task scheduling for disaster relief operations, such as emergency communications, 

supply delivery, and disaster mapping. It constructs a multi-constraint mathematical model considering task 

demands and UAV capabilities, with objectives to maximize scheduled task profit, minimize time consumption, and 

balance tasks among UAVs. A method of weighted summation is used to optimize the multi-objective problem into 

a single-objective one. It introduces a new, dynamic job scheduling method using purely hybrid contract protocol, 
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with exchange, replacement contracts, and buy-sell agreements. Extensive simulation proves that the method is 

effective even in situations where unexpected operations, interruption, and floor failure are present.  

In [15], a good planning strategy for UAV teams performing area coverage operations in 3D space. It addresses 

problems such as uneven distribution of work, low capacity, and high effort. This area is then divided into sub-areas 

using the improved C-clustering algorithm for task allocation. The UAV task paths are then planned using a PSO 

hybrid ant colony (PSOHAC) algorithm. Simulations verify the scheme's feasibility and superiority, showing that it 

achieves full area coverage and efficient task allocation. The proposed method improves balanced energy 

consumption efficiency by up to 21.9% and overall energy efficiency by up to 7.9% compared to related algorithms.  

In [16], the wireless network represents the uneven distribution of traffic in mobile networks and uses drones as 

relays to reduce congestion. It jointly optimizes UAV positioning, user communication, spectrum, and power 

distribution to maximize user registration. Genetic-based algorithms optimize UAV position, while a branch-and-

bound method simplifies user association and spectrum allocation. A power distribution switch is proposed based 

on the near-inverting concept. Simulations demonstrate the superiority of the UAV-assisted network over 

terrestrial networks in both utility and throughput, with significant performance improvements compared to other 

schemes.  

In [17], a photovoltaic solar system into UAVs to address safety and flight autonomy challenges. It consolidates 

solar cells without compromising aerodynamic efficiency and analyses the potential of solar resources in fixed-wing 

aircraft for video surveillance applications. The investigation identifies the optimal position of both wings and 

aircraft by using computer simulation tools to examine their charge-discharge model. It aims to make the battery 

charge more efficiently by putting in photovoltaic cells; results and conclusions on this can be found at length in the 

article's final section. 

In [18], lightweight hydrogen fuel cell-powered rotary-winged aerial vehicles for urban transportation, can carry 

either unmanned cargo or one passenger. The optimization process integrates aerodynamic and propulsion system 

sizing to meet performance requirements, achieving a specific range and endurance suitable for urban air transport.  

In [19], using PSO to design high-quality control mechanisms for an innovative hybrid thermal management 

system (IHTMS) in electric batteries (EV). The aim is to reduce low-efficiency temperature periods during EV 

startup and maintain optimal temperatures for PEMFCs and batteries, improving travel range and power output. 

PSO-based control strategies outperform rule-based (RB) methods in reducing temperature rise time and average 

temperature errors for both PEMFCs and batteries under various driving cycles (WLTP and NEDC). Future work 

involves experimental verification of IHTMS integration into hybrid-energy EVs. 

In [20], a Mobile Edge Computing (MEC) system architecture for joint-UAV surveillance tasks with low battery 

power and computing resources. It uses a helicopter (UH) as a MEC server to provide data services for surveillance 

UAVs, aiming to reduce the burden of effort and delay. The bat algorithm (IBA) is better for solving computational 

strategy problems, demonstrating superior accuracy, stability, and efficiency compared to heuristic algorithms like 

PSO and the basic Bat Algorithm (BA). Simulation experiments confirm the effectiveness of IBA in reducing energy 

consumption and task execution delay for multi-UAV operations. In [21], energy management for the aircraft's fuel-

electric system is intended to maximize the engine' cab working area, regulate dynamic dynamics, and maintain 

control over the battery charge. It employs the maximum likelihood method for fuel consumption efficiency curve 

identification and real-time load power estimation. Multi-objective model predictive control integrates engine and 

battery characteristics, with fuzzy control adjusting weight coefficients dynamically. Simulation experiments 

confirm the effectiveness, showcasing improved economy, battery management, and system stability compared to 

pure fuel drive.  

In [22], the utilization of a convolutional neural network (MWSO-CNN) for war strategy prediction utilizes adaptive 

war strategies optimization and CNN to optimize war strategies. The MWSO technique adjusts hyperparameters for 

improved efficiency. Tested on real-world datasets, more cost-effective than current machine learning techniques, 

MWSO-CNN offers an affordable means of accurately forecasting energy usage and is beneficial to the energy sector 

and society. In [23], this is an extensive framework for UAV traffic control in small-scale urban areas, 

encompassing everything from cluster-based route planning and conflict detection (CD&R) in unmanned aerial 

vehicle traffic management (UTM) to spatial resource allocation methods. The framework employs the Saturated 

Fast-Marching Square algorithm for path planning and proposes four UTM models for efficient airspace resource 

allocation. The Batch Optimization (BO) model strikes a balance between computational tractability and system 
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optimality. An adapted Vickrey-Clarke-Groves (VCG) mechanism incentivizes truthful information reporting by 

UAV operators. The scalability and effectiveness of the proposed framework are demonstrated through a numerical 

analysis conducted in the San Francisco region. 

In [24], aerial surveillance using the Joint Topology Control and Routing (JTCR) protocol, which involves UAV 

teams, addresses issues of optimal distribution and data routing. The protocol integrates virtual force-based 

mobility control, energy-efficient fuzzy clustering, and topology-aware Q-routing to ensure stable connectivity, 

efficient data aggregation, and optimal routing. Performance analysis demonstrates superior tracking coverage, 

connectivity, and energy efficiency compared to existing protocols, achieved through realistic UAV mobility control 

with reasonable control overhead.  

In [25], using MSGA-DE and HNS-IBWO, we can use a planning model and two-stage metaheuristic algorithm to 

improve the distribution and collection of medical devices in closed-loop logical networks during outages. 

Comparing the effectiveness of MSGA-DE for UAV trajectory planning with HNS-IBWO for more complex 

optimizations is demonstrated by this comparison. Simulation results in a closed community at the end of Shanghai 

confirm that the model is effective for tasks such as hybrid flights of aircraft, multi-objective search, and global 

search, providing 'the right solution' for planning UAV traffic during the pandemic shutdown. 

PROPOSED SYSTEM 

3.1 Proposed EEDTP-UAV Model 

The proposed EEDTP-UAV system has been classified into seven step procedure to carry full set of operation. 

Basically, this EEDTP-UAV was classified into two working operation, based on Energy efficient management and 

Reliable Data Transmission. 

3.2 LoRaWAN routing Protocol 

LNs create a LoRaWAN packet and add extra information for routing purposes before sending it through multiple 

hops. When the packet reaches a gateway neighbour, the additional information is removed and only the LoRaWAN 

section is transmitted. This process can be seen in the second set of arrows originating from LN1. The Application 

Server will receive the packet as if it was sent directly from the initial node, and its energy remains reliable 

throughout as part of a single hop network within LoRaWAN. The different components within the network: blue 

for gateways, dark orange for RN1 (located near a gateway), and light orange for other RNs that receive updates 

from neighbour RNs (such as RN1) and then transmit their own updates.  

3.3 Mobile UAV Placements 

A new approach for placing mobile UAVs most effectively. This method utilizes a cyclical multiple access strategy, 

where a mobile UAV equipped with a base station is used to improve wireless connectivity and communication 

quality for distributed ground terminals. By using drones with high-speed capabilities, this telecommunication 

method enhances communication between sources and endpoints. To achieve this, the trajectory and power 

distribution of the UAV are optimized for optimal performance. However, only two studies considered the use of a 

single drone and developed a simple method for it. The proposal suggests a round-the-world path with 'an essential 

point on the ground' for low-power communication between UAVs and ground nodes. The goal is to optimize the 

UAV approach to create a balance between information power and effort.  

3.4 Air-to-Ground Path Loss Process 

By utilizing the air-to-ground path loss model, it is possible to estimate the distance between the mobile node (MN) 

and the UAV- Multi-Access Edge Computing (MEC) server. MN(𝑖) can be found at the coordinates of the 

positions 𝑥𝑖 , 𝑦𝑖, and zero in the three-dimensional space. In the time slot ′𝑡′, MN i and UAV-MEC server j are 

separated by 𝑟𝑖,𝑗(𝑡). The UAV-MEC server's long route can be used to determine the 3D distance between MN(𝑖) 

and the UAF-MCE server ′𝑗′. Line-of-sight (LS) and non-line-of-see (NLT) communication modes are utilized by 

this model to enable wireless communication between two devices. The methods for consolidating LoS and NLoS 

can be mathematically represented: 

𝑑𝑖,𝑗(𝑡) = √𝑥𝑖 − 𝑥𝑗(𝑡))2 + (𝑦𝑖 − 𝑦𝑗(𝑡))2 + ℎ2                                                                                     (1)  

The velocity of light and the incidence of the carrier wave are denoted by c and f, respectively. The natural factors 

𝜂𝐿𝑆 and 𝜂𝑁𝐿𝑆 are specific for the ‘LS’ and ‘NLS’ transmission methods, respectively. By using these parameters, the 
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below equation can formulate that reflects the likelihood of ‘LS’ occurring between MN(𝑖) and the UAV-MEC server 

′𝑗′. 

𝑃𝐿𝐿𝑜𝑠 = 20 𝑙𝑜𝑔𝑑𝑖,𝑗(𝑡) + 20 log 𝑓 + 20 log
4𝜋

𝑐
+ 𝜂𝐿𝑜𝑠,                                                                      (2) 

𝑃𝐿𝑁𝐿𝑜𝑠 = 20 𝑙𝑜𝑔𝑑𝑖,𝑗(𝑡) + 20 log 𝑓 + 20 log
4𝜋

𝑐
+ 𝜂𝐿𝑜𝑠,                                                                    (3)     

𝑃(𝐿𝑜𝑆) = ∏ (1 − 𝑒𝑥𝑝 (
(ℎ𝑗−(𝑛+

1

2
)

(ℎ𝑖−ℎ𝑖)2

(𝑚+1)
)

2𝛾2 ))𝑚
𝑛=0                                                                             (4) 

𝑚 = ∟((ℎ𝑖 − ℎ𝑖)𝑡𝑎𝑛𝜃√𝛼𝛽 − 1,                                                                                                                          (5) 

ℎ𝑖 is the height of the UAV-MEC server while ℎ𝑗 is its height. It should be emphasized that the system's frequency 

does not affect the geometry of the line-of-sight (LS). The probability function for ‘LS’ links can be represented by 

an S-curve, with constants a and b being determined by the breeding environment, or in high places. 𝜔 =

arctan (
ℎ

𝑟𝑖,𝑗(𝑡)
) represents the maximum angle between MN(𝑖) and UAV-MEC server ‘𝑗′ at time slot ‘t’ along the 

counter path. Then the probability function for creating a non-line-of-sight (NS) link can be expressed as the 

average path loss (APL) of the system in a time slot ‘t’ can be calculated using equations (2), (3), (6), and (7) in 

equation (8). Using basic algebraic operations, we get: 

𝑃(𝐿𝑆) =
1

1+𝛼exp (−𝑏(𝜔−1))′,                                                                                                                                   (6) 

𝑃(𝑁𝐿𝑆) = 1 − 𝑃(𝐿𝑆)                                                                                                                                          (7) 

𝑃𝐿𝑖,𝑗(𝑡)) = 𝑃(𝐿𝑆) × 𝑃𝐿𝐿𝑆 + 𝑃(𝑁𝐿𝑆) + 𝑃𝐿𝑁𝐿𝑆                                                                                 (8) 

𝑃𝐿𝑖,𝑗(𝑡)) =
𝜂𝐿𝑜𝑆−𝜂𝑁𝐿𝑜𝑆

1+𝑎 exp(−𝑏(arctan(
ℎ

𝑟𝑖,𝑗(𝑡)
)−𝑎))

+ 10 log  (𝑑𝑖,𝑗(𝑡)2) + 20 log(𝑓) + 20 log (
4𝜋

𝑐
) + 𝜂𝑁𝐿𝑆,                (9)  

In this scenario, we are using the equation (1) to represent the signal strength between MN(i) and UAV-MEC server 

′𝑗′ at time ′𝑡′. MNs are assumed to possess equal transmission power. Therefore, the signal-to-noise ratio between 

MN(i) and UAV-MEC server ′𝑗′ at time slot ‘t’ is given by 𝑝𝑖2
/𝜎2, where 𝑝𝑖  is the transmission power of MN(i) and 

𝜎2. The noise effect is the ground to airborne (GA) data transfer rate between MN(i) and UAV-MEC server ′𝑗′ at slot 

′𝑡′ and is determined by this equation. To determine the average data transfer rate for MN(i) overall ‘T’ cycles, one 

needs to multiply the job buffer request rate by each job request's data size, such as 𝑙𝑖, 𝜆𝑖. 

𝑆𝑁𝑅𝑖,𝑗(𝑡) =
𝑃𝑖

𝑃𝐿𝑖,𝑗(𝑡)×𝜎2,                                                                                                                                       (10) 

𝑅𝑖,𝑗(𝑡) = 𝐵 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑖,𝑗(𝑡))                                                                                                                    (11) 

𝑅𝑖,𝑗(𝑡) =
1

𝑃
∑ 𝑅𝑖,𝑗(𝑡)𝑃

𝑡=1                                                                                                                                        (12) 

𝑇𝑖,𝑗
𝑇𝑟𝑎𝑛𝑠 =

1

𝑅𝑖,𝑗
                                                                                                                                                         (13) 

𝑇𝑗
𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐴𝑖,𝑗𝜆𝑖𝑇𝑖,𝑗

𝑇𝑟𝑎𝑛𝑠𝑀
𝑖=1                                                                                                                                   (14) 

It is assumed that all tasks requested from the MD 𝑖 are sent through the output of the G2A channel is high on the 

UAV-MEC server j. The G2A data transfer delay, 𝑇𝑖,𝑗
𝑇𝑟𝑎𝑛𝑠, depends on the processing data size, 𝑙𝑖, and the data 

transfer rate, 𝑅𝑖,𝑗. By multiplying the download request rate of 𝜆𝑖 with the equation 𝑇𝑖,𝑗
𝑇𝑟𝑎𝑛𝑠 =  𝑙𝑖/𝑅𝑖,𝑗, one can 

regulate the entire data transmission delay for MNs associated to the UAV-MEC server. By using the equation 

𝐸𝑗
𝑡𝑟𝑎𝑛𝑠 =  𝑙𝑖 ∗ 𝜆𝑖, it is possible to determine the energy required to transfer tasks between MN(i) and UAV-MEC 

server ′𝑗′. Total energy ingesting for all MNs connected to the UAV-MEC server ′𝑗′ can be determined by multiplying 

each task's data size, 𝑙𝑖, with its corresponding task offload request rate, 𝜆𝑖. 

𝐸𝑗
𝑡𝑟𝑎𝑛𝑠 = 𝑃𝑖𝑇𝑖,𝑗

𝑡𝑜𝑡𝑎𝑙                                                                                                                                                 (15) 
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𝐸𝑗
𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐴𝑖,𝑗𝜆𝑖

𝑀
𝑖=1 𝐸𝑖,𝑗

𝑡𝑟𝑎𝑛𝑠                                                                                                                                  (16) 

3.5 Optimal Path Planning Process 

The meta-heuristic algorithm, inspired by nature, is utilized to determine the best route for a swarm of UAVs. As 

the UAVs operate together, they come across various obstacles that can hinder the network's efficiency. The 

proposed algorithm draws inspiration from swarm algorithms, which aim to find the most efficient path. It is 

complemented by a well-planned approach to manage data transmission and communication throughout the 

network. In the dynamic environment of the time, where multiple UAVs operate as a swarm, their distance and 

position must be continuously updated to find the optimal route.  

Moreover, if there are any changes in surveillance tactics, the UAV swarm network should be able to adapt without 

compromising its performance. The current algorithms for planning paths prioritize taking advantage of existing 

information rather than exploring new possibilities within the search space. Consequently, these algorithmic 

methods that are inspired by nature do not yield the best outcomes in a constantly evolving search landscape. The 

system model showcases a reliable routing plan that incorporates energy efficiency and benefits from PBFT smart 

contracts.  By keeping track of neighboring activity details, it makes it simple to identify and remove malicious 

nodes while also ensuring that all node registrations are registered within the network. 

Ethereum's growing popularity allows for decentralized applications and smart contracts in energy efficiency and 

the integration of its unique features. During the tracking process, information about nodes' positions with their 

location is monitored along with that of neighboring node information. Smart contracts are used to bind and 

authorize nodes in the network, ensuring their legitimacy through certificates. Each node is assigned a 𝑔𝑎𝑠𝐿𝑖𝑚𝑖𝑡, 

indicating the maximum number of resources it can handle.  

Using Ethereum, the proposed agile model can verify the identity and availability of nodes in the Swarm network 

through efficient smart contracts. It provides the ability to identify reliable and malicious devices in the 

network. Each device is assigned a unique ID and 𝑔𝑎𝑠 𝑙𝑖𝑚𝑖𝑡 as an allocative resource after signing up for the drone 

network. A specific throttle level is used by the server node in the smart contract to control communication between 

UAV nodes and base stations for better data transmission. A new node must be authenticated by the server before 

joining, as only the trusted server nodes can add or remove noise noses from their network. The smart contract 

manages the identity of each registered node, allowing for monitoring of their activities. By removing the server 

from the network, it can shield against low power nodes in its network UAV due to energy efficiency behavior. 

3.6 UAV Path Optimization Algorithm 

The main problem of the current algorithms is that they are not able to provide the best way in unpredictable and 

dynamic environments. Environmental factors like wind, smoke, or threats to communication power can pose a 

significant problem when work is not completed. To address this issue, the proposed UAV Path Optimization 

Algorithm not only achieves an optimal path for UAVs but also ensures reliable data transmission between UAVs 

and from UAVs to GCS. The flow diagram in Figure 2 illustrates how UAV Path Optimization Algorithm finds the 

optimum path for a single UAV. Additionally, Algorithm 1 generates an optimal path for a group of UAVs. In 

contrast, at first, the suggested system creates an optimal path, and if one node is targeted, other nodes that no 

longer belong to the network are created, thus safeguarding the system. Energy efficiency and data reliability are 

ensured through the collection of information about each UAV node's location, proximity to launch sites, energy 

consumption, and smart contract data of strength. 

The algorithm's performance is enhanced by incorporating a gene expression method. A method of genetic 

reproduction through transposition and mutation has taken the place of the traditional algorithm. A global 

optimization product strategy is implemented using a transition manager. Another development of the algorithm 

was achieved by introducing a copy of the switch. There are two binary and exponential methods to determine the 

transition probability. The mutation probability is controlled by an evolutionary mutation algorithm. To enhance 

the algorithm's efficiency, various benchmark problems were validated. These problems were classified as low or 

high based on a well-known function. Due to the random nature of metaheuristic algorithms, a single run cannot 

accurately assess its performance. The approach's performance was improved by conducting multiple trials with 

independent population initialization. Each obstacle X in the simulation is assigned a risk level, denoted by the 

constraint 𝜇. 

𝑓(𝑥) =
1

(2𝜋)𝑑
/2| ∑ |1/2exp [−

1

2(𝑋−𝜇)
]                                                                                                             (17) 
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By calculating the area 𝑋𝑡𝑖, one can determine whether it is possible to avoid collisions with static or dynamic 

obstacles. The center point of every dynamic is determined by creating a random number, 𝑖. This data is defined 

using alpha symbols to define the risk zone and indicate the UAV's position at each step. To convert the equality 

constraint into a probability control, a different rule is used. Integrating qualified uncertainty helps solve a mutual 

uncertainty tricky with UAVs that can be solved using the subsequent equation: The ‘n’ space is resolute using the 

decision space- n, through the optimization algorithm minimizes the space. which uses less energy. The UAV node's 

physical motion is represented by 𝐷𝑡, and its search motion can be expressed as 𝐹𝑡. Adjacent UAV nodes are called 

𝑁𝑡. 

𝐷𝑥𝑡

𝑑𝑡
= 𝑁𝑡 + 𝐹𝑡 + 𝐷𝑡                                                                                                                                              (18) 

Algorithm 1 - UAV Path Optimization Algorithm 

which involves initializing various parameters such as Nmaximum and Dmaximum.  

For D1=1 to P do 

 For D2=1 to t do 

  𝑋𝐷1,𝐷2 = 1 + 𝑟𝑎𝑛𝑑 mod M, Memory initialization 

   𝑌 = 𝑇𝑢𝑟𝑛𝑠, 𝑃𝐿 (𝐷1, 𝐷2), 𝑧 

   𝐷𝑒𝑓𝑖𝑛𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 (𝑝), 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑙𝑖𝑠𝑡 (𝑁𝐿), 𝑒𝑛𝑒𝑟𝑔𝑦 𝐸 

 End for 

Appraise the fitness function (FF) for individually node 

End for 

The algorithm then goes through a loop,  

evaluating the fitness function for each node and, 

finding the best solution, 

It continues to iterate while the number of nodes (N) is less than or equal to 𝑁𝑚𝑎𝑥, 

For D1=1 to P do 

 Accomplish the fitness Calculation by 

 𝑥𝑖(𝐷1 + 1) = 𝑥𝑖(𝐷1) + 𝑦 + 𝑃𝐿(𝑖, 𝑗) 

End for 

Find the best solution 

Sort and find 𝑋𝑏𝑒𝑠𝑡 , where best 𝜖(1,2, … , S)  

𝑁 = 𝑁 + 1  

If 𝑋𝑏𝑒𝑠𝑡=y 

 Find 𝑋𝑏𝑒𝑠𝑡 + 1, 𝑤ℎ𝑒𝑟𝑒 𝑏𝑒𝑠𝑡 𝜖(1,2, . . , 𝑠) 

Return 𝑋𝑏𝑒𝑠𝑡1 

Within each iteration, it calculates the fitness and performs exploration to improve the solution, 

Finally, it returns the best solution found after all iterations are completed. 
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Figure 2: The process of UAV Path Optimization Algorithm. 

 

3.7 Efficient Relay Section Process 

The Energy-Efficient Relay Selection Algorithm aims to re-establish the connection for users outside the network 

by efficiently pairing them with relays (located inside the network). Our approach focuses on selecting the most 

energy-saving association scheme for outside users. This is achieved by determining a preference list for both relays 

and outside users based on their consumed energy. The preference list is generated by sorting the utility function in 

descending order. When an outside user requests an association, the relays refer to their preference list and 

maximum user capacity to decide whether to accept or reject the request. The priority is given to relays that 

consume the least amount of energy. The utility function calculates the benefits for an outside user 𝑖𝜖𝑢𝐼
𝑜𝑢𝑡 to 

connect with a candidate relay 𝑗𝜖𝑢𝐼
𝑖𝑛𝑡, and for the relay 𝑗 to accept the request from a user 𝑖. 

𝑈𝑖(𝑗) = 𝑈𝑗(𝑖) = (𝑝𝑖,𝑗
𝑚𝑖𝑛 + (𝑝𝑐𝑖𝑟)−1                                                                                       (19) 

The energy consumption of the static circuit at SU is represented by 𝑝𝑐𝑖𝑟. Additionally, 𝑝𝑖,𝑗
𝑚𝑖𝑛  denotes the minimum 

transmit power required for the user 𝑖 to meet the QoS standard while connected to a relay 𝑗. This value is 

determined by the following calculation: Our study presents a many-to-one matching game to depict the 

association between external and internal users. In this game, the participants are represented as external and 

internal users, each with their ranking of preferences. The ultimate association outcome is determined based on 

these preference rankings. 

𝑝𝑖,𝑗
𝑚𝑖𝑛 = 2

(
𝑅𝑚𝑖𝑛

𝐼

𝐵𝑟−1
)
𝜎2/ℎ𝑖,𝑗                                                                                                                            (20) 

Each remote user or relay has a fully switched two-way connection that is mirrored and switched, with the main 

priority being an unmodified wire. This means that this connection is defined across the entire set of relays and 

external users. For every external user 𝑖𝜖𝑢𝐼
𝑜𝑢𝑡, their preference order over all possible relays is determined by their 

likelihood of selecting a relay 𝑗 over relay 𝑗′. Similarly, for every relay 𝑗𝜖𝑢𝐼
𝑖𝑛𝑡, the preference order of overall outside 

users is determined by their likelihood of being selected by the user 𝑖. 

𝑗⊿𝑖𝑗′ ⟺ 𝑈𝑖(𝑗) > 𝑈𝑖(𝑗)′                                                                                                                            (21) 

This indicates that the relay 𝑗 is the preferred choice to act as the relay for the user 𝑖. Our proposed algorithm for 

efficient relay selection is outlined in Algorithm 2. The initial step involves sharing channel rights and other 

relevant information between relays and users. Each user and relay creates a list of priorities based on a calculator 

(19). Subsequently, each user requests a connection with their preferred relay. The preferred applicant is accepted 
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by each relay while the remaining applicants are rejected. Rejected applicants then propose to their next preferred 

relay. The communication is terminated when the relay is connected by all external users. 

Algorithm 2: Selecting Energy-efficient Relays for External node. 

First prepare the proclivity list for each external node and relay, using formula (9). Also, set the list of external 

nodes accepted by the relay as 𝑢𝐼
𝑜𝑢𝑡,𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

= 𝑢𝐼
𝑜𝑢𝑡. 

While 𝑢𝐼
𝑜𝑢𝑡,𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

≠ ∅, do: 

For each external node 𝑖𝜖𝑖𝐼
𝑜𝑢𝑡 do, 

Demand to attach to their chosen relay indicated by (21). 

For each relay 𝑗 ∈ 𝑢𝐼
𝑖𝑛 do,  

Sort the candidates in descending order based on their favorite list as shown in (22). 

Though the quantity of accepted node at relay ‘j’ does not exceed ′𝑁𝑀𝑎𝑥 ′  do 

Admit the favored applicant and add them to 𝑢𝐼
𝑜𝑢𝑡,𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

. Then remove them from the favorite list of relays 𝑗. 

  End 

 End 

Individually rejected node updates their favorite list by eliminating their favored relay. 

End. 

3.8 Efficient Data Collection Process among UAVs 

This model is a method used to collect data between a group of UAVs that includes a mobile sink node. This process 

has several steps. The mobile sink node and the UAV cluster partner together to establish the shortest route for the 

telephone line. Subsequently, the sink node discovers its position data. Afterward, the UAV team utilizes the 

shortest route to retrieve data from all the mobile sensors located in the WSNs. The mobile sink node can expand 

the area of the UAV's sensing range by rerouting its communication antenna, which will enhance its data search 

capabilities.  

The initial step involves implementing an algorithm called enumerated pruning to identify the optimal path for 

UAV movement, considering input from both the UAF cluster and the mobile sink node. In the second step, a 

positioning algorithm is used by the mobile sink node to determine an optimal route that uses energy more 

efficiently. In step three, a switching mechanism is used to complete parameter conversions and collect data by 

following the optimal path while accessing sensing nodes in multi-hop mode at the mobile sink node. By adjusting 

the communication radius of the mobile sink node and balancing energy consumption throughout, step four allows 

for an increase in the sensing area. The UAV cluster plays a role in confirming energy balance and calculating future 

communication radius for data collection cycles. 

Step 1. Adjust establishing the parameters of each node, such as the communication range, before initiating the 

initial data collection. The communication radius is initially adjusted to match the maximum data transmission 

distance established in step 5 during the following data collection cycles. 

Step 2. Plan the route for the mobile sink node using either algorithm truncation algorithm or the algebraic 

division algorithm. 

Step 3. Calculate by using (16) to compute the average amount of data to be gathered, it can calculate another way 

to estimate the communication radius of the sensor node. Additionally, determine the coverage area by formula (8). 

Step 4. The likelihood of a successful data transfer can be determined using the second theory. In that case, the 

setup method for the mobile sink is very good. If not, it needs to be adjusted. After completing communication, 

mobile nodes in the network send out the remaining capacity to their mobile sink node through several hops. 

Step 5.  Utilize Theorem 4 to calculate and optimize by adjusting the communication radius and returning it to its 

original location, the remaining energy of the synchronous node is utilized. The algorithm is terminated when the 

synchronous node's remaining capacity diminishes. 
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Algorithm can be summarized as follows: 

Procedure 3: Procedure 

Input: P transmission range (𝑃𝑡𝑟 , 𝑅𝑐, 𝐸𝑒𝑙𝑒𝑐 , 𝑁, 𝜆, 𝜑, 𝜌, 𝛿),  

Output: Minimum required data transmission rate 𝑄𝑚𝑖𝑛  

While (node 𝑖 is not empty) 

{ 

calculate the maximum communication radius for 𝑙𝑖𝑛𝑘[𝑖]𝑎𝑠 𝑅𝐶_𝑚𝑎𝑥 , 

calculate the optimal node for 𝑙𝑜𝑛𝑔[𝑖] 𝑎𝑠 𝑛𝑜𝑑𝑒[𝑖] 

Calculate the average successful data transmission rate for the node 𝑖 𝑎𝑠 𝐷𝑎𝑡𝑎𝑠𝑢𝑐_𝑟𝑎𝑡𝑒[𝑖]. 𝑛𝑜𝑑𝑒  

Calculate the value of 𝐴𝑖 as 𝑋𝑖 

increment 𝑖 by 1 

if (𝑝 → 1) 

calculate the optimal node for 𝑙𝑜𝑛𝑔[𝑖] 𝑎𝑠 𝑜𝑝𝑡𝑖𝑚𝑎𝑙. 𝑛𝑜𝑑𝑒[𝑖] 

else 

exit the loop 

set the minimum required data transmission rate for 𝑛𝑜𝑑𝑒 [𝑖]. 𝑚𝑠 𝑎𝑠 𝑄𝑚𝑖𝑛  

} 

Calculate the value of 𝑄𝑜𝑝𝑡 using, 

if (𝑄𝑜𝑝𝑡 is less than 𝑄𝑚𝑖𝑛) 

update 𝑄𝑚𝑖𝑛  to be equal to Qopt  

Output 𝑄𝑚𝑖𝑛 

else Output 𝑄𝑚𝑖𝑛  

The time complexity of the algorithm is now being examined. The first step involves transforming the nonlinear 

function into a linear one, with the best-case scenario resulting in all variables being transformed into linear 

relationships. This results in a time complexity of 𝑂(𝑛). If the pruning algorithm is employed in step 2, the time 

complexity will be 𝑂(𝑛). However, the time complexity of 𝑂(𝑛2) increases when using a variable division 

algorithm. By using a circular method, the average value of the data that was obtained is computed in step 3, and 

the time complexity is 𝑂(𝑛2). The fourth step in this paper deals with a data collection approach that uses linear 

parameters and collects data through sensor nodes in the network. As a result, the time complexity becomes 𝑂(𝑛2). 

Finally, step 5 follows the same solution process as step 4, so it takes 𝑂(𝑛2) time. In general, this algorithm has a 

time complexity of 𝑂(𝑛2). 

RESULT AND DISCUSSION 

This area covers the outcomes of the EEDTP-UAV algorithm, which was shaped as Relay Selection Technique for 

Energy-Efficient Data Transmission policy for UAV-assisted LoRaWAN. The subsequent section provides a 

complete explanation of the findings and discussion of the suggested EEDTP-UAV approach. We implemented the 

EEDTP-UAV using the Network Simulator-2.34 (NS-2.34). The simulation sceneries are shown in Table 1. 

Table 1: Simulation settings 

Number of Nodes 10,20,30,40,50,60,70,80,90,100 

Topology size 150 m * 150 m 

MAC protocol LoRaWAN 

Source of Traffic  CBR 
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Traffic Flows 6 

Traffic Rate 50 KB/s 

Input Energy 25 Joules 

Transmitting power 0.8 Watts 

Receiving power 0.3 Watts 

Speed of UAV  20-60 m/s 

a) Communication Delay:  

The time required for a message or signal to travel from the sender of origin to its receiver is known as 

communication delay. This includes delivery, routing, processing, and queuing delays. Networks and distributed 

systems can experience delays that hinder data exchange. In Figure 3, the communication delay performance is 

calculated for methods like ESSDS, DSSRCA, EEUCH, ESRD-PDCA, and the proposed EEDTP-UAV.  

 

 

Figure 3: Effect of Node Density on Communication Delay in ESSDS, DSSRCA, EEUCH, ESRD-PDCA, and the 

proposed EEDTP-UAV algorithm 

b) Energy Efficiency: Energy efficiency means less energy is required to perform that task or product. This 

involves optimizing processes, equipment, and systems to reduce energy consumption without compromising 

performance. Energy efficiency can lead to cost-effectiveness, environmental sustainability, and improved energy 

performance. In Figure 4, the energy efficiency performance is calculated for methods like ESSDS, DSSRCA, 

EEUCH, ESRD-PDCA, and the proposed EEDTP-UAV.  

 
Figure 4: Effect of Node Density on Energy Efficiency in ESSDS, DSSRCA, EEUCH, ESRD-PDCA, with the 

proposed EEDTP-UAV model 
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c) Data Success Rate: Generally speaking, the data success rate refers to the percentage of transmitted 

information that is received and transmitted over the communication network. It evaluates the dependability and 

effectiveness of data transmission and considers potential errors or losses. Efficient and reliable network 

performance is indicative of a high success rate. In Figure 5, the data success rate performance is calculated for 

methods like ESSDS, DSSRCA, EEUCH, ESRD-PDCA, and the proposed EEDTP-UAV.  

 

 
Figure 5: Effect of Node Density on Data Success Rate in ESSDS, DSSRCA, EEUCH, ESRD-PDCA, with the 

proposed EEDTP-UAV model 

d) Network Throughput: By measuring the rate of data transfer between networks and their interconnections, 

throughput is defined. It is usually measured in bits per second or data packets per second. The efficiency of data 

transfer and network performance is indicated by high throughput. In Figure 6, the throughput performance is 

calculated for methods like ESSDS, DSSRCA, EEUCH, ESRD-PDCA, and the proposed EEDTP-UAV. 

 

 
Figure 6: Effect of Node Density on Network Throughput in ESSDS, DSSRCA, EEUCH, ESRD-PDCA, with the 

proposed EEDTP-UAV model 

e) Routing Overhead: The transfer of routing information between network nodes results in supplementary 

network traffic, which is known as routing redundancy. It contains control messages, updates, and other protocol-

specific information necessary to maintain accurate routing tables. High routing costs may result in reduced 

efficiency due to the consumption of bandwidth and processing resources. In Figure 7, the routing overhead 

performance is calculated for methods like ESSDS, DSSRCA, EEUCH, ESRD-PDCA, and the proposed EEDTP-

UAV.  
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Figure 7: Effect of Node Density on Routing Overhead in ESSDS, DSSRCA, EEUCH, ESRD-PDCA, with the 

proposed EEDTP-UAV model 

CONCLUSION 

In this paper, Energy-Efficient Data Transmission policy for UAV assisted LoRaWAN was deployed using relay 

selection technique. Optimizing data collection processes, reducing power consumption, and improving overall 

efficiency in multi-hop UAV operations are achieved using computational pruning and variable separation 

techniques. The proposed work has been implemented using NS2.34 simulation tool. Using communication delay, 

energy efficiency, data success rate, throughput, and routing overhead parameters will enhance our proposed 

EEDTP-UAV model when compared with other existing techniques such as EEDS, DSSRCA, EEUCH, and ESRD-

PDCA. According to simulation studies, EEDTP-UAV achieves a higher data success rate and network throughput, 

while also achieving lower communication delays, energy efficiency, and routing overhead. 
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