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The adoption of Industry 4.0 technology in healthcare has led to increased concerns about data 

privacy, security, and interoperability. Traditional centralized healthcare systems are 

vulnerable to cybercriminal and unauthorized access; thus there is a need for secure and 

privacypreserving data sharing architecture. This work proposes an integration of Federated 

Learning (FL) with Blockchain to deliver improvements in the security, scalability, and privacy 

of decentralized healthcare. Florida allows hospitals to train their models locally and share 

them without divulging raw patient data, whereas Blockchain ensures data security, 

decentralized identity management, and safe access control through smart contracts. Although 

providing such high-level security requires the usage of advanced techniques such as Zero-

Knowledge Proofs (ZKP), Homomorphic Encryption, and Proof-of-Stake (PoS) consensus, the 

high protection level of data is definitely on the huge-scale advantages of blockchain 

technology. The proposed model is in line with Industry 4.0 concepts that support automation, 

interoperability, and strong data ecosystems in healthcare. The resolve is to reduce security 

threats ensure regulatory compliance and exchange healthcare data with the highest standards 

of security. Experimental results show improved security, privacy, and efficiency, which make 

this solution a scalable and robust alternative for current decentralized healthcare data 

management in Industry 4.0. 

Keywords: Federated Learning (FL) , Blockchain for Healthcare , Decentralized Data Sharing 

, Privacy-Preserving AI , Homomorphic Encryption, Zero-Knowledge Proofs (ZKP), Secure 

Medical Data Exchange , Proof-of-Stake (PoS) Consensus, Smart Contracts in Healthcare , 

Industry 4.0. 

 

1. Introduction 

The healthcare industry is undergoing rapid digitization, leveraging data-driven technology to optimize clinical 

treatment, diagnosis and care delivery. The growing dependence on electronic health records (EHRs) as well as 

wearable sensors and networked medical equipment raises serious issues of privacy, security, and data integrity. 

This traditional centralized healthcare storing data system is highly vulnerable to Cyberattacks, illegal access, and 

single points of failure, which poses a serious threat to sensitive medical information. The challenge lies in allowing 

collaborative medical research and data analysis to take place while still abiding by strict privacy regulations such 

as HIPAA and GDPR. However, Federated Learning (FL) and Blockchain are complementary technologies with the 

potential of providing decentralized healthcare data sharing, thereby potentially mitigating these challenges. Such 

provisions allow hospitals, research institutes, and medical organizations to collectively develop models while 

protecting sensitive patient information. This greatly enhance data privacy by keeping patient information on local 

devices while contributing to the creation of a global model. However, FL alone is not sufficient for safely 

communicating between different healthcare institution, nor ensuring data validity or transparency. The properties 

of blockchain technology (decentralization, immutability, and transparency) can complete federated learning by 

saying that they can provide tamper-proof (immunization) data storage, decentralized identity management, and 

secure access control. Using Hyperledger Fabric for blockchain transactions and IPFS for decentralized storage and 

smart contracts for automated validation adds to the security of healthcare data interchange. ZKP and 
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homomorphic encryption additionally add another layer of privacy-preserving computations, preventing 

unauthorized access and ensuring that medical data is safely processed. 

In this research, we explore the interaction between Federated Learning and Blockchain with some key advantages, 

limitations, and its applications in healthcare. This review provides a comprehensive evaluation of security, 

execution speed, scalability, privacy protection and attack prevention, demonstrating how this approach helps 

mitigate cyber security threat, ensures compliance, and facilitates secure health information exchange. We designed 

the architecture to provide Proof-of-Stake (PoS) consensus, Multi-Factor Authentication (MFA), AES-256 

encryption, Merkle Tree validation ultimately supporting a robust, tamper-proof and scalable decentralized 

healthcare system. 

The rest of the sections of this work are arranged in the following sequence: Chapter 2 is the literature review 

section, where we study the literature in decentralized healthcare, graphical models of care, federated learning (FL) 

and blockchain applications. Chapter 3 delves into the merging of Federated Learning with Blockchain to facilitate 

decentralized data sharing, demonstrating how the two come together to enhance privacy, security and scalability. 

The protocol is detailed in Chapter 4, alongside the five core algorithms used in this proposed system. Chapter 5 

covers the implementation, including hardware and software configurations, with a sample case illustrating its 

application. Chapter 6 analyzes the results, estimating system performance and efficiency in terms of security, 

attack prevention, privacy and performance metrics. Chapter 7 completion summarises principal findings and 

potential areas and improvements for future work for creating a scalability-privacy-preserving decentralised health 

care ecosystem. 

2. Literature review 

Stephanie et al. (2022),In the same vein, the trend of Industry 4.0 initiates the Healthcare 4.0 and introduces 

IoT-powered medical imaging for the early detection of diseases. But because of privacy concerns and differences in 

institutional computational capabilities, AI and big data adoption remain behind. To this end, this study 

introduced a blockchain-based federated learning method to provide secure and collaborative data sharing [1]. 

Alkhalifa et al. (2024),The Internet of Medical Things (IoMT) integrates various medical devices to enhance 

patient treatment by facilitating the real-time exchange of information. Privacy-preserving federated learning 

(PPFL) facilitates collaborative ML training without sending sensitive data. This work proposes the PPFL-BCSHS 

system, which incorporates blockchain with anomaly detection (i.e., MGO-based feature selection, BiGRU, and 

SCSO tuning) to improve IoMT's security and performance [2]. 

Ngoupayou Limbepe et al. (2025),Privacy Preservation in Smart Healthcare Systems with Federated Learning 

(FL) FL enforces privacy in smart healthcare systems but has certain drawbacks. We present the integration of 

blockchain and privacyenhancing technologies (PETs) to improve FL frameworks. This survey focuses on 

blockchain-enabled storage, aggregation and gradient uploads, emphasizing their importance in securing 

healthcare data and improving trustworthiness in the systems[ 3]. 

Bezanjani et al. (2024),IoT revolutionized healthcare, but the tech also brought a kink to cybersecurity 

challenges. This paper defines a three-phase security model comprised of data transaction encryption through 

blockchain, access control through pattern recognition and intrusion detection through bi-directional long short-

term memory (BiLSTM). Better accuracy, precision and intrusion detection performance was achieved by this 

method than the existing techniques, which speed and direct the proposed method as accurate[4]. 

Guduri et al. (2023),To achieve proper safety of electronic health records (EHRs), this research presents a 

federated learning mechanism with a lightweight blockchain-based encryption scheme. This eliminates the security 

risk of relying on third parties to gain access to encrypted data, such as OAuth services, For more precious and 

encrypted data, using Smart Contracts and Proxy Re-encryption technology. Tested using an Ethereum testbed, the 

model guarantees improved security and outperforms traditional forms of encryption [5]. 

Alzakari et al. (2024),In this paper, we propose a new methodology that employs Machine Learning 

(ML)/blockchain/intrusion detection systems (IDS) to advance the security and predictive analytics in the internet 

of healthcare things (IoHT). This approach incorporates federated learning to safeguard data privacy while 

facilitating accurate health prediction as well as intrusion detection. Some critical advantages here include 

improving federated learning with blockchain, IDS-based threat detection, and synchronizing artificial neural 
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networks to achieve high efficacy ratios accounting for 97.75% for intrusion detection and 98% for disease 

prediction [6]. 

Khan et al. (2023),While the rapid advances in the Internet of Medical Things (IoMT) have changed the pattern 

of healthcare, it has also led to security vulnerabilities like replay attack, data tampering and identity spoofing. 

Advanced Security Framework for Real Time Health Care Applications: Encrypting and Protecting Medical 

DataΑbstract: In the context of health care, protecting real- time medical data before, during, and after 

transmission is of paramount importance. Our proposed framework achieves substantial enhancements in terms of 

anomaly detection and resilience towards cyber-based offenses compared to existing solutions such as MRMS and 

BACKM-EHA (7). 

Butt et al. (2023),In the context of COVID-19, federated learning (FL) can be useful to allow organizations to 

collaboratively train an AI model without sharing any of their data. In this study, a COVID-19 diagnosis using chest 

X-ray images is accomplished using an FL-based system with the help of localized and fog-computing-based CNN 

models. The global FL model achieves superior performance compared to local models while maintaining patient 

privacy. The study focuses on the combination of AI, FL, and medical imaging to offer better healthcare [8]. 

Kumar et al. (2024),Segmentation of brain tumor lesions is important yet difficult due to the diverse shape and 

location of tumors. To achieve secure and private model training, this work proposes a federated learning 

framework over a blockchain infrastructure. Only the encrypted model parameters are shared on a permissioned 

blockchain, enabling decentralized learning without compromising raw data privacy. Experimental findings 

indicate that our approach enhances segmentation performance considerably, thereby facilitating medical image 

analysis and treatment programming [9]. 

Purohit et al. (2025),With the need for smart devices like smartwatches, personal healthcare data is only 

secured. In this work, we propose a framework that combines deep learning and federated learning with IPFS 

(InterPlanetary File System) and blockchain to anonymize and secure the storage of healthcare data. Federated 

learning allows you to train models without sharing raw data, and blockchain gives you transparent, immutable 

data access. Based on the results obtained, this system does not require any additional data to be released and 

delivers only the final learning model, with the advantage that it achieves an accuracy of 84.59% on CIFAR-10 and 

can be used for health care data privacy, ensuring secured records for sensitive data [10]. 

Khan et al. (2025),The digitization of healthcare has resulted in an enormous amount of electronic medical 

records (EMRs), presenting a great opportunity for medical research but also raising issues of privacy and security. 

We propose a framework for federated learning integrated with the blockchain to enable different institutions to 

collaboratively train machine learning models while keeping raw data localized. Using cryptography, blockchain 

allows for integrity and immutability of data, smart contracts facilitate trust, and both facilitate secure collaboration 

in medical research without compromising patient privacy. Experimental validation demonstrates its effectiveness 

and capacity to disrupt health care innovation [11]. 

Hai et al. (2024),In the era of Healthcare 5.0, which is characterized by the broad implementation of Internet of 

Things (IoT) and connected medical technologies, protecting the privacy of the patient is of vital importance. This 

research proposes a blockchain-system-federated learning and deep extreme machine learning based system in an 

effective and secure manner. This framework is implemented with various machine learning algorithms such as 

LDA, Decision Tree and AdaBoost to predict the disease with the usage of intrusion detection framework to avoid 

their security threats. Results show high accuracy and strong privacy preservation, which makes it an appropriate 

solution for secure and privacy-preserved health care systems [12]. 

Almalki et al. (2024),As more devices are connected to the Internet of Medical Things ( IoMT), there is a 

growing concern about device and data security. In this paper, we propose the integration of blockchain and 

intrusion detection management (IDM) techniques to improve secure healthcare monitoring in federated learning. 

Designing and implementing an adaptive pathogenicity prediction model based ona CNNs trained exclusively 

using NCBIs dataset with an accuracy %- of 93.89% is achieved USD 43.13% in detecting the intrusion with this 

model. It can easily be the best way to increase the security and reliability for IoMT environments [13]. 

Myrzashova et al. (2024),Conventional approaches in ML risk the privacy of patient data, which makes 

federated learning a popular choice for collaboration. This paper presents a blockchain-based federated learning 
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model to identify 15 lung diseases covered in the NIH Chest X-ray dataset (112,120 images). With 92.86% accuracy, 

the model shows 87% resilience against cyber attacks, meaning its prospects to contribute in care that is of secure 

scalable nature [14]. 

Khan et al. (2024),Conventional medical image diagnostics performed by humans and centralized systems are 

prone to errors and susceptible to attacks. This study introduces the FDEIoL (Healthcare Federated Ensemble 

Internet of Learning Cloud Doctor System) a federated ensemble learning technique for secure and accurate 

diagnosis within the scope of IoT and healthcare. Combining patient data at the edge addresses potential poisoning 

attacks while improving remote patient monitoring. The model achieves an accuracy of 99.24% on Chest X-rays and 

99% on MRI brain tumor images, consistently outperforming centralized models in terms of diagnostic 

performance and robustness[15]. 

Kalinaki et al. (2024),We need a different solution, as traditional AI methods in healthcare are hampered by the 

centralization of data processing and privacy issues. Federated Learning (FL), a decentralized approach, supports 

secure machine learning, thus protecting the privacy of the IoHT devices. This paper examines FL deployment 

security issues and techniques to enhance privacy, like differential privacy and homomorphic encryption, which 

can provide guidance for secure FL for healthcare in future research [16]. 

Dhasaratha et al. (2024),IoMT help in COVID-19 patient monitoring, but data privacy is an adprivacy concern! 

To achieve data security, scalability, and efficiency, this study presents a blockchain-enabled reinforcement FL 

system. As no intermediate dependencies exist, the two can communicate securely to monitor the clinical 

environment. We have combined all these results and have achieved a high reliability with performance 

improvement compared to the current methods [17]. 

Hamouda et al. (2023),With the roll-out of Industry 4.0/5.0, cyber-attacks and privacy violations. We propose 

PPSS, a blockchain-enabled FL framework for industrial IoT intrusion detection. To ensure security, verifiability, 

and transparency, it combines differentially private training with a Proof-of-Federated Deep-Learning (PoFDL) 

consensus protocol. Experiments on Edge-IIoT dataset show its efficiency against cyberattacks with zero-day 

malware under diverse distributions of data [18]. 

Kumar et al. (2025),Data fragmentation and poor predictive insights in conventional healthcare Here, we 

introduce an AI-based Smart Healthcare System that integrates Random Forest and K-means clustering for disease 

categorization (85–90% accuracy) and LSTM for sequential analysis. Data security and privacy law compliance (e.g. 

GDPR) with ETH blockchain Homomorphic encryption and differential privacy are some techniques that secure 

patient data while allowing for analytics [19]. 

Vyas et al. (2024),As IoT finds applications in healthcare, military, and defense systems, the security threats are 

also on the rise. This survey aims to give a thorough overview of the recent privacy-preserving federated learning 

(FL) frameworks focused on the intrusion detection systems (IDS) which combine various methods, such as 

homomorphic encryption, differential privacy, and secure multiparty computation. It also suggests future research 

directions in IoT security and emphasizes how FL solution can assist with both efficiently detecting cyber threats 

and preserving data privacy [20]. 

Markkandan et al. (2024),In this study, a CMD system based on privacy-preserving FL is proposed to improve 

the performance of real-time healthcare monitoring. FL also upholds data privacy by only sharing model 

parameters, whereas Partially Homomorphic Cryptosystem (PHC) and Residual Learning-based Deep Belief 

Network (RDBN) enhance not just classification accuracy, but security as well (451). This approach decreases 

overhead around 30%, while enhancing classification accuracy 10% on several datasets [21]. 

Malik et al. (2024),The swift acceptance of IoT technology in health care also brings security risks, given the 

sensitive nature of medical data. Data analytics and security is a huge challenge within the healthcare IoT domain, 

which attracts researchers and has been addressed in this study using blockchain and federated learning (FL) 

integration for Healthcare IoT systems. While FL leaves user data on users' devices, and allows for distributed, 

privacy-preserving machine learning, blockchain ensures all data and models remain in an immutable state. This 

paper mentions approaches for secure, shared health care analytics, and provides novel perspectives towards IoT 

Security and Privacy for compliance with Health Care needs [22]. 
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Koutsoubis et al. (2024),Machine learning (ML) in medical imaging provides improved information for the 

diagnosis of diseases, however, the sensitive nature of medical images also implies privacy and security constraints. 

In this sense, Federated Learning (FL) solves this problem as it allows us to collaboratively train models while 

keeping data completely private without any direct data sharing between institutions. Nonetheless, FL is still an 

open problem, especially in terms of data heterogeneity and uncertainty estimation. This paper analyses FL, 

privacy techniques, and uncertainty quantification in medical imaging and highlights areas that demand more 

attention to improve the general framework [23]. 

Mahmud et al. (2024),Due to the centralized data collecting of conventional Intrusion Detection System (IDS)s, 

privacy problems arise. The proposed IDS in this study, an FL-based design for IoT networks, relies on Federated 

Averaging (FedAvg) to realize model weight aggregation from distributed devices. Compared to IDS models, the 

approach is scalable and privacy preserving with more than 90% accuracy rate for detection of DoS, DDoS and 

ransomware cyberattacks [24]. 

Shafik et al. (2024),This paper offers an extensive literature survey of Federated Learning (FL) security 

problems from various fields with specific emphasis on encryption, authentication and privacy-preserving 

methods. The paper critically assesses current FL frameworks and puts forward measures to improve data privacy 

and security especially in the context of healthcare. It is a valuable resource for practitioners, researchers, and 

policymakers as they navigate the growing importance of FL for data-driven decision-making [25]. 

Lazaros et al. (2024),Traditional centralized machine learning is subject to privacy, cost and compliance 

challenges. Federated Learning (FL) addresses these challenges by allowing distributed model training while 

preserving user data privacy and adherences to regulatory laws (e.g. GDPR) and reducing data transfer costs. This 

review provides a unique overview of FL’s applications in IoT, including new insights toward applying FL 

framework for sensitive information during collaborative AI based implementation at industrial level [26]. 

Fouda et al. (2024),The Multitude of B5G (Beyond 5G) networks leads to enormous amounts of data arising, 

which necessitates the need for data analysis using privacy-preserving AI (Artificial Intelligence) models. We 

review data-driven privacy techniques such as differential privacy, homomorphic encryption, secure multiparty 

computation, and FL, mapping them to emerging challenges in network security. It reviews the open research 

questions and presents solutions to thse challenges and opportunities for AI-enabled networks of the future [27]. 

Gajndran et al. (2024),This work presents ECF-BQLF, an Elliptic Crypt with Blockchain facilitated Q-Learning 

Framework, to deliver a powerful degree of security to IoMT. This ensures privacy while detecting cyberattacks in a 

federated Q-learning model using Extended Elliptic Curve Cryptography (E_ECurCrypt) to encrypt data before 

training. The platform uses a Delegated Proof of Stake (Del_PoS) consensus algorithm to validate transactions. 

This framework produces 99.23% accuracy, 98.42% precision and high throughput which confirms its capability in 

contrast to traditional method [28]. 

Senol et al. (2024),This exposes LoRa networks that rely on radio-frequency transmissions to security risks. In 

this paper, we utilize Federated Learning (FL) to detect the tampered signals while keeping privacy preserved. 

Among five different FL-enabled anomaly detection models considered for evaluation, the CAE-FL performed the 

best with an accuracy of 97.27% achieved. These results underline the ability of FL to improve the security of LoRa-

based IoT networks in the presence of unknown attacks [29]. 

Gupta et al. (2023),While deep learning has made great strides in enhancing medical imaging and diagnosis, 

challenges around data privacy and generalizability stand in the way of the technology’s widespread adoption. This 

study utilizes distributed deep learning techniques like Federated Learning (FL) to train models across institutions 

while maintaining patient data within each respective institution. They also review common FL frameworks, 

collaborative training methods, and real-world applications, and offer a guide for clinicians and researchers 

involved in medical AI development [30]. 

Barnawi et al. (2024), Secure AI Models for IoMT with Federated Learning & Differential Privacy, Data privacy 

concerns that arise from AI advancements in Internet of Medical Things (IoMT). In this study, we demonstrate a 

Federated Learning (FL) and Differential Privacy (DP) framework to safeguard the data during the training of a 

well performing CNN model for Tuberculosis detection. FL provides decentralized learning, and DP guarantees 
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data confidentiality by preventing reconstruction from the model outputs. The outcomes confirm this as a strong 

solution for secure AI applications in healthcare [31]. 

Mahmood et al. (2022),Secure Deep Learning Based on Blockchain-Enabled Federated Learning, Motivated by 

the necessity of enhancing the security of deep learning and the unlimited potential that federated learning (FL) 

technology provides, we here propose a blockchain-enabled federated learning architecture that proactively 

integrates blockchain with the FL framework and leverages the provable security to combat various attacks. The 

framework uses Ethereum blockchain to guard against model poisoning attack and enforce a transparent incentive 

mechanism for decentralized nodes. The results show advanced privacy, security, and access control solutions are 

achieved due to the solutions where traditional FL methods face vulnerabilities [32]. 

Aljrees et al. (2023),The plague of cyberattacks on the Internet of Things (IoT) systems is on the rise with man-

in-the-middle attacks as a key method of bypassing the security barrier of the system. In this paper, a Quondam 

Signature Algorithm (QSA) was presented that automatically integrates with Federated Learning (FL) to preserve 

privacy and increase safety and cost savings. The QSA algorithm minimizes communication bit requirements, 

increasing efficiency in computational complexity. This framework greatly enhances data privacy, analytical 

capabilities, and communication efficiency in IOT cyber security [33]. 

Table 1. Comparison of Existing Related Work 

Ref. Highlight Applications Domains 

[1] (2024) Federated Learning Meets Blockchain in 

Decentralized Data Sharing 

Healthcare Federated Learning , 

Blockchain 

[34] (2020) Decentralized tourism destinations 

recommendation system 

Tourism Blockchain, data-

sharing 

[35] (2020) Improving interorganizational 

information sharing for vendor managed 

inventory 

Supply chain 

management 

Blockchain, vendor-

managed inventory 

[36] (2019) Building a secure biomedical data-sharing 

decentralized app 

Biomedical 

research 

Blockchain, data-

sharing 

[37] (2022) Decentralized congestion control methods 

for vehicular communication 

Vehicular networks Blockchain, 

congestion control 

[38] (2021) Decentralized trusted data-sharing 

management on IoVEC networks 

Internet of Vehicle 

Edge Computing 

Blockchain, data-

sharing 

[39] (2020) Decentralized data-sharing infrastructure 

for off-grid networking 

Off-grid networking Blockchain, data-

sharing 

[40] (2019) Framework of data-sharing system with 

decentralized network 

General data-

sharing 

Blockchain, data-

sharing 

[41] (2017) P2P platform for decentralized Logistics Peer-to-peer, 

decentralized logistics 

[42] (2022) Decentralized network secured data-

sharing 

General data-

sharing 

Blockchain, data-

sharing 

[43] (2020) Unlocking the potential of AI in assisted 

reproduction 

Assisted 

reproduction 

Blockchain, AI, data-

sharing 
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3. Combination of Fl and Blockchain For Decentralized Data Sharing 

 

Figure 1. Decentralized data sharing. 

In figure 1 decentralized data sharing includes access control, users/nodes, smart contract, decentralized storage 

and a blockchain ledger to ensure security, transparency and efficiency. Access control rules determine 

permissions while users/nodes share information and smart contracts handle conditional logic for safe 

transactions automatically. Decentralized storage ensures data availability without relying on a single authority 

while the blockchain ledger maintains an immutable record for trustworthiness and integrity. When combined, 

these components give a secure, scalable and transparent structure for the educational exchange of information of 

the decentralized kind across multiple platforms, including medical care, finance, and IoT networks. 

 

 

Figure 2. Decentralized Data Sharing and Federated Learning Architecture 

The Decentralized Data Sharing and Federated Learning Architecture depicted in Figure 2 combines Dataspace 4.0, 

decentralization infrastructure and federated learning for secure, efficient and privacy-respecting data co-

operation. The dispersed network comprising the Nodes representing Smart City & IoT, Environment & Finance 

and Enterprise & Research are interacting with each other while keeping raw data secured. While decentralized 

architectures promote trust in base systems, federated learning promotes training across nodes. Also known as 

Distributed Ledger technology, this paradigm offers superior data security, scalability, and interoperability making 

it suitable for healthcare, banking, and smart city applications. 
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Figure 3. Combination of FL and blockchain for decentralized data sharing 

Figure 3 shows 

Top Layer (Data Sources) 

At the top of the diagram, three main entities provide data or interact with the system: 

1. Consumer (Users/Clients) 

o Represented by a male and female avatar. 

o This signifies individuals, businesses, or applications that consume the data and insights generated 

from the system. 

2. Blockchain 

o Illustrated using blue interconnected blockchain nodes. 

o Represents the trust and security layer, ensuring immutability, consensus, and decentralized 

validation for transactions and learning updates. 

3. Data Provider 

o Depicted as stacked database icons in yellow and blue. 

o Represents organizations, institutions, or devices that supply data for model training. 

    Middle Layer (Processing & Validation) 

At the second level, three key components process and validate data securely: 

4. Federated Learning (FL) 

o Shown with distributed computing nodes connected via a cloud. 

o Represents a decentralized machine learning framework where models are trained locally on user 

devices, avoiding direct data exchange. 

o Enhances privacy as raw data is not shared. 

5. Consensus & Validation (Blockchain) 

o Depicted as a Bitcoin and digital circuit representation. 

o Ensures secure, trust-based validation of updates in the FL system. 
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o Uses smart contracts and cryptographic mechanisms to verify model updates before 

aggregation. 

6. P2P (Peer-to-Peer) Network 

o Represented as a digital mesh network. 

o Connects distributed nodes for secure communication between data providers, FL 

participants, and blockchain validators. 

    Third Layer (Model Training) 

At this stage, machine learning models are trained using decentralized data sources: 

7. Model Training 1 

o Shown with automation gears. 

o Represents powered model training unit for integrating FL updates. 

8. Model Training 2 (IPFS - InterPlanetary File System) 

o Hexagonal IPFS logo at the center. 

o IPFS is a decentralized storage protocol used for securely storing ML models and training 

updates. 

9. Model Training 3 

o Represented with a legal agreement (document and gavel). 

o Highlights model governance and auditing mechanisms for FL contributions. 

    Bottom Layer (Final Outcomes) 

Once models are trained, the system generates valuable insights and rewards: 

10. Industry 4.0 Resources 

o Depicted with digital microchip and automation network. 

o Represents industrial applications of decentralized in smart cities, IoT, and 

manufacturing. 

11. Mining & Rewards 

o Shown with hands holding a coin and stars. 

o Incentivizes users for contributing computational power and data via blockchain-based 

rewards (tokens/cryptocurrency). 

12. Data Analytics 

o Displayed with a pie chart, bar chart, and analytics dashboard. 

o Represents final insights and intelligence extracted from the trained models. 

o Used for business decision-making, predictive analytics. 

Table 2. Comparing Centralized and Decentralized Data Sharing 

Items Centralization Decentralization 

Data control Controlled by a single 

organization or authority 

Distributed across multiple nodes 

Security Centralized control creates 

security risks 

Distributed network of nodes improves resilience 
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Privacy Centralized control creates 

privacy concerns 

Encryption, and smart contracts enhance privacy 

Interoperability Limited interoperability Improved interoperability with the use of decentralized 

standards and protocols 

Transparency Limited transparency and 

accountability 

Tamper-proof and transparent record of data-sharing 

activities 

 

Table 1 illustrates that centralization entails a one authority managing data, resulting in security vulnerabilities, 

privacy issues, and restricted interoperability. Conversely, decentralization allocates control across several nodes, 

hence improving resilience, security, and privacy via encryption and smart contracts. Centralized systems exhibit 

deficiencies in transparency and accountability, while decentralized networks provide tamper-proof data exchange 

and enhanced interoperability via established protocols. Decentralization provides a more secure, transparent, and 

privacy-preserving framework, making it suitable for reliable and scalable data-sharing ecosystems in federated 

learning and blockchain contexts. 

Table 3. Decentralized Data Sharing When Blockchain Meets FL 

Aspect FL Blockchain Combination 

Enhanced 

Security and 

Privacy 

FL enables data to be trained locally, 

reducing the risk of data exposure 

during transmission. However, FL 

does not inherently address data 

security during transmission. 

Blockchain provides 

tamper-proof and 

encrypted data storage, 

ensuring the security 

and privacy of shared 

data. 

FL with blockchain ensures 

end-to-end security, from 

data training to storage and 

sharing. 

Data Integrity 

and 

Transparency 

FL focuses on model updates and 

consensus, ensuring that the shared 

model is accurate and reliable. 

Blockchain immutable 

and transparent data 

guarantees the integrity 

of shared data. 

Combining FLs model 

updates with the 

blockchain data record, 

both models and data can 

be verified for authenticity. 

Interoperability 

and 

Standardization 

FL promotes collaboration across 

diverse devices and platforms for 

model training. 

Blockchain establishes 

standardized protocols 

and smart contracts for 

data access. 

Combining both ensures 

interoperable data-sharing 

mechanisms and a 

common data usage 

framework. 

Decentralized 

Governance 

FL allows data owners to retain 

control over their data and 

contribute to model training. 

Blockchain 

decentralized consensus 

empowers participants 

to collectively agree on 

data-sharing terms. 

Combining FL and 

blockchain extend this 

control to model updates 

and data access. 

Resilience and 

Fault Tolerance 

FL distributed nature ensures system 

resilience against participant failures. 

Blockchain redundant 

data storage enhances 

resilience. 

Combining both mitigates 

risks associated with 

individual participant 

failures. 

Efficient 

Collaboration 

FL facilitates collaborative model 

development. 

Blockchain provides 

transparent and 

automated frameworks 

that streamline data-

sharing processes. 

FL and blockchain enhance 

efficient and trustworthy 

collaboration. 
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Data 

Monetization 

and Incentives 

FL enables data owners to contribute 

to model training and earn 

incentives. 

Blockchain tokenization 

and incentive 

mechanisms extend 

these rewards to data-

sharing. 

The combination 

encourages active data 

contribution. 

 

Table 3 illustrates that the combination of Federated Learning (FL) with Blockchain improves security, privacy, and 

transparency in decentralized data sharing. Federated Learning facilitates local model training, whilst Blockchain 

offers immutable data storage, establishing comprehensive security. The collaborative model training of FL, in 

conjunction with the defined protocols of Blockchain, enhances interoperability and governance. The robustness of 

FL is enhanced by the redundant storage provided by Blockchain, hence reducing failures. Moreover, tokenization 

systems optimize data monetization and incentives, fostering active engagement. This collaboration guarantees 

efficient, safe, and scalable decentralized data-sharing networks. 

Table 4. Advantages of Using FL And Blockchain for Decentralized Data Sharing 

Feature FL FL with Blockchain 

Data 

privacy 

Data is kept private by each party, but 

may be vulnerable to attacks during 

transmission 

Data is kept private by each party and is secured by the 

tamper-proof nature of the blockchain 

Security Requires trust between parties, and 

may be vulnerable to attacks or 

malicious behavior 

Provides a secure and transparent record of the training 

process, making it more resistant to attacks or malicious 

behavior 

Scalability Can scale to large datasets, but may be 

limited by the communication 

bandwidth and computational 

resources of each party 

Can scale to large datasets, but may be limited by the 

computational resources required to perform blockchain 

transactions 

Cost Lower cost compared to centralized 

training, but may still require 

significant resources and coordination 

between parties 

Higher cost due to the computational resources required 

for blockchain transactions, but may provide increased 

security and transparency that justifies the cost 

Accuracy Can produce high accuracy if each 

party has representative data but may 

be affected by data heterogeneity or 

class imbalance 

Can produce high accuracy if each party has 

representative data, and the blockchain can provide a 

mechanism for identifying and addressing data 

heterogeneity or class imbalance 

 

Table 4 illustrates that the integration of Federated Learning (FL) with Blockchain improves data privacy, security, 

scalability, and accuracy in decentralized data sharing. Although Federated Learning guarantees local data training, 

it is susceptible to transmission hazards, which Blockchain addresses via tamper-proof storage. Security is 

enhanced by transparent records, reducing reliance on trust. Scalability improves, while the processing cost of 

blockchain poses difficulties. Notwithstanding increased expenses, the compromise yields more security and 

transparency. Moreover, blockchain mitigates data heterogeneity, hence enhancing the accuracy and reliability of 

federated learning models. 

Table 5. Benefits of Decentralized Data Sharing in Different Industries Within The Context of Industry 4.0 

Technology Security Privacy Interoperability Transparency Resilience 

FL Encryption of 

data during 

transmission and 

Data kept on 

local devices 

Compatibility with 

different data 

formats 

Limited 

transparency due 

to decentralized 

Resilient to 

system failures 
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storage nature 

Blockchain Immutable data 

storage 

Decentralized 

control and 

verification 

Ability to work 

across different 

systems 

Publicly 

verifiable 

transactions 

Resilient to 

tampering and 

attacks 

Synergy of 

FL and 

blockchain 

Multiple layers of 

encryption and 

verification 

Data kept on 

local devices 

Compatibility with 

different data 

formats 

Publicly 

verifiable 

transactions 

Resilient to 

tampering, 

attacks, and 

system failures 

 

Table 5 illustrates that the synergy between Federated Learning (FL) and Blockchain improves security, privacy, 

interoperability, transparency, and resilience in Industry 4.0. FL guarantees data encryption and localized storage, 

but Blockchain offers immutable storage and decentralized verification, enhancing data integrity. They implement 

many levels of encryption to provide robust security. The compatibility of FL's format and the cross-system 

interoperability of Blockchain provide easy data transmission. Publicly verifiable transactions enhance 

transparency, while resistance to tampering, assaults, and failures renders FL + Blockchain an optimal 

decentralized data-sharing platform for industrial applications. 

4. Methodology 

4.1 Secure and Optimized Data Retrieval 

Enhancements: 

• Parallel Processing – Uses multithreading to improve efficiency when decrypting large datasets. 

• Homomorphic Encryption – Allows computations on encrypted data without decryption, 

enhancing privacy and security. 

• Error Handling – Includes try-except blocks to catch and log decryption failures. 

• Adaptive Filtering – Implements an filtering mechanism to dynamically optimize data selection. 

Algorithm 1: Enhanced Data Retrieval with Secure Processing 

Algorithm 1: Secure Parallel Data Attributes Retrieval 

 

1: function RETRIEVE_DATA(species, sk) 

2:     filtered_data ← filter_by_species(species) 

3:     decrypted_data ← [] 

4:      

5:     # Parallel Processing for Efficient Decryption 

6:     parallel for T in filtered_data do 

7:         try: 

8:             # Homomorphic Decryption for Secure Processing 

9:             decrypted_T ← homomorphic_decrypt(T, sk) 

10:            append(decrypted_data, decrypted_T) 

11:        except DecryptionError as e: 

12:            log_error("Decryption failed for T:", T, "Error:", e) 

13:     

14:    # Apply Adaptive Filtering for Data Optimization 
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15:    optimized_data ← adaptive_filter(decrypted_data) 

16: 

17:    return optimized_data 

18: end function 

4.2 Secure Data Transaction Algorithm 

This algorithm improves the original data transaction process by incorporating: 

• Quantum-Resistant Encryption: Future-proof security using lattice-based cryptography. 

• Zero-Knowledge Proofs (ZKP): Ensures data integrity and authentication without revealing sensitive 

information. 

• Timestamping & Nonce: Prevents replay attacks by adding unique transaction identifiers. 

• Multi-Signature Validation: Requires multiple sender approvals for critical transactions. 

Algorithm 2: Secure Quantum-Resistant Data Transaction 

Algorithm 2: Secure Quantum-Resistant Data Transaction 

 

1: procedure SECURE_SENDDATA(M, pk_recipient, sk_sender, nonce, timestamp) 

2:     # Encrypt the message using Quantum-Resistant Lattice-based Encryption 

3:     E ← quantum_encrypt(M, pk_recipient, nonce) 

4:      

5:     # Generate a Digital Signature with Multi-Signature Validation 

6:     S ← multi_sign(M, sk_sender, timestamp) 

7:      

8:     # Generate a Zero-Knowledge Proof (ZKP) for Data Integrity 

9:     ZKP ← generate_proof(M, sk_sender) 

10: 

11:     # Transmit Encrypted Data, Signature, and ZKP 

12:     transmit(E, S, ZKP, nonce, timestamp) 

13: 

14: end procedure 

4.3 Proof-of-Work Algorithm 

This PoW algorithm introduces: 

• Adaptive Difficulty Adjustment: Dynamically adjusts difficulty D based on network congestion. 

• Energy-Efficient Hashing: Uses a hybrid SHA-256 + Blake3 approach to improve efficiency. 

• Parallelized Mining: Incorporates multi-threaded nonce searching to speed up mining. 

• Early Termination Check: Prevents unnecessary computation if a valid nonce is found. 

Algorithm 3: Optimized Proof-of-Work 

Algorithm 3: Optimized Proof-of-Work (PoW) 
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1: procedure MINEBLOCK(T, h(b_{i-1}), D) 

2:     nonce ← 0 

3:      

4:     # Adaptive Difficulty Adjustment Based on Network Load 

5:     D ← adjust_difficulty(D, network_status) 

6:      

7:     # Parallelized Mining with Multi-Threading 

8:     parallel for thread in THREAD_POOL do 

9:         while h(T, h(b_{i-1}), nonce) ≥ D do 

10:             if check_valid_nonce(nonce):   # Early Termination Check 

11:                 return nonce 

12:             nonce ← nonce + 1 

13:     end parallel 

14:      

15:     return nonce  # Return the valid nonce 

16: end procedure 

4.4 Authorization Check Algorithm 

This authorization algorithm incorporates: 

• Role-Based Access Control (RBAC): Ensures different levels of authorization based on roles. 

• Multi-Factor Authentication (MFA): Adds an extra layer of security. 

• Tamper-Proof Audit Logging: Records access attempts for forensic analysis. 

• Threshold Signature Verification: Requires multiple verifications for high-privilege actions. 

Algorithm 4: Secure and Scalable Authorization Check 

Algorithm 4: Advanced Authorization Check 

 

1: function IS_AUTHORIZED(pk, role, mfa_token) 

2:     # Step 1: Verify if the Public Key Exists in the Authorization Registry 

3:     if ∃ (id, pk) ∈ R then 

4:          

5:         # Step 2: Check Role-Based Access Control (RBAC) 

6:         if check_role(id, role) == False then return False 

7:          

8:         # Step 3: Multi-Factor Authentication Verification 

9:         if validate_mfa(id, mfa_token) == False then return False 

10:         
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11:        # Step 4: Log Access Attempt in Tamper-Proof Audit System 

12:        log_access_attempt(id, role, timestamp) 

13:         

14:        return True 

15:    else return False 

16:    end if 

17: end function 

Algorithm 5: Potential Attack Methods and Security Countermeasures 

The attack methods introduces advanced security measures to prevent replay attacks, masquerading, and 

data interception. It includes: 

• Nonce-based Replay Prevention: Ensures transactions are unique and not reused. 

• Digital Signature Verification: Prevents signature forgery in masquerading attacks. 

• End-to-End Encryption: Secures data integrity and confidentiality. 

• Intrusion Detection Logging: Captures attack attempts for forensic analysis. 

Algorithm 5: Secure Transaction Validation 

Algorithm 5: Secure Transaction Validation and Countermeasures 

 

# Preventing Replay Attacks with Nonce and Timestamp 

1: function SECURE_REPLAY_PROTECTION(transaction, nonce, timestamp) 

2:     if is_valid_nonce(nonce) and is_recent(timestamp) then 

3:         send(transaction) 

4:     else 

5:         log_intrusion_attempt(transaction, "Replay Attack") 

6:     end if 

7: end function 

 

# Preventing Masquerade Attacks with Digital Signature Validation 

8: function SECURE_VERIFIED_TRANSACTION(senderID, transactionData, signature) 

9:     if verify_signature(senderID, transactionData, signature) then 

10:        send(transactionData, signature, senderID) 

11:    else 

12:        log_intrusion_attempt(senderID, "Masquerade Attack Detected") 

13:    end if 

14: end function 

 

# Preventing Intercept and Alter Attacks with End-to-End Encryption 

15: function SECURE_TRANSMISSION(transaction) 
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16:    encryptedData ← encrypt(transaction.data, receiver_public_key) 

17:    send(encryptedData) 

18: end function 

5. Implementation 

5.1  Setup configuration 

5.1.1. Hardware Configuration 

Table 6. Hardware Configuration 

Component Specification 

Compute Nodes Minimum 4 nodes (Cloud VMs) 

Processor Intel Xeon / AMD EPYC (Min 8 Cores)  

Memory (RAM) 32GB DDR4 (for edge devices) 

Storage SSD 1TB+ (For decentralized storage) 

Network Gigabit Ethernet / 4G connectivity for fast data transfer 

Table 6 delineates the hardware setup for Federated Learning and Blockchain-based decentralized data sharing, 

necessitating a least of four computing nodes (Cloud VMs) to guarantee scalability. Processing power is facilitated 

by Intel Xeon and AMD EPYC (8 or more cores). Memory requirements range from 32GB DDR4 for edge device 

servers. Decentralized storage depends on SSDs exceeding 1TB, while Gigabit Ethernet or 4G facilitates rapid data 

transmission. 

5.1.2. Software Configuration 

Table 7. Software Configuration 

Category Software/Tool Purpose 

Operating System Ubuntu 22.04 Secure Linux-based environment 

Virtualization Docker Containerized deployment & 

orchestration 

Blockchain Platform Hyperledger Fabric  Secure & immutable data sharing 

Federated Learning Framework TensorFlow Federated (TFF) / 

PySyft 

Privacy-preserving  

Database PostgreSQL  Decentralized & scalable data storage 

Security Layer Zero-Knowledge Proofs (ZKP), 

Homomorphic Encryption 

Privacy-preserving computations 

Access Control Keycloak / Open Policy Agent 

(OPA) 

Decentralized identity and access 

management 

Monitoring & Logging Prometheus Performance monitoring and logging 

Distributed Storage IPFS  Decentralized file storage solution 

Smart Contracts Solidity / Hyperledger Smart 

Contracts 

Automating secure transactions 

 

The software configuration of Federated Learning and Blockchain-enabled decentralized data sharing is illustrated 

in Table 7 where Ubuntu 22.04 is used to provide a secure Linux-based setting. Docker manages the containerized 
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deployment, while Hyperledger Fabric ensures secure and immutable data transfer using blockchain technology. 

TensorFlow Federated (TFF) or PySyft for training federated learning models, and PostgreSQL for scalable 

decentralized storage solutions. Security Mechanisms Zero-Knowledge Proofs (ZKP), Homomorphic Encryption 

Access control is configured by Keycloak/OPA, and monitoring should be managed by Prometheus Data is stored 

on the IPFS and Solidity and Hyperledger Smart Contracts provide safe automation. 

5.1.3. Network & Security Configuration 

Table 8. Network & Security Configuration 

Component Configuration 

Firewall & VPN WireGuard / OpenVPN for secure communication 

Authentication Multi-Factor Authentication (MFA), PKI-based authentication 

Data Encryption AES-256 for storage, TLS 1.3 for transmission 

Consensus Algorithm Proof-of-Stake (PoS) , Delegated PoS for efficiency 

Data Integrity Merkle Tree for blockchain validation 

Intrusion Detection Suricata / Snort for network security 

Backup & Recovery Snapshots & Replication using Ceph , MinIO 

 

The network and security configurations for federated learning and blockchain-based decentralized data sharing 

are shown in Table 8, with comprehensive protection through WireGuard/OpenVPN for secured connecting. 

Multi-Factor Authentication (MFA) and Public Key Infrastructure (PKI) are significant authentication methods to 

enhance access control. The data you store is protected with AES-256 encryption, though TLS 1.3 secures 

transport. It enhances consensus procedures (PoS and DPoS). The Merkle tree and the Suricata/Snort provide the 

audit assurance for data integrity and intrusion detection validation respectively. Snapshots and replication with 

Ceph and MinIO ensure high-availability and resilience for backup and restoration. 

5.2  Dataset (Hospital and Sharing Iris ) 

Dataset Overview 

1. Hospital Data Sharing 

o Hospitals A and B collaborate using Federated Learning (FL) to preprocess data while ensuring it 

remains within their respective premises. 

o Blockchain technology records only processed and encrypted attributes of the data, ensuring 

privacy. 

o Encryption mechanisms include public-key cryptography, securing data transactions between 

hospitals. 

2. Iris Data Set 

o The Iris dataset consists of 150 samples from three species of Iris flowers (Iris setosa, Iris virginica, 

Iris versicolor). 

o It contains four attributes: 

▪ Sepal length 

▪ Sepal width 

▪ Petal length 

▪ Petal width 
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o Due to its structured and standardized format, the dataset serves as a testbed for decentralized ML 

models 

5.3 Illustrative example 

5.3.1 Transaction Details: Hospital Node Initialization in a Decentralized Network 

Transaction ID: 0x9A7F5D1E3C8B45A2F6B9E1C... 

Block Hash: A3F9D8C4F6A5B12D3E7F6C9D... 

Step 1: Initializing Hospital A 

• Node ID: HOSP001 

• IP Address: 145.155.254.36 

• Timestamp: 2025-02-15 14:32:05 UTC 

• Consensus Method: Proof-of-Stake (PoS) 

Cryptographic Credentials: 

• Public Key: L9SLtS1CRUdJT3IS8UQEufVJFCTEoLTETFW9SLt98CKlJ3SUJD20... 

• Private Key: L9SLtS1CRUdJT3IS8UQEufVJXWFUSBRLvKltS0tLQpMSUlFCv... 

• Digital Signature: SIG_HOSP001: A9C3D1E5F7A6B2... 

• Zero-Knowledge Proof (ZKP) Hash: F3C9D7E1B4A25D8F... 

Smart Contract Deployment: 

• Contract Address: 0x5A7F3C9D8B2E4A1F6C... 

• Contract Logic: 

o Function 1: Validate Hospital Node Credentials. 

o Function 2: Assign Unique Blockchain Identity (BCI). 

o Function 3: Enable Secure Data Exchange. 

Security Enhancements: 

• Quantum-Resistant Encryption: Post-Quantum Cryptography (PQC) enabled. 

• Multi-Signature Authentication: Requires 3-of-5 signature validation. 

Step 2: Initializing Hospital B 

• Node ID: HOSP002 

• IP Address: 176.136.198.78 

• Timestamp: 2025-02-15 14:35:10 UTC 

• Consensus Method: Proof-of-Stake (PoS) 

Cryptographic Credentials: 

• Public Key: L9SLtS1CRUdJT3IS8UQEufVJFCTEoLTETFW9SLt98CKlJ3SUJD20... 

• Private Key: L9SLtS1CRUdJT3IS8UQEufVJXWFUSBRLvKltS0tLQpMSUlFCv... 

• Digital Signature: SIG_HOSP002: B8E5F9A7D3C1B2... 

• Zero-Knowledge Proof (ZKP) Hash: D3E9F7A6B5C1D4... 
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Smart Contract Deployment: 

• Contract Address: 0x6C8D3E5B4A2F7A9F1C… 

• Contract Logic: 

o Function 1: Validate Hospital Node Credentials. 

o Function 2: Assign Unique Blockchain Identity (BCI). 

o Function 3: Enable Secure Data Exchange. 

Security Enhancements: 

• Homomorphic Encryption: Ensures secure computation over encrypted data. 

• Distributed Key Management: Shamir’s Secret Sharing for private key recovery. 

5.3.2  Blockchain-Based Transaction Between Hospitals 

Transaction ID: 0x7E9F4B1A3D8C6F5E2B1C… 

Block Hash: C8D9F1A7E3B6C5D4A2F… 

Step 1: Hospital A Initiates the Transaction 

• Sender Node: HOSP001 (Hospital A) 

• Recipient Node: HOSP002 (Hospital B) 

• Timestamp: 2025-02-15 15:45:10 UTC 

• Data Type:Encrypted Patient Medical Record 

• Data Encryption Standard: AES-256 with Multi-Factor Authentication 

• Signature 

Generated:89D15B8E1A57B92D42B0B2B6D01142D4F63A0E7D3E01134439F3481F2434DCDBFB6A38

D15A7C812 

• Zero-Knowledge Proof (ZKP) Hash: 

9A28F1B62FCA27EB99B7D8D8DBBEAD888B06C7B105A3C7E0B5A3B53B5B5B96588E3CE9C99D42AD

BC12E 

Step 2: New Block Generation & Signature Verification 

• Hospital B verifies Hospital A’s digital signature 

• Multi-Signature Validation: (Requires 3-of-5 signature confirmations) 

• Signature Verification Result: Valid 

Step 3: Data Decryption & Blockchain Mining 

• Data successfully decrypted using asymmetric cryptography 

• Assigned Hash for the Block: 

ABF479B407E09C1F25A87A9913426C2BBABE1440E5412E36B302CDB64A1AE9 

• Block Mined with Hash: 

0037F7D12F901236B28A6F1F75332A60F20ED127F5B18A28905D62A80BC54F7 

• Block Confirmations: 10/10 

Step 4: Transaction Completion 

• Hospital B successfully added the data to its Blockchain 
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• Transaction Status: Successful 

• Regulatory Compliance: HIPAA, GDPR, ISO 27001 

• Tamper-Proof Audit Log Created: Available for regulatory access 

5.3.3 Secure Data Access Request Between Hospitals 

This hospital data access request protocol integrates zero-trust security principles, blockchain-based 

verification, and homomorphic encryption for secure access control. 

Transaction ID: 0x9B4D7E1A2F6C5B3E8C… 

Block Hash: A2C7D9F5E4B6C3A1F7… 

Step 1: Hospital B Requests Data from Hospital A 

• Requester Node: HOSP002 (Hospital B) 

• Receiver Node: HOSP001 (Hospital A) 

• Timestamp: 2025-02-15 16:22:30 UTC 

• Verification Method: Decentralized Identity (DID) + Zero-Knowledge Proofs (ZKP) 

• Requester’s Digital Signature: 

81B158B1E78125B6A5BE1DB1253B0811F894D7A02E6FC456B7D36… 

• Zero-Knowledge Proof (ZKP) Hash: 

78BF3D76E1C62BFC2D4A580D9B4B271B298795A71F57C5A267B54… 

Step 2: Hospital A Verifies and Grants Access 

• Authorization Check:Valid Signature 

• Blockchain-Based Access Control:Smart contract enforces data-sharing policies. 

• Signature Validation Outcome:     Successful 

• Assigned Block Hash: 

5B5A3C6D9F577594A7E09F1B9F4234391F6FD67B992846F016A26… 

• Block Mined Hash: 

0037F7D12F901236B28A6F1F75332A60F20ED127F5B18A28905D62A80BC54F7 

Step 3: Hospital A Encrypts and Sends Data to Hospital B 

• Homomorphic Encryption Applied:      

• Encrypted Data: 

V29yZGxpc3RDb25maWRlbnRpYWwgU3lzdGVtIEF1dGhlbnRpY2F0aW9u… 

• Hospital B Decodes Securely Without Decryption 

• Transaction Status: Successful 

• Tamper-Proof Audit Log Updated:     
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6. Result Analysis 

 

Figure 4. Homomorphic Encryption Performance 

Figure 4 of Homomorphic Encryption demonstrates the processing overhead associated with encryption and 

decryption as data size escalates. Both encryption time (blue) and decryption time (red) demonstrate a linear 

growth, with decryption constantly necessitating somewhat more time than encryption. When the data size 

approaches 50 KB, encryption takes around 9 ms, and decryption exceeds 10 ms. This indicates that homomorphic 

encryption is resource-intensive but exhibits predictable scalability, making it suitable for safe decentralized data 

sharing and federated learning in privacy-sensitive contexts. 

 

Figure 5.Blockchain-Based Access Logging 

Figure 5 illustrates that the success rate of recording events increases with the number of logging attempts in the 

Blockchain-Based Access recording system. The logging success rate begins at 90% on the first try and 

progressively increases to 95% on the fifth attempt. This signifies that blockchain guarantees dependable and 

tamper-resistant logging, enhancing with successive operations. The trend indicates improved data quality and 

security, making blockchain an efficient tool for audit trails and access verification in decentralized data-sharing 

contexts. 

 

Figure 6. Adaptive Difficulty in Proof-of-Work 

Proof-of-figure 6 Adaptive difficulty shows how increasing difficulty levels reduce the time for resolving 

cryptographic riddles. As we advance through levels 1 to 5 of difficulty, the time it takes to calculate increases 

exponentially, indicating a higher computational effort required to mine. More proof for this trend, and by making 
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it costly to undo transactions, ensure the security of the blockchain. It enhances network robustness, ward off 

spamming attacks, and maintains the pace of block generation, making it a foundational framework for 

decentralized ledgers. 

 

Figure 7. Zero-Knowledge Proof (ZKP) Validation Performance 

Zero-Knowledge Proof (ZKP) validation is performant as shown in Figure 7, where validation time increases as the 

number of verification attempts grows. At first, the time for validation is small, but with several repetitions, the 

time increases with a non-linear curve and reaches about 5 ms when the fifth try is reached. This highlights the cost 

of computation on ZKP-based Authentication that allows authentication of identity without exposing sensitive 

details. The results highlight the importance of Location-ZKP in reclamation secure data sharing and 

authentication protocols for privacy-preserving decentralized systems like blockchain. 

 

Figure 8. Data Integrity Verification Performance 

Data Integrity Verification Performance comparing different techniques based on their integrity scores, see Figure 

8. The best integrity score (almost 100%) is achieved by Quantum Hashing and the second one (almost 90%) by 

Merkle Tree and Blockchain Audit (around 85%) and the lowest score (about 75%) is registered by Traditional 

Hashing. Moreover, the future evolution of integrity verification techniques is made prominent by superior reliable 

use and security using quantum hashing and blockchain-based methods. The results suggest improved data 

integrity from advanced cryptographic techniques in these distributed or blockchain systems, confronting the 

consequences of data tampering or falsification. 
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Figure 9. Attack Success Rates graph depicts how different cyber attacks 

As shown in figure 9, with a growing number of attempts made, the success rates for various cyber attacks such as  

the Replay Attack, Identity Masquerade, and Man-in-the-Middle Attack increase accordingly. The Identity 

Masquerade shows the highest increase of all attacks, from 0% to 14% at the 6th round, followed by Man-in-the-

Middle and Replay Attack with around 13% and 12% respectively. Structural anomalies demonstrate that reused 

attack attempts are directed towards cycle vulnerabilities, as strong authentication, encryption, and anomaly 

detection systems might help mitigate risks in decentralized data-sharing and federated learning scenarios. 

 

Figure 10. Proof-of-Work (PoW) Computational Cost  

Proof-of-Work (PoW) Computational Cost Increasing Time Complexity Figure 10 Clearly Illustrates Exponential 

Growth of Time Complexity with Increasing Nonce Tries At first the time taken is negligible; however, when the 

complexity increases, the time taken to calculate becomes significant and at 10 nonce tries is already more than 35 

ms. This emphasises the extreme nature of PoW consensus systems, which secure by ensuring mining is 

computationally expensive. These results illustrated the trade-off between security and energy-efficiency and the 

need for better Proof-of-Work algorithms or alternative consensus methods like Proof-of-Stake. 

 

Figure 11. Authorization and Unauthorized Access 

This is evident from figure 11, in which the comparison between requested access success percentage and number 

of illegal access requests are presented for different type of access requests. Approved success rate trend is always 

near to 99% and the illegal access rate is near to 2%, thus indicating a good authentication system. In other words, 

strong access control, encryption, and identity verification methods effectively prevent illegal access and thus 
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ensure safe decentralized contracts data sharing, as is the case under healthcare or federated learning system 

contexts. 

 

Figure 12. Security Levels of Different Methods 

Figure 12 measures the effectiveness of various security systems by computing their security levels. Basic 

Encryption has the LEAST score (60%), Quantum Encryption (85%) & Blockchain (90%) gives better security. 

Multi-Factor Authentication (MFA) and Zero-Knowledge Proofs (ZKP) receive top security rating (100%) as they 

offered via strong methods for authentication and privacy-preserving proofs. These results highlight that more 

advanced cryptography and identity checking mechanisms can greatly fortify security properties on the result of an 

algorithm, thus rendering them the ideal choice for secure and safe decentralized data-syphoning and federated 

learning settings. 

7. Conclusion 

Data exchange in a secure and efficient manner is essential to protect patients privacy and adhere to regularity 

compliance in the modern healthcare. Traditional centralized systems are vulnerable to data breaches, security 

threats, and compliance issues, leading to the need for decentralized solutions instead. FL and Blockchain 

represent a groundbreaking solution that allows privacy-preserving collaboration while maintaining the integrity 

and warrant of the data. Through FL, multiple health organizations can train models using their local data without 

sharing their raw data, significantly lowering security threat. However, federated learning, in and of itself, lacks 

strong security protocols for data transfer, making it susceptible to attacks. Due to its immutable and transparent 

ledger, blockchain will increase security and ensure tamper-proof data storage, decentralized identity 

management, and automated smart contracts. Integrating Zero-Knowledge Proofs (ZKP) with Homomorphic 

Encryption greatly enhances privacy and secure computations. In addition, Hyperledger Fabric ensures secure 

transactions and IPFS provides decentralized storage. It uses PoS consensus, MFA and AES-256 encryption to 

improve security. This trustless yet secure collaboration is driven by the use of blockchain-based federated learning 

amongst data holders to share healthcare data while retaining privacy. This approach reduces cybersecurity risks, 

ensures compliance with privacy regulations, and builds a decentralized, privacy-oriented, and cost-effective 

healthcare landscape. 
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