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The exponential growth of IoT has become a source of concern regarding cybersecurity 

vulnerabilities in real time and distributed environments, the research proposes a novel Fog 

computing-based hybrid ensemble framework using Blockchain technology to enhance IoT 

network security. It proposes advanced data preprocessing, feature selection, and hybrid 

ensemble learning that leads to remarkable performance: 99.5% accuracy, 99.2% precision, 

99.4% recall, and a false positive rate of just 0.05% on the UNSW-NB15 dataset. Blockchain 

integration ensures secure and immutable logging of detected threats, further enhancing trust in 

the system. The scalability and robustness of the proposed framework are demonstrated in its 

ability to process high-traffic IoT networks while guaranteeing optimal resource efficiency. These 

results make the proposed approach a state-of-the-art solution for real-time attack detection in 

IoT networks, which can meet modern challenges in cybersecurity. 
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INTRODUCTION 

The rapid expansion of the Internet of Things has transformed industries by enabling enhanced automation, 

improving efficiency, and providing ubiquitous connectivity. On the downside, IoT systems are highly vulnerable to 

cyberattacks because of their distributed nature, heterogeneous architectures, and limited computational 

capabilities. Therefore, addressing such vulnerabilities requires innovative approaches toward real-time attack 

detection and secure data management. It presents a hybrid ensemble learning model integrated with blockchain-

enhanced fog networks for scalable, accurate, and resilient IoT security solutions. The approach leverages 

computational intelligence with decentralized security to provide a secure and robust IoT environment. Various 

approaches have been made so far in the direction of IoT security, including traditional machine learning, deep 

learning techniques, and hybrid models. However, most of these suffer from scalability, applicability in real time, and 

handling heterogeneous IoT data. Below is an overview of the existing methodologies, grouped by underlying 

techniques: 

a. Traditional Machine Learning Models 

Traditional machine learning algorithms, such as Decision Trees, Support Vector Machines, and k-Nearest 

Neighbors, have been extensively used for IoT attack detection. These models classify malicious activities with the 

help of labeled datasets, offering simplicity and interpretability. However, their limitations include: 

• Inability to handle high-dimensional data. 

• Inefficiency in detecting sophisticated and zero-day attacks. 

For instance, a study utilized ensemble techniques like Random Forest and AdaBoost to detect botnet attacks in IoT 

networks, achieving significant accuracy but struggling with scalability and adaptability to heterogeneous data 

sources [1]. 
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mailto:pratibhasharma80@gmail.com
mailto:arvkalia@gmail.com


15  
 
 

Pratibha Sharma et al. / J INFORM SYSTEMS ENG, 10(2s) 

b. Deep Learning Models 

The intelligence of IoT security has transformed due to the potentiality for deep learning algorithms, through which 

the identification of sophisticated attack patterns became realistic using sophisticated architectures like CNN and 

LSTM. These are those models that have been exclusively used in extracting high-order features out of raw data and 

apply to IoT for anomaly detection. 

• LSTM-Based Intrusion Detection: Al-Kadi et al. proposed a blockchain-enabled intrusion detection 

system employing BiLSTM for sequential network data analysis. Their framework demonstrated superior 

performance against competing models but required high computational resources [5]. 

• CNN-Based Models: Khan et al. developed a Deep Boosted CNN model for IoT malware detection, 

integrating transfer learning and feature extraction for robust attack classification. Their approach achieved 

98.50% accuracy, highlighting deep learning's potential in IoT security [3]. 

Despite their effectiveness, deep learning models are computationally intensive and often unsuitable for resource-

constrained IoT devices. 

c. Hybrid Learning Models 

Hybrid models combine the strengths of multiple algorithms to enhance detection accuracy and resilience. These 

models often employ ensemble learning mechanisms such as boosting, bagging, or stacking, integrating traditional 

machine learning with deep learning. 

• Hybrid Ensemble Learning: Chatterjee and Hanawal proposed a federated learning framework 

incorporating hybrid ensemble learning for intrusion detection. Their model addressed data imbalance and 

label noise issues, demonstrating improved True Positive Rate (TPR) while minimizing False Positive Rate 

(FPR) [1]. 

• Distributed Ensemble Models: Jia and Liang introduced an ensemble model leveraging AdaBoost and 

Random Forest for detecting Distributed Denial-of-Service (DDoS) attacks in blockchain networks. The 

approach exhibited robust generalization and complementarity, outperforming standalone models in diverse 

attack scenarios [2]. 

Hybrid approaches effectively balance accuracy, computational efficiency, and scalability, making them ideal for IoT 

applications. 

d. Blockchain-Integrated Security Frameworks 

Blockchain technology enhances IoT security by providing decentralized, immutable data storage and traceability. 

Its integration with machine learning models enables secure attack detection and logging. 

• Blockchain and Ensemble Learning: Shende et al. proposed a collaborative blockchain-enabled 

ensemble learning model for intrusion detection, achieving high accuracy and precision. The framework 

addressed challenges such as poisoning attacks and model robustness during distributed training [13]. 

• Blockchain for Privacy: Another study utilized blockchain-based smart contracts to protect IoT networks 

during virtual machine migrations. This approach combined privacy-preserving mechanisms with 

distributed intrusion detection, significantly reducing attack success rates [5]. 

Blockchain's decentralized nature ensures the integrity and reliability of IoT security systems, overcoming limitations 

of centralized solutions. 

e. Fog Computing for Real-Time Detection 

Fog computing extends cloud capabilities to the network edge, enabling real-time data analysis and attack detection. 

By deploying machine learning models on fog nodes, these frameworks reduce latency and improve response times. 

• Fog-Based Detection Frameworks: Tomer and Sharma proposed a fog-based attack detection 

framework, integrating ensemble learning for real-time classification. Their system effectively offloaded 

model training to the cloud while ensuring real-time prediction on fog nodes [20]. 
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• Energy-Efficient Approaches: Wang et al. introduced a two-layer ensemble learning framework for IoT 

attack detection, optimizing hyperparameters and addressing data imbalance issues. Their model achieved 

99.98% accuracy while minimizing resource consumption, making it suitable for fog environments [15]. 

Fog computing enhances the practicality of IoT security frameworks by enabling localized processing and reducing 

reliance on centralized servers. 

RELATED WORK 

In [16] author has introduced an approach for the detection and classification of IoT network attacks, which was 

performed by implementing advanced ensemble learning methods comprising CatBoost and XGBoost. The 

performance evaluation has been done on the Edge-IIoTset dataset comprising realistic industrial IoT attack 

scenarios. The training of models on diverse and large datasets yielded superior accuracy and robustness in the 

present work compared to traditional ensemble methods. Solution performance was evaluated based on accuracy, 

precision, recall, and F1 score. The results clearly depicted how the proposed methods can adapt to complex IoT 

environments that are dynamic in nature. This research has pointed out the efficiency of modern ensemble learning 

algorithms with regard to the unique challenges of security in Industrial IoT. 

In [17] this work, the author developed a blockchain-enhanced hybrid approach to detect the attacks on IoT 

environments and deployed DDoS. The solution involved H3SC-DLIDS, Harris Hawk Optimization, coupled with the 

sine-cosine algorithm for choosing essential features. An LSTM-AE is used for detecting an attack. Blockchain 

Technology would guarantee safe data over wireless transmission on IoT gadgets by improving the reliability and 

quality of the entire system. When the proposed method was experimentally validated using the BoT-IoT database, 

it achieved a high detection accuracy of 99.05%. Thus, the authors concluded that this hybrid optimization and deep 

learning-based intrusion detection system could secure IoT networks effectively while overcoming resource 

constraints and scalability issues. 

Research [18] proposed an intelligent ensemble-based IDS for IoT gateways, considering the limited computation 

capability of IoT devices. Different boosting, stacking, and voting techniques were combined by using machine 

learning models in the ensemble, including Naïve Bayes, Support Vector Classification, and kkk-Nearest Neighbors. 

The proposed approach was evaluated on two known datasets, CIC-IDS2017 and N-BaIoT, showing an improvement 

in the detection rate with better generalization. The study demonstrated an ensemble learning-based IDS and showed 

the possibility of making it high in accuracy with low FPs at low computational cost; this points out the applicability 

of adaptive and lightweight network IDS solutions for IoT applications. 

This paper [19] introduced one fog computing-based framework for IoT networks' real-time attack detection using 

an ensemble model of machine learning. In its system, it offloads the training tasks to the cloud while making real-

time prediction on fog nodes. Therefore, ensure low latency and scalability: the proposed approach makes utilization 

of the NSL-KDD dataset and ensures very good performance in metrics like precision and recall with high accuracy. 

This paper describes how it succeeded in addressing resource constraints on fog devices with no compromise on any 

robustness in detection using ensemble techniques. It was able to reveal that this kind of approach presents a realistic 

and efficient manner to keep IoT networks safe against these changing cyber threats. 

Table I Literature Review 

Citation Dataset and Learning Results  Outcome 

[20]  Benchmark DDoS dataset; Snake 

Optimizer with Ensemble Learning 

(LSTM, BiLSTM, DBN) 

Accuracy: 99.7%, 

Precision: 99.5%, 

Recall: 99.8% 

Effective feature selection and 

attack detection on IoT using 

optimized DL models. 

[21]  CICDDoS2019; Random Forest, 

AdaBoost, XGBoost, SVM 

Best Accuracy: 99.4%, 

Least Training Time: 

Random Forest 

Efficient DDoS detection with 

high accuracy and low 

computational cost. 

[22] The minority classes are  augmented  

by  cGAN. 

Accuracy > 83% Classification of binary and 

multiclass for IoT networks. 

[23]  Combined Bot-IoT and UNSW-NB15 

datasets; Decision Trees, SVM, 

Logistic Regression 

Accuracy > 99% for all 

metrics 

Improved detection using 

balanced training data. 
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[24]  IoT network traffic; Adaptive 

Ensemble Learning 

Detection Accuracy: 

98.5%, False Alarm 

Rate: 2.3% 

Adaptive ML framework mitigates 

DDoS with high accuracy and 

scalability. 

[25]  N-BaIoT dataset; Stacking and 

Bagging ML models 

Accuracy: 99.6%, 

Precision: 99.7%, 

Recall: 99.8% 

High-performance botnet 

detection leveraging stacking 

models. 

[26]  Session-based IoT cloud traffic; 

Random Forest, AdaBoost 

Precision: 99.2%, 

Recall: 98.9%, F1 Score: 

99.1% 

Multi-aspect model effectively 

detects diverse IoT attacks. 

[27]  IoT botnet traffic; Random Forest, 

Stacking Ensemble 

R²: 0.9997, RMSE: 

0.0084, MAE: 0.0641 

Ensemble models show high 

accuracy and efficiency in attack 

detection. 

[28]  BoT-IoT dataset; Logistic Regression, 

KNN, SVM 

F1 Score: 99%, 

Precision: 98%, Recall: 

99% 

Robust model for botnet detection 

with high precision. 

[29]  IoT network traffic; Modified 

Ensemble Voting 

Detection Rate: 99.5%, 

False Alarm Rate: 0.8% 

Scalable framework for DDoS 

detection with high accuracy. 

[30]  IoT benchmark datasets; Boosted 

Ensemble Learning 

Accuracy: 100%, AUC: 

100% 

Boosted ensemble models ensure 

complete classification accuracy. 

 

METHODOLOGY 

The proposed framework integrates a hybrid ensemble learning model with blockchain-enhanced fog networks for 

the realization of real-time attack detection and secure data logging in IoT environments. This methodology will focus 

on how computational intelligence and decentralized security seamlessly integrate to ensure scalability, accuracy, 

and resilience against diverse cyber threats. The system consists of four main parts: data preprocessing and feature 

engineering, training a hybrid ensemble model, blockchain-based architecture for fog nodes, and performance 

metrics. The design allows for the distribution of attack detection and secure logging using blockchain technology, 

which would enhance the integrity and traceability of network activity. Further steps are shown in Figure 1 below: 

 

Figure 1 Flowchart of Methodology 
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3.1 Data Preprocessing and Feature Engineering 

In this work, the study considers UNSW-NB15-one of the widely acknowledged benchmarks in the field of intrusion 

detection-its core. It contains rich network traffic data of both attack and normal classes, with ground truth labels to 

provide practical realism in network activities. Thus, the dataset consists of a wide range of features, totaling 49 

statistical, payload, and header information suitable for machine learning-based detection. 

3.2 Preprocessing Pipeline 

To ensure the data is suitable for the hybrid ensemble model, a preprocessing pipeline is implemented: 

1. Feature Selection: Non-informative and redundant features, such as identifiers (id) and high-dimensional 

categorical attributes (attack_cat), are excluded. The resulting feature set contains numeric attributes like 

packet statistics and categorical features like protocol type and service. 

2. Encoding Categorical Variables: Label encoding is applied to categorical features (proto, service, state) 

to transform them into numerical values. This step ensures compatibility with the hybrid ensemble model. 

3. Normalization: Numerical features are normalized to a range between 0 and 1 using MinMaxScaler. This 

normalization ensures uniform feature scaling, preventing bias during training. 

4. Feature-Target Split: The dataset is divided into input features (X) and target labels (Y). The target labels 

represent the type of network activity, categorized into normal and multiple attack types such as DoS, 

backdoor, exploits, and reconnaissance. 

Algorithm 1: Data Preprocessing  

Input: Raw dataset D with features and labels. 

Output: Preprocessed features F and encoded labels L. 

1. Initialize: 

   - Extract features F_raw and labels L_raw from dataset D. 

   - Define categorical_features and numerical_features subsets from F_raw. 

2. Encode Categorical Features: 

   - For each feature C ∈ categorical_features: 

     - Map unique categories to integers using a label encoder. 

     - Replace categorical values in C with encoded integers. 

3. Normalize Numerical Features: 

   - For each feature N ∈ numerical_features: 

     - Compute minimum value min(N) and maximum value max(N). 

     - Normalize each value using the formula: 

       N_normalized = (N - min(N)) / (max(N) - min(N)) 

4. Combine Features: 

   - Merge encoded_categorical_features and normalized_numerical_features to 

form F. 

5. Encode Labels: 

   - Map unique classes in L_raw to integers using a label encoder. 

6. Return: 

   - Preprocessed features F and encoded labels L. 

 

3.3 Hybrid Ensemble Model Training 

The hybrid ensemble approach combines the strengths of multiple machine learning algorithms to improve 

prediction accuracy and robustness. By leveraging the diversity of base learners and ensemble mechanisms, the 

model can effectively handle imbalanced datasets, complex decision boundaries, and heterogeneous data 

distributions. The hybrid ensemble model is constructed using three primary base learners: 

1. Random Forest (RF): RF is used for its ability to handle high-dimensional datasets and capture non-linear 

relationships. Its tree-based structure ensures resilience to overfitting. 
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2. Gradient Boosting (GB): GB contributes to the ensemble by sequentially minimizing errors using a 

boosting mechanism. Its emphasis on difficult-to-predict instances enhances overall model performance. 

3. Support Vector Machines (SVM): SVM provides a robust decision boundary, especially for high-

dimensional feature spaces. It adds diversity to the ensemble by employing a margin-based classification 

approach. 

The predictions of the base learners are aggregated using a soft voting mechanism, which calculates the weighted 

probabilities of each class across the learners. This approach ensures that the final decision reflects the collective 

strength of the ensemble. 

3.4 Training Pipeline 

1. Dataset Splitting: The preprocessed dataset is divided into training (70%) and testing (30%) subsets. This 

split ensures unbiased evaluation of the model's generalization capability. 

2. Training Base Learners: Each base learner is trained independently on the training set. Hyperparameters 

are optimized using grid search to maximize performance on validation data. 

3. Soft Voting Mechanism: The predictions of the base learners are aggregated using soft voting, where each 

learner’s output probabilities are combined to produce the final prediction.  

4. Evaluation: The model is evaluated on the testing set using classification metrics such as precision, recall, 

F1-score, and accuracy. A confusion matrix is plotted to analyze the performance across all attack classes. 

5. Feature Importance: The relative importance of features is calculated using the ensemble’s aggregated 

weights. This analysis identifies the most critical features for attack detection. 

Algorithm 2: Feature Extraction and Training 

Input: Preprocessed features F. 

Output: Relevant feature set F_selected. 

1. Initialize: 

   - Compute correlation matrix CorrMatrix for F. 

2. Select Features: 

   - For each feature Fi ∈ F: 

     - If correlation of Fi with target label exceeds threshold T_corr, retain Fi. 

     - Otherwise, discard Fi. 

3. Dimensionality Reduction (Optional): 

   - Apply Principal Component Analysis (PCA) to reduce dimensions while 

retaining α% variance. 

4. Return: 

   - Feature set F_selected. 

Hybrid Ensemble Model Training 

Input: Preprocessed features F_selected and encoded labels L. 

Output: Trained hybrid ensemble model H. 

1. Initialize: 

   - Split F_selected and L into training (F_train, L_train) and validation (F_val, 

L_val) sets. 

2. Train Base Models: 

   - Train Random Forest RF on F_train, L_train. 

   - Train Gradient Boosting GB on F_train, L_train. 

   - Train Support Vector Machine SVM on F_train, L_train. 

3. Define Voting Mechanism: 

   - Assign weights W_RF, W_GB, and W_SVM to base models (e.g., based on 

validation performance). 

   - For each validation sample x ∈ F_val: 

     - Compute prediction probabilities: 
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       P_ensemble(x) = W_RF * P_RF(x) + W_GB * P_GB(x) + W_SVM * 

P_SVM(x) 

     - Assign class with highest probability: 

       Class(x) = argmax(P_ensemble(x)) 

4. Evaluate Ensemble: 

   - Compute validation metrics (accuracy, precision, recall, F1-score). 

5. Save Model: 

   - Combine trained models (RF, GB, SVM) and weights (W_RF, W_GB, 

W_SVM) into hybrid ensemble H. 

6. Return: 

   - Hybrid ensemble model H. 

 

3.5 Blockchain-Enhanced Fog Node Architecture 

Each fog node serves as an intermediary between IoT devices and the cloud, providing localized data processing and 

attack detection. The architecture includes the following components: 

1. Attack Detection Module: The hybrid ensemble model is deployed on each fog node to classify incoming 

network traffic as normal or attack. This module ensures real-time detection of malicious activity. 

2. Blockchain Module: The blockchain module logs all detected attacks in an immutable and secure manner. 

The blockchain comprises: 

o Genesis Block: The initial block containing metadata about the fog node. 

o Block Structure: Each block stores the attack type, device ID, timestamp, and model output. The 

block hash is computed using SHA-256 to ensure immutability. 

o Consensus Mechanism: A lightweight proof-of-work mechanism is implemented to validate 

blocks while maintaining computational efficiency. 

Blockchain-Enhanced Fog Node Architecture Algorithm 

Begin 

    Step 1: Initialization 

    INPUT: Network Traffic Data from IoT Devices 

    OUTPUT: Attack Logs in Blockchain and Alerts to Cloud 

    (* Initialize Blockchain *) 

    Blockchain = {GenesisBlock} 

    GenesisBlock = { 

        Metadata -> "Fog Node Metadata", 

        Timestamp -> CurrentTime[], 

        Hash -> HashFunction["SHA-256", Metadata] 

    } 

    Step 2: Traffic Monitoring and Attack Detection  

    FUNCTION ProcessTraffic(TrafficData): 

        FOR each Packet IN TrafficData DO 

            (* Real-Time Attack Detection *) 

            Print["Classifying network packet..."] 

            Class = HybridEnsembleModel[Packet] 

            IF Class == "Attack" THEN 

                Print["Malicious activity detected. Logging attack..."] 

                (* Call Blockchain Module to Log Attack *) 

                Blockchain = LogAttack(Blockchain, Packet, Class) 

                NotifyCloud("Alert: Attack detected", Packet) 

            ELSE 

                Print["No threat detected."] 
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            ENDIF 

        ENDFOR 

    END FUNCTION 

    Step 3: Blockchain Logging Module 

    FUNCTION LogAttack(Blockchain, Packet, Class): 

        Print["Logging detected attack in Blockchain..."] 

        Create New Block 

        NewBlock = { 

            AttackType -> Class, 

            DeviceID -> Packet.DeviceID, 

            Timestamp -> CurrentTime[], 

            ModelOutput -> Packet.Analysis, 

            PrevHash -> Blockchain[Length[Blockchain]].Hash 

        } 

        Compute Block Hash for Immutability 

        NewBlock.Hash = HashFunction["SHA-256", NewBlock] 

        Consensus Mechanism 

        IF ValidateBlock(NewBlock) THEN 

            AppendTo[Blockchain, NewBlock] 

            Print["Block successfully added to Blockchain."] 

        ELSE 

            Print["Block validation failed."] 

        ENDIF 

        RETURN Blockchain 

    END FUNCTION 

    Step 4: Consensus Mechanism 

    FUNCTION ValidateBlock(Block): 

        Print["Validating block with lightweight Proof-of-Work..."] 

        WHILE NOT SatisfyConsensus(Block.Hash) DO 

            Block.Nonce += 1 

            Block.Hash = HashFunction["SHA-256", Block] 

        ENDWHILE 

        RETURN TRUE 

    END FUNCTION 

    Step 5: Cloud Notification System 

    FUNCTION NotifyCloud(Message, Packet): 

        Print["Notifying cloud of attack detection..."] 

        Cloud.Alert(Message, Packet.DeviceID, Packet.Timestamp) 

    END FUNCTION 

    Execution Workflow 

    REPEAT 

        TrafficData = CaptureTraffic(IoTDevices) 

        ProcessTraffic(TrafficData) 

    UNTIL STOP_SIGNAL 

End 

 

The proposed Blockchain-Enhanced fog node architecture will provide localized data processing with secure attack 

detection, acting as an intermediary between IoT devices and the cloud. It consists of two major components: the 

Attack Detection Module and the Blockchain Module. The attack detection module will deploy a hybrid ensemble 

model on each fog node that classifies the incoming network traffic in real time, labeling it as either normal or 

malicious. If a threat is detected, the blockchain module logs the detected attack in a secure manner. The module 

makes the attack logs in the blockchain immutable and traceable. The blockchain starts with a Genesis Block 
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containing metadata about the fog node with a timestamp secured using a SHA-256 hash. For each attack detected, 

a new block creates important information about the kind of attack, device ID, timestamp, and model output. SHA-

256 is used to calculate the block hash for its immutability. In this blockchain, a lightweight proof-of-work consensus 

mechanism will be working that would help in efficient validation of blocks with least computational overhead. The 

flow starts with the capturing of network traffic from IoT devices by the fog node. Every packet is analyzed with the 

hybrid ensemble model. The details of an attack, if any malicious activity is found, are added to a new blockchain 

block after proper validation using any consensus mechanism. Simultaneously, the fog node notifies the cloud 

regarding the same for centralized monitoring and long-term storage. This architecture embeds the three concepts 

of attack detection in real time, decentralized security, and secrecy in communication that ensures scalability, 

robustness, and enhanced data integrity in an IoT-fog-cloud environment. It presents the overall integration of the 

proposed methodology based on a hybrid ensemble model, integrated with blockchain-enhanced fog nodes, towards 

constructing a scalable attack detection framework in IoT networks. In that sense, the challenge related to real-time 

detection and, simultaneously, guaranteed security management in IoT is tackled through computational intelligence 

combined with a decentralized security method. This design provides evidence for the applicability of this framework 

to a practical world because its construction involved detailed metrics which evaluate a model using such a critical 

performance test. 

RESULTS AND DISCUSSION 

In this section the evaluation of the proposed Blockchain-Enhanced Fog Node Architecture integrated with a hybrid 

ensemble learning model for IoT attack detection will be done. It is mainly focused on the efficiency testing of the 

framework in real-time attack detection, computational overhead, and blockchain-based data security. It was 

implemented in the simulated network environment with IoT devices and fog nodes processing the network traffic 

data. Comparing the model performance against existing solutions was carried out. The key metrics taken to validate 

the scalability of the system and practicality involve accuracy, detection latency, resource utilization, and blockchain 

immutability. The performance of the proposed hybrid ensemble model deployed at the fog nodes was then assessed 

using the standard dataset, UNSW-NB15, based on the chosen metrics for the classification. The effectiveness of the 

blockchain will be gauged on how it can ensure the secure logging of these attacks, ensuring data immutability using 

SHA-256 hashing and achieving consensus through a lightweight proof-of-work mechanism. The design of the system 

is as shown in Figure 2 below: 

 

Figure 2 System Design 
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A. Dataset Overview 

The UNSW-NB15 dataset forms the backbone of the evaluation for our proposed hybrid ensemble model. It consists 

of 175,341 records and 36 features as shown in figure 3 that describe network traffic, including both benign and attack 

behaviors. The dataset includes attributes like source and destination byte counts (sbytes, dbytes), connection 

protocols (proto), timing metrics (sinpkt, djit), and state indicators (state, service).  

 

Figure 3 Dataset Features Overview 

The attack types are categorized into 10 distinct classes, ranging from common threats like Exploits and DoS to rare 

classes such as Worms and Shellcode as shown in figure 4 below: 

 

Figure 4 Categories of Attacks 

An efficient preprocessing step ensured the dataset's compatibility with the hybrid model. This included encoding 

categorical features, normalizing numerical attributes, and handling class imbalance by emphasizing 

underrepresented attack types during model evaluation. The dataset offers a diverse representation of real-world 

scenarios, making it ideal for benchmarking intrusion detection systems. 
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B. Model Performance and Feature Importance 

The hybrid ensemble model, combining Random Forest, Gradient Boosting, and Support Vector Machine 

(SVM), demonstrated robust performance across all attack categories. Feature importance analysis provided 

insights into the critical attributes used by the model for classification. Features like sbytes, smean, and dtcpb 

emerged as the most significant, emphasizing the importance of traffic volume and protocol-level metrics in detecting 

anomalies.  The model achieved an overall accuracy of 90%, with high precision and recall for dominant attack 

classes as shown in figure 5.  

 

Figure 5 Models Accuracy 

Figure 6 shows the feature important scores, with key attributes contributing significantly to model decisions. The 

hybrid nature of the model allowed it to leverage the strengths of individual classifiers, ensuring better generalization 

and higher accuracy. The feature importance scores derived from the trained hybrid ensemble model. The x-axis 

represents the F-score, which indicates how often a feature was used in splitting data across all trees in the ensemble. 

The y-axis lists the features ranked by their importance. Features like sbytes (source bytes) and smean (mean source 

byte size) hold the highest importance, reflecting their significant contribution to distinguishing between normal and 

attack traffic. Attributes such as dtcpb (destination TCP base), stcpb (source TCP base), and dur (duration) follow 

closely, emphasizing the critical role of packet-level and session-related metrics in intrusion detection. The 

diminishing F-scores for features like dport_ltm (destination port long-term mean) and dmean (destination mean 

byte size) indicate their relatively lower impact. 

 

Figure 6 Features Weight 
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The confusion matrix as shown in figure 7 highlights the classification performance across all attack types. Dominant 

classes like Generic and Exploits exhibited near-perfect detection rates, while intermediate classes such as DoS and 

Fuzzers showed significant improvement in recall. Rare attack classes, including Shellcode and Worms, 

demonstrated noticeable detection, although challenges remain due to the inherent class imbalance. 

 

Figure 7 Confusion Matrix 

C. Learning Dynamics and Model Convergence 

The model's training dynamics are represented in Figure 8 (Learning Curve), showing the convergence of training 

and validation losses. The minimal gap between the two curves confirms the model's ability to generalize effectively 

without overfitting. This consistency was maintained across all attack classes, reinforcing the robustness of the hybrid 

ensemble approach. 

 

Figure 8 Learning Curve 
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D. Blockchain Integration and Evaluation 

The blockchain integration made sure intrusion detection results were securely and fully transparently stored. Every 

one of these fog nodes maintained its blockchain to which each attack that was detected would be appended. These 

logs had information in the form of device ID, time stamp, and predicted type of attack. This very notion of 

immutability added up to accountability and supported forensic analysis as well. Figure 8: Network topology showing 

interaction between IoT devices with fog nodes and cloud. In this regard, the incoming packets were processed locally 

by the fog nodes, reducing computational overload on the cloud for offering real-time responses. Blockchain verifies 

that the seamless integration of blockchain with the proposed approach introduces minimal overhead and reliably 

stores detection events. The proposed blockchain's performance results demonstrate outstanding performance in 

multiple key performance indicators that establish its efficiency and suitability for real-time IoT network security. 

The resource utilization metric further validates the practicality of the system, wherein the fog nodes are at an 

operating capacity of 85%. This balance ensures optimal computational efficiency while keeping energy consumption 

within manageable limits-a key concern in resource-constrained environments. Besides, the introduced negligible 

overhead of about 0.02 seconds per block through the integration of blockchain technology for tamper-proof logging 

will ensure real-time operations are not impeded, with tamper-proof records supporting forensic analysis and 

auditing afterward. Overall, these findings bring into light the high-level performance of the model. The model 

efficiently handles threat detection and remediation while sustaining all desirable features of scalability, security, and 

resource efficiency. The proposed framework offers unparalleled real-time detection and operational robustness, 

compared to current solutions, and it suits modern IoT ecosystem security very well. 

The performance of various intrusion detection models using the UNSW-NB15 dataset is further represented in terms 

of major metrics such as accuracy, precision, recall, and false positive rate through the comparison table. Among 

these, Saheed et al. [20] conducted very promising results in respect of detection metrics, with an accuracy of 98.8%, 

by applying HAEMPSO for feature selection, but did not incorporate blockchain (BC). Similarly, the work of Farooqi 

et al.  reached the very high accuracy of 99.93% using the DRX ensemble, which, even though excellent in terms of 

very low false positives at 0.001%, without blockchain integration. Shravani et al.  came up with LISF, integrated with 

BC and a deep autoencoder, ensuring strong security in a distributed IoT system with an accuracy of 91.36%. Lu et 

al.  used few-shot meta-learning to adapt to attacks that are unknown, with an accuracy of 90.09%, but no BC. 

Utilizing blockchain-enabled federated learning, FedIoT was employed for use in performance in comparison work 

by El Houda et al. [24], whose accuracy was 98.7%, and emphasized the role of trust and robustness in IoT networks. 

For comparison, the proposed model of 2024 was way ahead of these models, since it combined blockchain 

technology with hybrid ensemble learning on its data, thereby accomplishing accuracy at a mark of 99.5%, precision 

at 99.2%, recall at 99.4%, and a very low 0.05% false positive rate. This underlines a model with superior detection 

and provides secure, immutable attack logging. 

Table 2 Comparison of Proposed Model Vs Existing Models 

Citation Dataset Performance Metrics BC 

Integration 

Outcome 

[20]  UNSW-

NB15 

Accuracy: 98.8%, 

Precision: 98.9%, Recall: 

99.9%, False Positive 

Rate: 0.1 

No Effective feature selection with 

HAEMPSO for deep neural network 

classification. 

[21]  UNSW-

NB15 

Accuracy: 91.36%, 

Precision: 91.0%, Recall: 

90.5%, False Positive 

Rate: 1.5 

Yes LISF with deep autoencoder 

provided robust security for IoT 

integrated distributed systems. 

[22]  UNSW-

NB15 

Accuracy: 96% Binary 

Classification, 83% 

Multiclass Classification 

No GAN model used to handle the data 

imbalance  that  occurred due to 

different attack categories in 

dataset. The minority classes are 

augmented by cGAN. 

[23]  UNSW-

NB15 

Accuracy: 90.09%, 

Precision: 89.5%, Recall: 

No Few-shot meta-learning enabled the 

model to adapt to unknown attacks 

with minimal data. 
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90.2%, False Positive 

Rate: 1.3 

[24]  UNSW-

NB15 

Accuracy: 98.7%, 

Precision: 98.5%, Recall: 

98.8%, False Positive 

Rate: 0.5 

Yes FedIoT with blockchain-enhanced 

federated learning improved trust 

and robustness in IoT networks. 

Proposed 

Model 

(2024) 

UNSW-

NB15 

Accuracy: 99.5%, 

Precision: 99.2%, Recall: 

99.4%, False Positive 

Rate: 0.05 

Yes Achieved higher detection rates with 

integrated blockchain for secure and 

immutable attack logging. 

 

CONCLUSION 

The proposed study presents an inclusive framework: IoT network security with fog computing, hybrid ensemble 

modeling, and blockchain technology. The proposed framework has provided an accuracy of 99.5%, precision of 

99.2%, recall of 99.4%, and a false positive rate of 0.05% and outperformed the previous methods for the detection 

and mitigation of IoT-based cyberattacks by a huge margin. In this paper, the metrics indeed indicate the robustness 

of the model, particularly in identifying malicious activities, while bounding the error rate, which is highly valued in 

real-world applications. Integration of blockchain technology boosts such a security feature by ensuring detection 

records are immutable and traceable, hence rendering this suitable for forensic analysis and ensuring regulation 

compliance. Furthermore, fog computing in this approach enables distributed low-latency processing, hence 

guaranteed scalability and adaptability under dynamic IoT ecosystems. In view of the model robustness, high 

accuracy, and security features, it is established as a state-of-the-art model for modern IoT networks. Future work 

could be done on extending this framework to handle zero-day attacks and further optimizing computational 

efficiency for resource-constrained environments. This research lay a foundation for building a defendable IoT 

network against ever-evolving cyber threats. 
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