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Medical imaging is mostly dependent on brain imbalance diagnosis as it enables physicians to 

locate and treat brain diseases early on. Conventional methods of diagnosis rely much on the 

views of professionals, who may take a long time and result in errors. Deep learning models have 

great potential to assist automate the categorisation of medical pictures, improve diagnosis 

accuracy, and lower the manual labour required in diagnosis process. However, modern models 

must be tuned to increase their accuracy as they often suffer with how they consume computer 

capability. Using MRI and CT pictures, this study uses deep learning models, especially 

ResNet50 and Xception, to sort and pinpoint brain problems. A number of classification models 

were made and tested to see how well they did in terms of accuracy, precision, and memory. 

These models included normal, lightweight, and fine-tuned versions of ResNet50 and Xception. 

The outcomes indicate that fine-tuned Xception did better than other models, with better 

localisation and classification accuracy. Also, combining MRI and CT scans was looked into as a 

way to improve model performance, which led to more consistent classification. A comparison 

of models shows that deep learning is good at automatically finding brain problems, which could 

lead to big steps forward in medical diagnosis. The study recognize optimised deep learning 

models make brain abnormality recognition much more accurate and reliable, cutting the need 

for human analysis. More study will be done in the future to improve model designs and add 

Explainability methods so that they can be used in clinical settings. 

Keywords: Deep learning, Brain abnormality detection, MRI and CT fusion, ResNet50, 

Xception, Medical image classification. 

 

I. Introduction 

Medical tests are very hard to do when there are problems with the brain, like tumours, cysts, and other structural 

problems. Finding these problems correctly and on time is very important for successful treatment and better patient 

results. For example, radiologists are very important when it comes to manually interpreting MRI and CT pictures, 

which are traditional ways of diagnosing health problems. These techniques have been the foundation of 

neuroscience, but they take a long time, are prone to mistakes, and are often limited by differences between observers. 

As the number of brain diseases increases around the world, it becomes clearer that we need more accurate and 

automatic diagnosis tools. Deep learning has become a game-changing tool in the area of medical imaging in the past 

few years. Deep learning models, especially convolutional neural networks (CNNs), are very good at tasks like 

classifying images, finding objects, and separating them into groups. These models are great for medical picture 

analysis because they can learn complicated patterns from big datasets. ResNet50 and Xception have become well-

known among the different deep learning models because they are more complex, work more efficiently, and do better 

at picture recognition tasks. Once these models are tweaked and improved, they can make finding problems in brain 

scans a lot more accurate. 
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Finding brain abnormalities can be hard because you need to be very accurate while also keeping the computer's 

processing power low. Many of the models that are already out there are correct, but they take a lot of time to run, 

which makes them less useful for real-time clinical uses [1]. Also, diagnostic methods that only use one mode might 

not always give all the information needed for a correct evaluation. CT scans are better at showing bone features and 

finding calcifications, while MRI scans are better at showing difference between soft tissues. Image fusion techniques 

can combine these imaging methods to give a more complete picture, which can help find abnormalities more 

accurately. This study solves the problems listed above by using deep learning models to accurately find and place 

brain abnormalities on MRI and CT pictures. The Brain Tumour MRI Dataset from Kaggle is used in the study. It has 

a lot of different brain pictures with different problems. To improve the quality and variety of the training dataset, 

data pre-processing steps like rescaling and colour enhancement are used [2]. The sample is then split into training 

sets and testing sets to make sure that the model review is fair. Here, we will use and compare various versions of the 

ResNet50 and Xception models as the main part of our work. Standard forms of these models are used as a starting 

point, and lighter, more refined versions are made to boost speed and lower the cost of computing. The goal of 

lightweight models is to get faster reasoning times without lowering their accuracy. This makes them good for real-

time uses. When you fine-tune, on the other hand, you make changes to models that have already been taught so that 

they work better for the job of finding brain abnormalities. This makes them better at both classifying things and 

pinpointing where they are. 

Fusion methods make the suggested models even more useful by letting them combine MRI and CT pictures. The 

combined pictures give the deep learning models more information to learn from because they use the best features 

of both imaging methods. The study's results show that fine-tuned Xception does a better job of classifying brain 

abnormalities than other models, showing higher accuracy, precision, and memory [3]. The comparison shows that 

deep learning has the ability to change the way brain abnormalities are found by making it more accurate, faster, and 

easier for everyone to use. This study not only adds to what is known about medical picture analysis, but it also makes 

it possible for more advanced diagnosis tools to be made. Using deep learning models to find problems in the brain 

can make the job of doctors a lot easier, cut down on mistakes in diagnosis, and improve patient care. In the future, 

researchers will look into more complex deep learning structures, add explainability techniques to help us understand 

why models make the choices they do, and increase the size of the collection to include a wider range of cases. The 

goal is to make AI systems that are strong, stable, and easy to understand so that they can fit into professional 

processes and make healthcare better. 

II. Related Work 

Deep learning in medical pictures has advanced significantly throughout the last 10 years. How convolutional neural 

networks (CNNs) may be used to categorise brain disorders has been much investigated. These networks make 

diagnosis more accurate by using vast data sets and intricate architectures. For instance, extremely high accuracy 

and precision CNNs have been used to identify brain cancers from MRI images [4]. This study demonstrated the need 

of long-term training for models and the need of adding new data to them to enable their higher performance. In the 

same line, brain tumours have been categorised using ResNet architecture. The depth of ResNet models has been 

seen to enable the extraction of intricate characteristics from medical images, hence enhancing the classification 

accuracy [5]. It was underlined the difficulty deep networks have avoiding overfitting and the significance of 

regularisation techniques. The Xception model was used in another important addition to find brain abnormalities. 

Its better performance was shown by its depthwise separable convolutions [6]. This method made computations 

simpler while keeping accuracy high, so it can be used in real-time situations. 

Medical imaging has also become interested in image blending methods. Putting together MRI and CT scans makes 

the data that deep learning models use better, as shown in earlier research [7]. Fused images have better brightness 

and clarity, which makes it easier to find abnormalities. This is similar to how the current study combined MRI and 

CT pictures to make the classification more accurate. The problem of how to make deep learning models use less 

computing power has been solved by making CNNs for medical picture classification lighter. This makes inference 

times faster without lowering accuracy [8]. Based on this work, the lightweight ResNet50 and Xception models used 

in this study were built. Fine-tuning models that have already been trained has also been shown to work well in 

medical imaging tasks, making classification much better when used on datasets specific to the area [9]. This method 

is being used in this study to improve the accuracy of finding brain abnormalities. 
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Pre-trained models on large datasets such as ImageNet are often used effectively for specialised applications such 

brain abnormalities detection [10] [20]. This indicates that in medical image analysis, transfer learning is a somewhat 

common approach. As our work on well-tuned ResNet50 and Xception models shows, transfer learning performs 

well in medical imaging. Comparative deep learning methods for medical image categorisation have attracted much 

study. ResNet models turn out to be the least costly to operate and the best accurate among all [11]. This supports the 

decision in this work to use ResNet50. Rescale, brightness change, and normalisation have been found to help models 

be more dependable and practical in real-world [12]. The present work makes sure the quality of the input data by 

following these procedures. Confusion vectors and performance metrics like accuracy, precision, and recall are also 

sometimes utilised when evaluating the effectiveness of deep learning models. A close study of these measures shows 

how well the model is doing and where it can be improved [13]. In this study, the comparison of the ResNet50 and 

Xception models is based on the same review methodology. Putting together MRI and CT pictures has made it easier 

to find brain abnormalities by extracting more features and classifying them more accurately [14]. This supports the 

way that MRI and CT scans are being used together in this study. This study adds to the large amount of work that 

has already been done on medical picture analysis using deep learning. By using standard, light, and fine-tuned 

versions of the ResNet50 and Xception models, this study aims to solve the problems of accuracy, processing 

efficiency, and being able to use the models in real time to find brain abnormalities. Combining MRI and CT scans 

using fusion methods improves the model's performance even more, providing a complete way to find and accurately 

place brain abnormalities. 

Table 1: Summary of related Work 

Methods Findings Impact Application Limitation 

CNN for MRI 

classification 

High accuracy in 

brain tumor detection 

[4] 

Improved 

diagnostic 

precision 

Brain tumor detection Requires large 

dataset 

MRI-CT image 

fusion 

Better contrast and 

detail in fused images 

[7] 

Enhanced 

abnormality 

detection 

Multi-modal brain 

imaging 

Increased 

computational cost 

Lightweight 

CNNs 

Faster inference 

times without 

accuracy loss [8] 

Real-time 

application 

feasibility 

Rapid medical image 

classification 

Limited scalability 

for large datasets 

Fine-tuned 

ResNet 

Improved 

classification 

performance [9] 

Higher accuracy 

and precision 

Brain tumor diagnosis Requires domain-

specific fine-tuning 

Transfer learning Successful adaptation 

of pre-trained models 

[10] 

Reduces training 

time and resources 

Medical image 

classification 

Dependency on pre-

trained models 

ResNet vs. other 

CNNs 

Best trade-off 

between accuracy and 

cost [11] 

Balanced 

performance and 

efficiency 

Brain abnormality 

analysis 

Complexity of 

deeper networks 

Data pre-

processing 

techniques 

Improved model 

robustness [12] 

Better 

generalization in 

models 

Medical imaging 

preprocessing 

Time-consuming 

process 

Performance 

metrics analysis 

Provided insights for 

model improvement 

[13] 

Informed 

optimization 

strategies 

Model performance 

evaluation 

Requires careful 

metric selection 

MRI-CT fusion 

for classification 

Improved accuracy in 

brain abnormality 

detection [14] 

Better diagnostic 

outcomes 

Multi-modal brain 

abnormality detection 

High computational 

requirements 
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ResNet50 and 

Xception 

comparison 

ResNet50 offers 

better performance 

[15] 

Guidance for model 

selection 

Brain tumor 

classification 

Needs further 

optimization for 

real-time use 

Lightweight 

Xception 

Efficient classification 

with lower complexity 

[16] 

Applicable in 

resource-limited 

settings 

Brain abnormality 

detection in low-

resource hospitals 

Reduced accuracy 

compared to full 

models 

Deep learning 

with fused 

images 

Achieved high 

classification 

accuracy [18] 

Improved multi-

modal imaging 

efficiency 

Combined MRI and 

CT analysis 

Requires complex 

data fusion pipelines 

 

III. Methodology 

A. Dataset Used and Loading of data 

This study used a Brain Tumour MRI Dataset [19] that is made up of three different datasets: figshare, SARTAJ, and 

Br35H. It has 7,023 MRI pictures of the brain that are organised into four groups: glioma, meningioma, pituitary 

tumour, and no tumour. The ones that don't show any tumours came from the Br35H sample. But the SARTAJ 

collection had problems, especially with the way glioblastoma pictures were put into the wrong category. This issue 

was found by looking at the outcomes of past research and how well several training models worked. To fix this, the 

tumour pictures from the SARTAJ dataset were taken out and pictures from the figshare dataset were put in their 

place. The dataset had a lot of different brain MRI pictures, which made it good for training deep learning models to 

do a lot of different classification tasks, such as finding tumours, classifying them by aggressiveness, grade, and type, 

and figuring out where the tumours are. CNN-based models were used to do all of these tasks at the same time in this 

study, instead of using different models for each classification job. CNN-based methods were also used to separate 

brain tumours into sections that could be used to find their locations. This gave researchers a complete way to use 

MRI images to diagnose brain tumours. This collection was very important for making deep learning models that can 

accurately and quickly find and classify brain abnormalities. 

 
Figure 1. Dataset Sample (CSV) 
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Figure 1 shows a part of the Brain Tumour MRI Dataset. It shows file names and the class titles that go with them. 

The collection has MRI pictures that have been put into groups, such as "meningioma" and "no tumour." There is an 

MRI picture in each row, along with its store path and classification name. 

 
Figure 2. Dataset Sample (Images) 

The Brain Tumour MRI Dataset has four types of pictures shown in Figure 2: pituitary, no tumour, meningioma, and 

glioma. In each row, there is a different class, and the MRI pictures show different views and cross-sections. The 

pictures show the variety within each class by showing how the tumours' location, size, and severity can be different. 

This range of datasets is necessary to teach deep learning models how to work well with different cases and correctly 

identify brain disorders.  

 
Figure 3.  Class Label Distribution  

In Figure 3, shows how the training labels are spread out in the collection. There is a good mix in the collection. The 

"no tumour" class has the most records, followed by the pituitary, meningioma, and glioma groups. The equal 

distribution makes it less likely for the deep learning models learnt on this dataset to favour one class over another. 

This means that estimates can be made that are fair and accurate for all groups. This balance is very important for 

medical uses where the wrong classification can have very bad results. It makes sure that the models are just as good 

at finding all kinds of brain problems. 
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B. Data Pre-Processing 

Making deep learning models able to detect and localise brain anomalies using MRI and CT images depends on data 

preparation. One typical method of image normalisation is rescaling images, hence this research used 1/255. This 

ranges the pixel values from 0 to 255 from 0 to 1 instead. This adjustment guarantees that the neural network 

constantly detects the same and useable input values. This increases stability of the model and accelerates the 

convergence process during training. Rescaling helps to reduce the impact of pixels with varying degrees across 

images. In this sense, the deep learning models may concentrate on the patterns beneath instead of variations in 

picture brightness or contrast.  

Each pixel value p in the original image is rescaled to p' using the following formula: 

𝑝′ =
𝑝

255
 

where: 

• p is the original pixel value in the range [0, 255] 

• p' is the normalized pixel value in the range [0, 1] 

Along with that, lighting enhancement was used between 0.8 and 1.2. Randomly changing the brightness of pictures 

during training is part of this method. This makes the models more resistant to changes in lighting conditions 

between MRI and CT scans. By showing the model pictures with different levels of brightness, overfitting is less likely 

to happen, and the model learns how to work better with data it hasn't seen before. This step is very important in 

medical imaging because scans from different tools or places can have different amounts of light. Together, rescaling 

and colour enhancement improve the variety and quality of the training data. This makes it easier to find and classify 

brain abnormalities more accurately. 

The brightness-adjusted image I_b is computed as: 

𝐼_𝑏 =  𝐼 ×  𝛼 

where: 

• I is the original image matrix 

• α ∈ [0.8, 1.2] is the brightness factor randomly selected from the given range 

C. Deep learning Models 

1. ResNet50 

ResNet50 is a 50-layer deep convolutional neural network that was made to solve the problem of gradients that 

disappear in deep networks by using leftover connections. This is because ResNet50 can learn complex patterns in 

MRI and CT pictures, which makes it very good at finding brain problems. With the help of the leftover blocks, the 

model can keep important spatial information, which is needed to find problems like tumours. Its depth makes it 

good for difficult sorting jobs, making sure that brain abnormalities are accurately found and placed. 

Algorithm for ResNet50 in Brain Abnormality Detection 

1. Input Layer Transformation 

Given an input image I of size 224 × 224 × 3, ResNet50 transforms it into feature maps using convolution: 

𝑋_0 =  𝐶𝑜𝑛𝑣2𝐷(𝑊_0)  ∗  𝐼 +  𝑏_0 

2. Residual Block Operation 

Each residual block is defined as: 

𝑋_{𝑙 + 1}  =  𝐹(𝑋_𝑙, 𝑊_𝑙)  +  𝑋_𝑙 

3. Activation Function 

Rectified Linear Unit (ReLU) is applied at each layer to introduce non-linearity: 
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𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) 

4. Global Average Pooling 

Feature maps are reduced to a single vector by averaging all spatial locations: 

𝐺𝐴𝑃 =  (
1

𝐻
×  𝑊) 𝛴

{𝑗=1}
{𝑖,𝑗}
{𝑊}𝑋 

5. Softmax Classification 

The final output layer uses softmax for multi-class classification: 

𝑃(𝑦 = 𝑘|𝑥) =
𝑒{𝑧𝑘}

𝛴{𝑗=1}
{𝑁}

𝑒{𝑧𝑗} 

 

Figure 4: ResNet50 Model 

2. Lightweight ResNet50 

Lightweight ResNet50 is a changed version of the original ResNet50 that is designed to make inference go faster and 

require less computing power. This version is very important for real-time medical apps that need to make quick 

diagnoses. Lightweight ResNet50 strikes a balance between speed and accuracy by cutting down on the number of 

factors while keeping key parts of the original design. This makes it suitable for use in places with limited resources, 

like smaller healthcare facilities. 

Lightweight ResNet50:  

1. Input Convolution: 

𝑋0 =  𝐶𝑜𝑛𝑣2𝐷(𝑊0, 𝑘 = 3𝑥3, 𝑠 = 1) ∗  𝐼 +  𝑏0 

(Convolves the input I with a smaller filter kernel k and stride s for efficiency.) 

2. Depthwise Convolution: 

𝑋𝑑 =  𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣2𝐷(𝑊𝑑 , 𝑘 = 3𝑥3) ∗  𝑋{𝑙−1} +  𝑏𝑑 

(Performs spatial convolution independently over each channel, reducing complexity.) 

3. Pointwise Convolution: 

𝑋𝑝 =  𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣2𝐷(𝑊𝑝, 𝑘 = 1𝑥1) ∗  𝑋𝑑 +  𝑏𝑝 
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(Combines channel-wise outputs using 1x1 convolutions for dimensionality reduction.) 

4. Residual Addition: 

𝑋{𝑙+1} =  𝑅𝑒𝐿𝑈(𝑋𝑝 +  𝑋𝑙) 

Lightweight ResNet50 optimizes standard ResNet50 by using depthwise and pointwise convolutions, making it 

efficient while maintaining high accuracy in brain abnormality detection. 

 

Figure 5: Representation of Lightweight ResNet50 model 

3. Fine-tune ResNet50 

Fine-tuning ResNet50 means making changes to the model that was already trained on the brain tumour dataset. 

This makes it better at this job. The model learns from brain MRI and CT scans by stopping lower layers and restarting 

higher layers. This makes the model more accurate at classifying images. Fine-tuning lets you use ResNet50's 

strength while also making it fit your needs to find and localise brain problems accurately. 

Fine-tune ResNet50:  

1. Pre-trained Weights Initialization: 

𝑊 =  𝑊_𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡) 

(The initial weights are loaded from a pre-trained ResNet50 model on ImageNet.) 

2. Feature Extraction Layer: 

𝑋_𝑓 =  𝐹𝑟𝑒𝑒𝑧𝑒(𝐶𝑜𝑛𝑣1 . . . 𝐶𝑜𝑛𝑣𝑁) ∗  𝐼 

(Lower convolutional layers are frozen to retain generic features from pre-trained weights.) 

3. Trainable Layers: 

𝑋_𝑡 =  𝑇𝑟𝑎𝑖𝑛(𝐹𝐶_𝑙𝑎𝑦𝑒𝑟𝑠, 𝐷𝑟𝑜𝑝𝑜𝑢𝑡)  ∗  𝑋_𝑓 

(Top fully connected layers are unfrozen and retrained on the brain MRI dataset.) 

4. Loss Optimization: 

𝐿(𝑊)  =  𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, ŷ)  +  𝜆 ∗  ||𝑊_𝑡𝑟𝑎𝑖𝑛||² 

(Loss function combines cross-entropy for classification and L2 regularization for weight decay.) 

5. Fine-tuning Update: 

𝑊_𝑛𝑒𝑤 =  𝑊 −  𝜂 ∗  𝛻𝐿(𝑊) 
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(Weights are updated using gradient descent with learning rate η during fine-tuning.) 

Fine-tuning ResNet50 leverages pre-trained knowledge while adjusting the final layers for accurate brain 

abnormality detection and classification. 

 

Figure 6: Representation of Fine-tune ResNet50 model 

4. Xception 

Xception is a CNN design that uses depthwise separable convolutions instead of standard convolutions to make 

computations simpler. Because it efficiently extracts features and is very accurate, Xception is great at finding brain 

abnormalities. The model's structure makes sure that it can record specific spatial ordering in brain pictures, which 

is important for telling the difference between different kinds of tumours and healthy brain structures. 

Xception Algorithm 

1. Depthwise Separable Convolution: 

𝑋_𝑑 =  𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣2𝐷(𝑊_𝑑, 𝑘 = 3𝑥3)  ∗  𝑋_{𝑙 − 1} 

(Performs spatial convolution per channel independently, reducing computational cost.) 

2. Pointwise Convolution: 

𝑋_𝑝 =  𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣2𝐷(𝑊_𝑝, 𝑘 = 1𝑥1)  ∗  𝑋_𝑑 

(Combines outputs from depthwise convolution using 1x1 convolutions.) 

3. Residual Connection: 

𝑋_{𝑙 + 1}  =  𝑅𝑒𝐿𝑈(𝑋_𝑝 +  𝑋_𝑙) 

(Adds the processed output back to the input through a skip connection with ReLU activation.) 

4. Softmax Output: 

𝑃(𝑦 = 𝑘|𝑥)  =  𝑒^{𝑧_𝑘} / 𝛴_{𝑗 = 1}^{𝑁} 𝑒^{𝑧_𝑗} 

(Softmax layer for multi-class classification, assigning probabilities to each brain abnormality class.) 

Xception’s depthwise separable convolutions enhance computational efficiency while maintaining high accuracy, 

making it suitable for brain abnormality detection tasks. 
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Figure 7: Architecture for Xception model 

5. Lightweight Xception 

Lightweight Xception is made to give you all the benefits of Xception with fewer factors. This makes it faster and 

better for real-time medical diagnosis. This model keeps the depthwise separable convolutions but makes it simpler. 

This makes it possible to quickly and accurately classify brain abnormalities while also making the model 

computationally efficient for real-world use. 

Lightweight Xception: 

1. Efficient Depthwise Convolution: 

𝑋_𝑑 =  𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣2𝐷(𝑊_𝑑, 𝑘 = 3𝑥3, 𝑠 = 1)  ∗  𝑋_{𝑙 − 1} 

(Reduces computation by applying depthwise convolution to each input channel separately.) 

2. Optimized Pointwise Convolution: 

𝑋_𝑝 =  𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣2𝐷(𝑊_𝑝, 𝑘 = 1𝑥1)  ∗  𝑋_𝑑 

(Combines depthwise outputs using minimal parameters for lightweight processing.) 

3. Batch Normalization and ReLU: 

𝑋_𝑏 =  𝑅𝑒𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑋_𝑝)) 

(Normalizes and applies non-linearity for stable and efficient training.) 

4. Lightweight Residual Block: 

𝑋_{𝑙 + 1}  =  𝑋_𝑏 +  𝑋_𝑙 

(Adds processed output to the input via a skip connection for gradient flow.) 

Lightweight Xception maintains the architecture’s strengths while reducing complexity, making it efficient for real-

time brain abnormality detection in MRI and CT images. 
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Figure 8: Architecture for Lightweight Xception model 

6. Fine-tune Xception 

Getting better Xception gets better at finding problems in the brain by training on MRI and CT files that are specific 

to the problem. This method makes it easier for the model to find and describe brain tumours by using Xception's 

power and adapting it to the specifics of medical imaging data. This leads to estimates that are reliable and correct. 

Fine-tune Xception:  

1. Pre-trained Initialization: 

𝑊 =  𝑊_𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡) 

(Loads pre-trained weights from Xception trained on ImageNet for initialization.) 

2. Freeze Base Layers: 

𝑋_𝑓 =  𝐹𝑟𝑒𝑒𝑧𝑒(𝐶𝑜𝑛𝑣1 . . . 𝐶𝑜𝑛𝑣𝑁) ∗  𝐼 

(Freezes initial convolutional layers to retain learned generic features.) 

3. Trainable Layers Adjustment: 

𝑋_𝑡 =  𝑇𝑟𝑎𝑖𝑛(𝐹𝐶_𝑙𝑎𝑦𝑒𝑟𝑠, 𝐷𝑟𝑜𝑝𝑜𝑢𝑡)  ∗  𝑋_𝑓 

(Top layers are unfrozen and retrained on the brain MRI dataset for task-specific learning.) 

4. Loss Function: 

𝐿(𝑊)  =  𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, ŷ)  +  𝜆 ∗  ||𝑊_𝑡𝑟𝑎𝑖𝑛||² 

(Combines cross-entropy loss with L2 regularization for weight optimization.) 

5. Gradient Descent Update: 

𝑊_𝑛𝑒𝑤 =  𝑊 −  𝜂 ∗  𝛻𝐿(𝑊) 

(Updates trainable weights using gradient descent with learning rate η.) 

Fine-tuning Xception adapts the model’s learned features for brain abnormality classification, ensuring improved 

accuracy and efficiency. 



728  

 

 

J INFORM SYSTEMS ENG, 10(11s) 

 

Figure 9: Architecture for Fine-tune Xception model  

IV. Result and Discussion 

The first set of graphs shows the ResNet50 model's training and validation loss (on the left) and accuracy (on the 

right) over five epochs, as shown in figure 10. With each session, the training loss keeps going down, which means 

that the model is learning well. However, the validation loss goes up at first and then slowly goes down. This suggests 

that the model may have had some overfitting issues in the beginning but got better as training went on. Training 

accuracy keeps going up on the accuracy graph, while validation accuracy starts to get better after the second epoch 

and peaks at the fifth epoch. The fifth phase, which is the best, shows the best mix between training and evaluation 

results. 

 
Figure 10. Accuracy and Loss Comparison of ResNet50 Model 

The figure 11 shows how the accuracy (on the left) and recall (on the right) match for both training and validation. In 

training, accuracy always goes up, but in confirmation, it changes, going down at first after the first phase and then 

steadily going up again. There is a steady rise in training memory, which means that over time, the model gets better 

at finding good cases. Validation memory slowly gets better until it reaches its highest point in the fifth phase. The 

marked best epochs show the model's best performance in terms of accuracy and memory. This shows that the 

ResNet50 model can generally and correctly find brain abnormalities in MRI images. 
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Figure 11. Precision and Recall Comparison of ResNet50 Model 

Over five epochs, the line on the left shows in figure 12 how much the Lightweight ResNet50 model lost during 

training and validation. Losses for both training and validation keep going down, which means the model is learning 

well without becoming too perfect. Near the end, the losses converge, which shows that the model's learning process 

is stable. On the right, the accuracy of both training and evaluation keeps getting better with each session. In some 

cases, the validation accuracy is higher than the training accuracy, which shows that the model works well in real life. 

The fourth phase is the best because it has the highest validation accuracy. This shows how well the Lightweight 

ResNet50 model works at finding brain abnormalities while also being fast and efficient. 

 
Figure 12. Accuracy and Loss Comparison of Lightweight ResNet50 Model 

Figure 13 displays in the accuracy and recall graphs how well the Lightweight ResNet50 model classifies objects both 

correctly and incorrectly. Following the first few epochs, the precision curve indicates that both training and 

validation precision begins to drop. This implies that, as training progresses, the model becomes somewhat less able 

to routinely discover positive situations even if it is correct. Conversely, the recall curve indicates that validation recall 

as well as training are always improving. This implies that the model improves in identifying suitable examples over 

time. Marked as the greatest for memory in fifth phase and the most precise in first phase is This demonstrates the 

trade-off between memory and accuracy as well as the real-time brain issue finding capability of the Lightweight 

ResNet50. 

 
Figure 13. Precision and Recall Comparison of Lightweight ResNet50 Model 
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Figure 14. Accuracy and Loss Comparison of Fine-tune ResNet50 Model 

The left line shows in figure 14 the Fine-tune ResNet50 model's training and validation loss over five epochs. Both 

losses keep going down, which shows that the model is learning well with each epoch. Notably, the validation loss 

drops quickly at the beginning and nearly matches the training loss by the end of the cycle. This shows that the model 

was fine-tuned without becoming too perfect. The accuracy graph on the right shows that both training and 

confirmation accuracy are getting better over time. At first, validation accuracy goes up quickly. By the second phase, 

it is higher than training accuracy and stays that way after that. The fifth time is marked as the best because it shows 

the most accuracy. This shows that fine-tuning ResNet50 makes it better at generalising to data it hasn't seen before, 

which makes it very good at finding brain problems. 

 

 
Figure 15. Precision and Recall Comparison of Fine-tune ResNet50 Model 

The precision curve shows in figure 15 that the accuracy of training predictions keeps getting better, while the 

accuracy of validation predictions rises sharply after the first epoch and then stays high. This means that the model's 

predictions are still very accurate. The memory graph shows that both training and validation recall keep getting 

better. Validation recall starts to rise quickly and keeps getting better until the last epoch. The fifth period, which is 

the best, shows the highest level of accuracy and memory. This shows how well fine-tuning ResNet50 works for 

correctly classifying and placing brain abnormalities. 

 
Figure 16. Accuracy and Loss Comparison of Xception Model 
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Figure 16 is a graph that shows the Xception model's training and validation loss over five epochs. From the first 

epoch on, training loss goes down a lot and stays that way until around the fourth epoch. Validation loss also goes 

down, which shows that the model learns well without becoming too perfect. At the end, both loses converge, which 

means that the training process was well-designed. The accuracy graph on the right shows that from the first epoch 

on, both training accuracy and validation accuracy went up very quickly. The best time is the fifth, which is where 

both accuracies are at their highest. This shows that Xception can generalise well and provide high accuracy for 

finding brain abnormalities. 

 

 
Figure 17. Precision and Recall Comparison of Xception Model 

In figure 17a, the precision curve shows that training accuracy went up a lot after the first epoch and has been going 

up ever since. The accuracy of confirmation keeps going up until it reaches its highest point at the fifth stage, which 

also marks the best performance. The memory graph also shows steady growth. After the first phase, training recall 

got better quickly, and validation recall kept getting better. Both accuracy and memory are at their highest levels at 

the fifth phase, showing that the Xception model does a good job of balancing them. This makes it very reliable for 

correctly finding and describing brain abnormalities in MRI and CT pictures. 

 

 
Figure 18. Accuracy and Loss Comparison of Lightweight Xception Model 

 

 
Figure 19. Precision and Recall Comparison of Lightweight Xception Model 
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The training and validation loss for the Lightweight Xception model over five epochs can be seen on the left side of 

figure 18. Both losses keep going down, but the training loss goes down more quickly in the first few epochs before 

levelling off. The validation loss also follows the same pattern. This keeps the model in a good mix between learning 

and generalisation. The fact that both losses converged at the last epoch shows how well the Lightweight Xception 

model handles the dataset with less computing work. The accuracy graph on the right shows that training accuracy 

goes up quickly from the first phase to the third. After that, it stops going up. Following closely behind, validation 

accuracy reaches its highest point at the fourth epoch, which is designated as the best epoch. This shows that the 

Lightweight Xception model gets high accuracy with minimal resource use, making it perfect for real-time brain 

abnormality detection. Figure 19: A comparison of the lightweight Xception model's accuracy and recall. The 

precision graph shows that training precision steadily gets better, while validation precision slowly gets better until 

it peaks at the fourth epoch and then starts to go down. This shows that the model does a good job of finding positive 

cases with a high level of accuracy. Both the training recall and the validation recall keep going up on the recall graph. 

At the fourth phase, which is marked as the best, both measures come together. This shows that the Lightweight 

Xception model correctly identifies true positives, ensuring accurate labelling of brain abnormalities while keeping 

computing power high. 

 

 
Figure 20. Accuracy and Loss Comparison of Fine-tune Xception Model 

 

 
Figure 21. Precision and Recall Comparison of Fine-tune Xception Model 

The left line shows in figure 20, the Fine-tune Xception model's training and validation loss over five epochs. From 

the first epoch on, the training loss drops sharply and stays close to zero by the fifth epoch. Validation loss follows a 

similar trend, going down slowly until it reaches the same level as training loss at the end. This shows that the model 

can generalise well without becoming too perfect. The right line shows that both training and validation accuracy get 

a lot better over time. By the third epoch, both are very close to 100% accuracy, and stay that way until the fifth epoch, 

which is marked as the best epoch. This shows how well fine-tuning the Xception model for accurate brain disease 

recognition works, since it uses weights that have already been learnt while learning domain-specific features from 

the MRI and CT dataset. Figure 21: The precision graph shows that training precision quickly got better after the first 

epoch and was almost perfect by the third epoch. Validation precision followed a similar trend. Both of the measures 

stay high for the rest of the epochs. The memory graph behaves in a similar way. By the third epoch, both the training 



733  

 

 

J INFORM SYSTEMS ENG, 10(11s) 

and validation recalls get almost perfect scores and then stay that way. The fifth phase is marked as the best one. This 

means that the Fine-tune Xception model does a great job of correctly finding and categorising brain abnormalities, 

which makes it ideal for real-time medical uses. 

      
Figure 22. (a) Confusion Matrix of Finetune ResNet50 Model (b) Confusion Matrix of Finetune Xception Model 

Figure 22(a) and (b) show the uncertainty matrices that show how well the Fine-tune ResNet50 model does at 

classifying. There are few fake positives and negatives in each matrix, and the true positive rates are high across all 

groups of brain abnormalities. This shows that the model can accurately and reliably find glioma, meningioma, 

pituitary tumours, and cases with no tumour at all, proving that it works well for classifying medical images. 

Table 2: Result for Different model analysis with performance metrics  

Model Accuracy F1-Score 

ResNet50 0.64 0.57 

Lightweight ResNet50 0.65 0.62 

Fine-tune ResNet50 0.75 0.72 

Xception 0.88 0.87 

Lightweight Xception 0.90 0.89 

Fine-tune Xception 0.99 0.99 

 

Table 2 shows a comparison of various deep learning models used to find problems in the brain, focussing on their 

accuracy and F1-scores. With an F1-score of 0.57 and an accuracy of 0.64, the well-known convolutional neural 

network ResNet50 did very well. Even though it worked, its high level of complexity may have made it less able to 

generalise well beyond the dataset. With an accuracy of 0.65 and an F1-score of 0.62, lightweight ResNet50 showed 

a slight gain. This shows that making the model simpler can improve its performance by preventing overfitting, 

especially for smaller datasets. Adjust finely With an accuracy of 0.75 and an F1-score of 0.72, ResNet50 did better 

than the other models. Fine-tuning helped the model fit the brain abnormality collection better, which made it better 

at finding and classifying abnormalities. With an accuracy of 0.88 and an F1-score of 0.87, the Xception model did 

much better. This is because it uses depthwise separable convolutions, which make feature extraction better while 

lowering processing costs. 

With an accuracy score of 0.90 and an F1-score of 0.89, the lightweight Xception improved performance even more. 

It did a good job of combining speed and accuracy. The Fine-tune Xception model got the best results, with an 

accuracy score of 0.99 and an F1-score of 0.99, which means it could almost perfectly classify things, as illustrate in 

figure 23. Fine-tuning Xception used its strong design and domain-specific training to accurately and reliably find 

brain abnormalities. This made it the best model for the medical imaging tasks in this study. 
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Figure 23. Comparative Analysis of Models 

 

The prediction on a MRI image sample is shown in Figure 24 (a) and (b), from figure the prediction image is of a 

tumour with a 100% chance. 

  
 

Figure 24 (a) Input Image (b) Predicted output 

 
     

Figure 25. (a) Fused Image Sample (MRI + CT) (b) Predicted output 
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The picture input Figure 25(a) shows a clear MRI + CT Fused images that was used for forecast. It shows the structure 

of the brain and the abnormality area that matches a meningioma. In Figure 25(b), the end prediction from the 

dataset picture shows that the image is most likely to be a meningioma, which shows that the model is very sure of 

its choice. In this case, it shows how well the model can correctly find and label brain problems in MRI pictures. The 

high confidence number means that the model has learnt to tell the difference between meningioma and other types 

of tumours, like gliomas, pituitary tumours, and no tumour.  

V. Conclusion 

This work correctly found and placed brain anomalies using MRI and CT images by using several deep learning 

models including ResNet50, Lightweight ResNet50, Fine-tune ResNet50, Xception, Lightweight Xception, and Fine-

tune Xception. Four groups—no tumours, glioma, meningioma were formed from the assortment of brain MRI 

images included in the collection. Rescale and colour enhancement techniques in data pre-processing guaranteed 

that the model would perform better in more contexts. ResNet50 had average accuracy (0.64) and F1-score (0.57), 

while Lightweight ResNet50 performed somewhat better because to its optimised design, obtaining somewhat higher 

accuracy (0.65) and F1-score (0.62). ResNet50's accuracy score (0.75) and F1-score (0.72) suggest that fine-tuning 

helps for jobs particular to a subject. With an accuracy score of 0.88 and an F1-score of 0.87, Xception tremendously 

enhanced performance. It more effectively extracted features by use of depthwise separable convolutions. With 

lightweight Xception whose accuracy score was 0.90 and F1-score was 0.89 the outcomes were much better. With an 

F1-score of 0.99 for every model and almost flawless accuracy, Fine-tune Xception outperformed all the others. This 

demonstrated that educated on facts particular to the issue, it was more adept in spotting brain anomalie. Metrics for 

model performance, such as accuracy, loss, precision, and memory, were looked at. Fine-tune Xception showed the 

most stable and good results. Image fusion, which combines MRI and CT scans, made model forecasts even better by 

giving more detailed spatial and anatomical information that was needed for correct classification. Confusion 

matrices showed that all models had high rates of true positives and low rates of false positives. The study comes to 

the conclusion that deep learning models, especially Fine-tune Xception, can accurately and reliably find brain 

problems. When MRI and CT scans are combined, they improve classification accuracy, which makes these models 

perfect for real-time clinical use. In the future, researchers will look into more complex structures and bigger records 

to make medical tests even more accurate and reliable. 
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