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Facial expressions are intricate, change over time, and are difficult to decipher, hence automated 

emotion recognition using facial expressions has been a popular research area in computer 

vision, which focuses on image processing and pattern recognition. The research community has 

access to many facial expression databases, which are crucial tools for analyzing a variety of face 

expression detection methods, but still the existing models are affected by over-fitting issues. In 

this research work,  a framework using Hybrid optimization based deep CNN (HOA based deep 

CNN) has been developed that can recognize pain by facial expression and evaluate the pain's 

intensity. The proposed model uses UNBC-McMaster Shoulder Pain Expression Archive 

Database (UNBC) as the database. From the identified region of interest (ROI), feature 

extraction is done using the RESNET 101, facial activity descriptors and hybrid weighted facial 

activity descriptors. The collected features are processed using ensemble deep CNN classifiers. 

The optimization methods Adam, Stochastic Gradient Descent (SGD), Cat Swarm, and Grey Wolf 

(GWO) are used together to optimize the ensemble deep CNN. The hybrid optimization offers 

the best tuning, which substantially reduces the computing time and speeds up the convergence. 

The accuracy, sensitivity, and specificity achieved by the HOA-based deep CNN model based on 

the TP are 90.06%, 98.38%, and 99.35%, respectively. For the K-fold, the accuracy, sensitivity, 

and specificity achieved are 94.95%, 97.33%, and 99.04%, respectively. 

Keywords: Pain intensity detection, deep CNN model, RESNET 101, hybrid optimization and 

facial activity descriptors. 

 

1. Introduction: 

Recent medical research has shown that facial expression is one of the effective indicators and reflects the health 

condition of a person. It has been clinically established,  abnormal health conditions can cause aberrant and notable 

facial features and they are significantly different from normal facial expressions [9]. Pain is acknowledged as the 

fifth important indication of the health condition and is a clear reflection of injuries, diseases, and mental discomfort. 

Consequently, pain is a clear sign of a health problem. The expression on faces can often be characterized as a 

contemplative, spontaneous reaction to uncomfortable circumstances [10]. Thus, a thorough investigation of a 

patient's painful facial expressions might give medical professionals objective data for a precise disease diagnosis [7].  

Reliable and accurate pain evaluation is a prerequisite for effective pain management. But pain is a complicated and 

highly subjective phenomenon [11], [12], and is frequently connected to unpleasant physical and psycho-physiological 

symptoms. Additionally, each person's perception of pain is distinct and differs from the other subject.[13][4]. The 

intricacy of assessing pain is further increased by this particular factor. Self-report is therefore regarded as the gold 

standard for measuring pain and has been proven to be helpful in offering insightful information for efficient pain 

treatment [14], [15][16-17].  

While facial expression recognition has been the focus of recent advancements in automatic pain detection [18], 

research interest in pain estimates utilizing autonomic physiology assessed by skin conductance (SC) and heart rate 

(HR) is expanding [19]–[22]. These signals can be conveniently  picked up and monitored  in hospitals or even in a 

mobile ambulance , for instance, using wrist biosensors. The major goal of this research is to estimate the intensity 

of pain using skin conductance and heart rate data. Major autonomic alterations in the parameters are noted because 
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of pain [23], which enhances sympathetic output. Sweating released  due to pain enters into skin surface pores and 

impacts sympathetic excitatory efferent neurons innervate sweat glands [24], [25]. Electro dermal activity (EDA), 

which is altered by sweat release, causes an increase in skin conductance until the sweat is reabsorbed or evaporates 

[9]. 

A person's face, which is a rich source of actual information, represents their social interactions and health condition, 

like how they express their emotions and their pain [26]. The majority of multidimensional behavioral checklists and 

rating systems that are used to evaluate pain include a considerable portion of facial actions. The contraction of facial 

muscles during facial expression has an objective meaning according to the Facial Action Coding System (FACS) [6]. 

Automatic pain assessment could be accomplished by the examination of facial expressions. A person's health-related 

non-verbal cues can often be read from their face. It is possible to think of facial expression as a spontaneous and 

introspective response to traumatic situations. The Facial Action Coding System (FACS) is the foundation for the 

majority of facial expression studies. FACS is a tool for evaluating facial features objectively. 

Deep learning  algorithms are capable of identifying the presence of pain as well as the relative severity level by using 

pertinent information (such as a face image) gathered by a camera. The movement of the face muscles and its 

correlation with the PSPI scores can be used to infer this. The problems, however, still exist in facial image-based 

pain detection [6]. An unbalanced ambient light, distance and angle of the camera, and background can all have an 

impact on how facial images appear.  Assessing pain levels is somewhat challenging due to external influences like 

the phenomenon of smiling in pain or variances in pain based on gender. A very few and limited databases containing 

labels for pain in facial images are available. As a result, it is challenging to find a full dataset of facial images with 

pain labels on each image. This research project aims to promote potential uses of pain detecting systems in the field 

of health informatics and to offer an efficient solution to overcome these issues. 

The main aim of the research is to develop a HOA based deep CNN framework that can recognize pain by facial 

expression and evaluate the pain's intensity. The UNBC is the primary source of the data, which must be pre-

processed to increase its quality. After preprocessing, ROI extraction is used to remove the unnecessary portions of 

the image and take out the key regions. Afterward, feature extraction is used to extract the characteristics that are 

important for identifying pain through the expressions of the subject's face.  The process of feature extraction is 

carried out, the collected features are fed into an ensemble deep CNN classifier to identify the different levels of pain 

which is effectively tuned using the hybrid optimization, which substantially reduces the computing time and speeds 

up the convergence. 

Proposed Hybrid optimization based deep CNN model:  

In the proposed Deep CNN model, classifiers are enabled with hybrid optimization, which greatly aids in fine-tuning 

the hyper parameters. Adam, GWO, SGD, and CSO are combined to create the HOA model. The grey wolves search 

in a unique manner, that all the wolves search for the prey individually and once the prey is spotted the wolves will 

converge for the attacking of the prey. In attacking the prey, the selection of the careful step size plays an important 

role and this will be optimized by the enabling of the Adam update rule. Here, there is a need for an adaptive 

mechanism to identify whether the grey wolf should attack the prey or leave the prey based on their weight age and 

this will be performed using the characteristics obtained from SGD. Deep CNN is tuned using hybrid optimization 

and it efficiently recognizes the level of pain from the expression on the face, hence minimizing the over fitting issues. 

The manuscript's Section 2 outlines recent studies, their techniques, and the difficulties, and Section 3 represents an 

illustration of an efficient pain intensity detection model. The proposed hybrid optimization is presented in Section 

4, followed by a discussion of the experimental results in Section 5, and the conclusion is provided in Section 6. 

2. Motivation: 

Training a model on huge databases is challenging and time-consuming and over-fitting is another main challenge. 

To understand these challenges, a detailed review of available  research work is carried out in the next section. 

2.1 Literature review: 

Ghazal Bargshady et al. [1] created a hybrid CNN-BiLSTM (EJH-CNN-BiLSTM) deep learning algorithm for the 

multi-classification of pain. A spatiotemporal Convolutional network was created by G Mohammad Tavakolian and 

Abdenour Hadid [2] for the purpose of estimating pain intensity from face videos. This model's results show that 3D 



608  

 

J INFORM SYSTEMS ENG, 10(11s) 

deep architecture has a higher accuracy in estimating pain intensity, However, it was challenging to develop a model 

that uses both appearance and motion data to account for facial dynamics. A continuous pain monitoring technique 

was created by Mingzhe Jiang [3] with the classification of numerous physiological data, and it achieved great 

accuracy in the binary pain expression classification. Although these one-dimensional evaluation measures are 

thought to be effective in assessing acute pain, they necessitate interactive conversation between the patient and 

caregiver, which can be challenging for people with poor communication skills. In the process of creating a 

multimodal pain recognition system, Patrick Thiam et al. [4] established a number of classifier fusion algorithms that 

have been evaluated. This model performed better when estimating the severity of cold pain. But there were excessive 

over fitting problems with this model. This research used cutting-edge methods in a smart healthcare framework to 

assess pain using a sentiment analysis system that was created by Anay Ghosh et al. [5]. This system achieved greater 

accuracy with fewer training steps. However, the training can be rather imbalanced because there are a lot more 

background things than faces. A new algorithm for automatically identifying pain intensity using video frames was 

created by Ghazal Bargshady et al. [6]. The main limitations of this model are issues with exploding and vanishing 

gradients, as well as challenges with concurrent training and separation tasks. Nevertheless, it obtained good 

accuracy in a short amount of time and fewer epochs. A 3D deep architecture for dynamic facial video representation 

was created by Mohammad Tavakolian and Abdenour Hadid [7] which more effectively represents spontaneous face 

fluctuations. But in some instances, it was difficult for this model to determine whether a participant was in pain or 

not. Yikang Guo et al. experiment [8] on measuring the level of cold pain examined the significance of spatial-

temporal information on facial expression based on cold pain and demonstrated good accuracy. However, it is very 

difficult to recognize expressions on the human face because faces of different people are presented in various poses 

that differ according to the patient's age. 

2.2 Challenges: 

⮚ Face expression recognition requires the model to distinguish between subtle differences within each class 

(intra-class) and between different classes (inter-class). This poses a challenge as the distribution of facial 

expressions is highly complex and requires the balancing of complex 23 distribution of intra- and inter-class 

differences. 

⮚ RNNs, which can handle temporal dependencies, often suffer from the vanishing or exploding gradient 

problem, especially when dealing with long sequences. 

⮚ Training on large datasets can be time-consuming. Additionally, large datasets often contain a high degree 

of class imbalance, which can downgrade the model's performance, especially for underrepresented classes. 

⮚ Overfitting is a common problem, especially when the dataset is imbalanced. The model tends to memorize 

patterns from the majority class and performs poorly on the minority class. 

 

3. Efficient pain intensity detection from facial expression based on Hybrid optimization based 

deep CNN model: 

The main aim of the research is to develop a system that can assess the level of pain and evaluate pain based on facial 

expression. The UNBC is the initial source of the data, which is  pre-processed to improve the quality. Following 

preprocessing, ROI extraction eliminates the unnecessary portions of the image and identifies the key regions. The 

characteristics that are crucial for recognizing pain from the subject’s facial expressions are then extracted using 

feature extraction.  The process of feature extraction is carried out using the RESNET 101, facial activity descriptors, 

and hybrid weighted facial activity descriptor. To differentiate between the different levels of pain, the collected 

features are fed into an ensemble deep CNN classifier. The hybridized optimization methods Adam, SGD, CSO, and 

GWO are used to optimize the ensemble deep CNN. In noisy situations, the Adam optimization is best suited for 

handling sparse gradients. SGD is a quick and efficient optimization method for figuring out the variables or function 

coefficients that lowers a cost function. The CSO and the GWO are also employed to reduce computational complexity 

because of their basic structures, lower storage needs, and reduced computational demands. The combination of all 

these optimization techniques results in producing an effective result. The ensemble approach also offers best tuning, 

which substantially reduces the computing time, speeds up convergence, and aids in producing the desired results. 
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Finally, the output generated from the deep CNN classifiers identifies the level of pain. The architecture of the 

proposed pain intensity detection model is shown in figure 1. 

 

Figure 1: Architecture of the proposed pain intensity detection model 

3.1 Input: 

The UNBC is used as the input for the pain detection model, which is analytically represented as                     
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Where, B  is referred to as a database and yB
denotes the first dataset images, with images ranging from 1 to e .  

3.2 Pre processing: 

Image preprocessing step improves the efficiency and effectiveness of model training and inference, especially when 

dealing with large image datasets. By compressing the size of large images, training times can be significantly 

shortened without compromising with the l performance, Preprocessing also enhances the quality of images by 

removing noise, adjusting contrast, and sharpening features, which ensures that the model learns from clean, high-

quality data. Additionally, normalization of image pixel values helps create consistency across the dataset, allowing 

the model to converge more quickly. Moreover, preprocessing can remove unwanted distortions and artifacts, 

improving the model's ability to focus on relevant features rather than irrelevant distortions. Overall, preprocessing 

ensures that images are well-prepared for model training, leading to better performance and faster processing times. 

ROI extraction is the process of locating and isolating particular portions or regions within an image that are of 

particular interest or importance for additional processing or analysis.  

3.3 Feature extraction: 

Feature extractor is a technique used in machine learning to improve accuracy. It increases the accuracy of the 

algorithm’s prediction by focusing on the most essential features and eliminating the unnecessary and unimportant 

ones. 
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3.3.1 RESNET 101: 

The ResNet architecture is inspired by the VGG-19 model and builds upon the concept of deep convolutional neural 

networks (CNNs) by introducing shortcut connections. In a typical CNN, multiple layers are interconnected, each 

learning a different set of features at the end of every layer. In the case of ResNet, convolutional layers make up 33 of 

the total layers, and by using a stride of two, the model performs down-sampling directly. The final layers of the 

ResNet include a globally average pooling layer followed by a fully connected layer with SoftMax activation. As the 

removal of input features obtained from that layer, residual learning is easily understood. ResNet accomplishes this 

by using shortcut connections between each pair of the 33 filters to connect the input of one layer directly to the input 

thj of another layer ( )thtj + . A key feature of ResNet is its use of residual learning, where the input features from one 

layer are passed directly to the next layer through shortcut connections. This method helps mitigate the problem of 

vanishing gradients by enabling the network to learn residual mappings rather than the direct mapping itself. As the 

network trains, the weights are adjusted to emphasize the contribution of the layer directly beneath and reduce the 

influence of the one above. This structure makes ResNet easier to train compared to traditional deep CNNs and solves 

the problem of accuracy degradation that often arises in very deep networks. It is a modified version of the 50-layer 

Res Net called ResNet-101, which has 101 layers. 

3.3.2 Facial activity descriptors: 

The features that describe various aspects of face expressions and movements are referred to as facial activity 

descriptors. They are used to record and measure a variety of face activities, including emotions, gestures, actions, 

and facial muscle movements. These descriptors offer a structured description of face behavior, enabling analysis and 

comprehension of facial expressions in people. This section explains feature extraction  relevant to pain. 

a) LBP: LBP is a useful technique for feature extraction, carried out  by encoding the pixel-level data that describes 

the local structure in texture images. In a grayscale image, the threshold value of the central pixel controls the values 

of the eight pixels that surround it for one particular pixel. To be more exact, the result will be set to one if the values 

of all neighboring pixels are greater than or equal to the values of the central pixels; otherwise, the result will be set 

to zero. The results are then averaged after being multiplied by weights with powers of two to get the LBP code for 

the center pixel.  Circular adjacent pixels may be included in the LBP operator's scope. LBP's invariance to monotonic 

gray level changes brought on by changes in illumination is one of its key benefits. It achieves good performance in 

texture classification due to its straightforward calculation and strong discrimination. The following is a definition of 

the initial LBP operator: 
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The center pixel gray values and its neighborhoods are represented as vh
and Mh , total number of neighboring pixels 

is denoted as M , neighboring pixels radius is denoted as T , The operator is made insensitive to variations in the 

mean gray value by approximating the distribution with local neighborhood differences. LBP converts the 

relationship between the center pixel's and the neighboring pixels' gray levels into the binary numbers 0 and 1. It 

serves as a straightforward and effective local descriptor for texture. However, it lacks the local intensity difference 

and produces a huge different gray block with the same LBP value block. 

b) LTP: LTP expands LBP to three-value codes in which gray levels in a zone of width g  around vf  are quantized 

to zero, to +1, to -1, and to zero. According to Eq. (3), the indicator ( )nU  is replaced with a three-valued function and 

the binary LBP code is converted to a ternary LTP code. Since g  is a user-specified threshold in this case, LTP codes 

are less rigorously invariant to gray-level transformations but are still more noise-resistant. 
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c) LDP: LDP creates an eight bit binary code for each pixel in the image. The local region of the image of size 3 × 3 

is convolved with Kirsch masks in eight directions to produce the eight bit pattern. The Kirsch masks are convolved 

for each 3 × 3 region with regard to the eight directions of the central pixel. Eight responses are received with the 

label 71 .,........., xxxo . The top d  responses are chosen from these and set to 1, while 0 is set for all other responses. 

Equation gives a mathematical definition of it. 

                                      
( )  ( ) == mm xandmifTvugT 701:,

                        (4) 

Where, ( )Xd th=  and
 71,....., xxxX o=

. For the entire image, the process is repeated, resulting in eight Kirsch 

masks being applied to each pixel. LDP-labeled image XM  is the name given to the resulting image. The LDP-labeled 

image XM  is segmented into regions, and a histogram is produced for each zone. The histograms from each region 

are combined to get the final histogram for the input image. 

3.3.3 Hybrid weighted facial activity descriptor: 

The term hybridization describes the process of merging numerous local feature descriptors to provide a more reliable 

and useful feature representation for a variety of computer vision tasks. In image analysis and recognition, the local 

feature descriptors LDP, LTP, and LBP are frequently utilized. These descriptors could perform better if they were 

combined, and it would also allow for the acquisition of more features of the image data. Each description is briefly 

described below, along with examples of how they can be combined: 

a) LDP: LDP is used to determine the difference between the centre pixel and its central pixels. It is very helpful for 

capturing structural information in images and encoding local texture changes. 

b) LTP: By adding a third value to the standard 0 and 1 range, LTP expands on LBP. The uniformity or diversity of 

the texture patterns as well as their presence or absence is encoded. 

c) LBP: The local texture is encoded by LBP by comparing each pixel's intensity value to that of its neighbors. The 

presence or absence of specific intensity patterns is represented as a binary code. 

Concatenating or combining the feature representations of LDP, LTP, and LBP is one method for hybridizing them. 

A more thorough representation that includes several texture qualities can be made by concatenating the features 

derived from each descriptor into a single feature vector. Combining LDP, LTP, and LBP can take advantage of each 

descriptor's advantages, capturing various facets of local texture and enhancing the overall discriminative power of 

the feature representation.  

4. Ensemble deep CNN classifier: 

The extracted features are fed forward to the deep CNN classifier to detect the pain intensity detection from the facial 

expression. Convolution, nonlinearity, and pooling stages which are the main stages in the feature learning process 

are combined with the fully connected stage in order to extract the features in depth. These phases are known as 

CONV, ReLU, POOL, and FC, respectively. ReLU denotes that the stage uses the ReLU function as a nonlinearity 

function. In the CNN model, several of these fundamental steps are sequentially stacked as layers, with the goal of 

automatically learning the deep characteristics from input. The Soft Max function will go on to employ the features 

that were extracted during the feature learning phase for the classification process. To provide the output in a 

probabilistic manner, it was applied to the network's final layer. 

a) Convolution layer: 

The CNN model greatly benefits from convolution. It takes the form of sliding window 2D convolution with 3D input, 

which employs several filters of size ETT  to convolute with the 3D input of size B concurrently. One of the 
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feature map's outputs is the convolution result from a single filter.  Applying G  filters in a convolution layer, which 

is the entire output of the convolution stage, yields a stack of G  feature maps. In other words, the information in 

each convolution layer of the CNN model is viewed as the features in three dimensions. 

b) RELU layer: 

Since convolution is a linear process, the feature maps created by the convolution layer always undergo through a 

non-linear ReLU function to extract the non-linear property of the feature. By changing all of the input's negative 

numbers to zero while leaving the others as they were originally, it is extremely simple yet efficient. 

                                                         

( )







=

0,

0,0
Re

ii

i
ilu

                                                  (5) 

c) Pooling layer: 

Each feature map input was sub sampled by the CNN model's pooling layer. The feature map's width ( )B  and height 

C  dimensions will decrease after the pooling stage. Sub sampling allows for the usage of different pooling sizes. 

When using a pooling size of 2×2, only one value out of four is chosen to represent the subsample. To choose the one 

sub sampling value from these four values, however, max pooling, average pooling, or any other pooling types might 

be used. 

d) Fully connected layer: 

A few Fully Connected (FC) layers are used in the output region of the majority of CNN models. The preceding layer's 

feature maps are structured as vector data for the FC layer's input and are connected to one another in a manner 

similar to a multi-layer perceptron (MLP) network. 

e) Soft max layer: 

In the process of learning features, a network is constructed by sequentially arranging layers of convolution, 

nonlinearity by ReLU function, and pooling. The normalization stage and dropout, which are also utilized in Alex 

Net, are a few of possible additional stages. In order to convert the network output into values in terms of probability 

for the classification process, the soft Max function is used. In (6), it serves a purpose. 
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Where, the exponential value of jD
 is

Djm , 
( )

jDs
 is the soft maximum outcome of each jD

, output of each neuron 

j  is jD
, the vector component of D  isT , and the exponential output is jD

. 

 

 

 

 

 

 

 

Figure 2: Architecture of the deep CNN classifier 
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Deep CNN classifiers are enabled with hybrid optimization, which greatly aids in fine-tuning the weight and bias of 

the classifier. Adam [34], GWO [35], SGD [36], and CSO [37] are typically combined to create the HOA model. The 

grey wolves search in a unique manner, that all the wolves search for the prey individually and once the prey is spotted 

the wolves will converge for the attacking of the prey. In attacking the prey, the selection of the careful step size plays 

an important role and this will be achieved by the enabling of the Adam update rule. Here, there is a need for an 

adaptive mechanism to identify whether the grey wolf should attack the prey or leave the prey based on their weight 

age and this will be performed using the characteristics obtained from SGD. 

4.1 Initialization: 

In GWO, first choose the number of wolves you want to use before implementing the grey wolves to address the 

issues. Each wolf has a unique location, which is made up of B  dimensions, velocity values for each dimension, a 

fitness value that indicates how well the wolf has adapted to the fitness function. Since GWO keeps the top solution 

till the end of iterations, the best position in one of the wolf would be the final solution. 

                                                         nIII ................1 +=
                                                         (7) 

I denotes the individual wolves and n denotes the total groups  

4.2 Assigning ranks: 

In order to statistically explain the wolf’s social hierarchy when creating GWO, we take the fittest solution into 

consideration as the alpha a . Therefore, beta b  and delta d , respectively, are used to denote the second and third-

best options. We suppose that omega x represents the remaining possible solutions.  

4.3 Tracing mode: 

The tracing mode is the sub-model that simulates the grey wolf scenario while tracing some targets. When a wolf 

enters the tracing phase, it moves in all directions at its own velocity. Tracing mode's operation can be explained as: 

4.4 Searching for the target: 

 Step1: In accordance with equation (8), update the velocities for each dimension
( )emt , . 

Step2: Verify that the speeds fall within the range of the maximum speed. Set the new velocity to the maximum value 

if it exceeds the range.  

Step3: Update the mwolf
location in accordance with equation (9). 

                                                    (8) 

ebesti ,  denotes the wolf's position, which has the highest fitness value; emi , represents the wolf's position. 1v is a 

random number between  1,0 and 1b  is a constant.
( ) Uewhereiibvtt emebestemem .,.........2,1,,,11,, =−+=

 

                                           ememem tii ,,, +=
                                                                                  (9) 

4.5 Encircling behavior: 

During a hunt, a pack of grey wolves encircles its prey. The subsequent equations are suggested as a mathematical 

model for encircling behavior: 

                                                

( ) ( )gYgYDE M

→→→→

−= .
                                                                (10) 

                                                    
( )

→→→→

−=+ EBYgY M .1
                                                               (11) 
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Where, g  indicates the current iteration, 

→

B  and 

→

D  represents the coefficient vectors, prey's position vector of the 

prey is denoted as

→

MY , and the position vector of the wolf is denoted as

→

Y . 

4.6 Hunting behavior:  

Wolves possess the capacity to locate their prey and surround them. The alpha usually leads the hunt. There's a 

chance that the beta and delta will occasionally go hunting. In an abstract search space, the exact spot of the ideal 

(prey) is unknown. We assume that the alpha (best candidate solution), beta, and delta have superior knowledge of 

the location of prey, updating the positions to coincide with the locations of the top search agents in order to 

mathematically mimic the hunting behavior of grey wolves. In this regard, the formulas below are described as. 
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4.7 Attacking prey: 

As previously stated, the prey is attacked by the grey wolves when it stops moving to conclude the chase. To 

mathematically describe approaching the prey, we decrease the value of

→

b . Also keep in mind that 

→

b  limits 

→

B  range 

of fluctuation. If you want, you may say that 

→

B is a random variable with a range of  bb 2,2− , where 

→

b  declines from 

2 to 0 throughout the course of iterations. A search agent's next position can be anywhere between its current position 

and the location of the prey when random values of 

→

B  are in the range  1,1− . According to the research, 
1B

 

stimulates the wolves to kill their target. 

The alpha, beta, and delta locations can now be used by the GWO algorithm's search agents to update their positions, 

which they can then use to begin an attack in the direction of the prey while employing the so far proposed operators. 

The GWO method is susceptible to local solution stagnation when used with these operators.  

4.8 Searching for prey: 

The way that grey wolves search is distinct: each wolf looks for the prey on its own, and when it is found, all the wolves 

come together to attack the victim. 

The grey wolves' vectors 

→

B  and 

→

D  are computed as follows: 

                                                         

→→→→

−= bjbB 1.2                                                                  (15) 

                                                           

→→

= 2.2 jD                                                                       (16) 

In this case, the components of 

→

b  are linearly reduced over the course of iterations from 2 to 0, while the random 

vectors are 21, jj  which is in the range  1,0 . 
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A two-dimensional position vector and a few potential neighbors are shown to show the implications of Equations 

(10) and (11). A position of the wolf ( )ZY , may change its position in accordance with the prey’s position ( )** , ZY . 

By varying the values of the 

→

B  and 

→

D vectors, it is possible to travel to several locations relative to the current 

location around the best agent. For instance, setting ( )0,1=
→

B and ( )1,1=
→

D  will lead to ( )** ,ZBB − . Keep in mind 

that wolves can travel to any position using the random vectors 21 jandj . Equations (10) and (11) allow a grey wolf 

to update its location at any random point inside the area surrounding its prey. 

In attacking the prey, the selection of the careful step size plays an important role and this will 

be achieved by the enabling of the adam update rule. In Adam update rule 

Adam's update rule's thorough selection of step sizes is one of its key characteristics. Assuming 0=  represents the 

actual step taken in parameter space at time step s  is



= sss ug /.
. In this example, 

( ) 21 11  −−
, and 

 s  in all other cases, are the two upper constraints on the effective step size 
( ) 2

1 1/1.  −− s . When 

a gradient has been zero at all time steps other than the present time step, the first situation only occurs in the most 

extreme case of sparsity, the effective step size will be smaller for the less sparse cases.  

Here, there is a need for an adaptive mechanism to identify whether the grey wolf should attack the prey or leave the 

prey based on their weight age and this will be performed using the characteristics obtained from SGD. 

                                                           bjbB −= 1.2                                                                     (17) 

Replace 1j  with velocity of cat (8) from CSO hence 

                      
( ) biibvtbB emebestem −−+= ,,11,.2

                                                                     (18) 

                  
( ) ( ) ( )mJmJRugbtbB ss 






−+−=
2

5.0/.,25.0
                                               (19) 

In this approach, mandR stands for the weight vectors, and 


  is the stochastic gradient of the time-averaged 

squared stochastic error. It is well known that, if convergence rate is expressed in terms of data time-samples, 1=J

produces the algorithm that converges the fastest. The speed of convergence, however, grows monotonically with J  

if the convergence rate is expressed in terms of algorithm iterations, which are J  times less frequent than data time-

samples. 

Algorithm1: Pseudo code of hybrid optimization algorithm 

S.NO Pseudo code of the proposed HOA model 

1 Initialization: I 

2 Searching for the target:  

 

3 Determine the velocity of the wolf: 

( ) Uewhereiibvtt emebestemem .,.........2,1,,,11,, =−+=
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4 
Update the position: ememem tii ,,, +=

 

5 

Encircling behaviour: 

( ) ( )gYgYDE M

→→→→

−= .

                              

6 
( )

→→→→

−=+ EBYgY M .1  

7 

Hunting: 
( )

3
1 321

→→→
→ ++

=+
YYY

gY
 

8 

Searching for the prey: 

→→→→

−= bjbB 1.2  

9 →→

= 2.2 jD  

10 

Adam update phase: 



= sss ug /.
 

11 Weight age using the characteristics obtained from SGD. 

 

12 bjbB −= 1.2  

13 
Replace 1j  with velocity of cat (2) from CSO hence 

 

14 ( ) biibvtbB emebestem −−+= ,,11,.2
 

15 ( ) ( ) SGDsdelbtbB +−= ,2  

16 Termination: 

 

5. Result and discussion: 

A model for detecting pain intensity is developed using HOA based deep CNN, and its efficacy is assessed with respect 

to other approaches. 

5.1 Experimental set up: 

The aim of assessing its performance and development, the HOA-based deep CNN model is implemented in Python 

on Windows 11 with 16GB RAM. 

5.2 Dataset description: 

5.2.1 UBBC [26]: 

The search for 129 participants, 63 men and 66 women who self-reported having a shoulder soreness issue used three 

physiotherapy clinics as well as advertisements placed on the McMaster University campus. A wide range of 

occupations made up the remaining third, which comprised the community's residents and one-fourth of students. 

Participants' shoulder pain was diagnosed with different conditions. More than half of the participants admitted to 

taking medicines. 

Experimental results: 
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The analysis of the pain detection model, which was conducted using the developed HOA-based deep CNN, is 

expanded upon in this chapter. Sections 3a, 3b, and 3c show the original input image, whereas Sections 3d, 3e, and 

3f show the LBP extracted image and Sections 3g, 3h, and 3i show the final output. 

 

 

Input image 

   

               a)                 b)                   c) 

 

 

LBP image 

   

               d)               e)                   f) 

 

Pain intensity 

detection 

 

 

                      

 g) 

 

Figure 3: Result of an experiment utilizing a deep CNN based on HOA 

5.3 Performance analysis based on TP: 

Figure 4 illustrates the metrics of the HOA-based deep CNN models for detecting the pain intensities. 

 Figure 4a) shows that the HOA-based deep CNN technique achieves accuracy values during TP of 90 of 68.77%, 

69.98%, 86.86%, 88.06%, and 96.14%. 

Figure 4b) shows the outcomes of the deep CNN model based on the HOA. Their sensitivity levels are 73.65%, 

80.42%, 81.52%, 92.67% and 97.90% respectively, at a 90% TP.  

The results, which were subsequently obtained using the HOA-based deep CNN model and are shown in Figure 4c), 

had a specificity of 86.87%, 86.98%, 87.34%, and 96.83% with a TP of 90%. 
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(a) (b) 

 
c) 

 

Figure 4: Performance analysis concerning TP a) accuracy, b) sensitivity and c) specificity 

5.4 Performance analysis based on K-fold: 

The HOA-based deep CNN model's effectiveness in detecting the pain intensities is depicts in Figure 5a). As part of 

the k-fold 10 the HOA-based deep CNN achieves accuracy values of 65.96%, 67.75%, 72.84%, 81.10%, and 92.54%. 

The effectiveness of HOA-based deep CNN model in detecting the pain intensities is displayed in Figure 5b). The 

HOA-based deep CNN reaches values of 72.57%, 78.57%, 87.55%, 89.78% and 96.50% in terms of sensitivity. 

The effectiveness of HOA-based deep CNN in detecting the pain intensities is shown in Figure 5c). The HOA-based 

deep CNN attains specificity of 68.53%, 70.46%, 79.40%, 85.02%, and 95.06%. 

 

 

(a) (b) 
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c) 

 

Figure 5: Performance analysis concerning k-fold a) accuracy, b) sensitivity and c) specificity 

5.5 Comparative methods: 

The performance of the proposed HOA-based deep CNN model is demonstrated through comparisons with SVM, 

MLP, CNN, BiLSTM, deep CNN, deep CNN based bald eagle search optimization (deep CNN-BES), and deep CNN 

based flamingo. 

5.5.1 Comparative analysis based on TP: 

Figure 6) presents the metrics for the TP 90, which is utilized to contrast the effectiveness of the HOA-based deep 

CNN with that of the other comparison techniques. 

The HOA-based deep CNN model's accuracy in determining pain intensity is seen in Figure 6a). The HOA-based deep 

CNN has a TP of 90 and 90.06% accuracy, which is 1.35% more accurate than the deep CNN-BES. 

As demonstrated in Figure 6b), the HOA-based deep CNN model performs 8.86% better at detecting pain intensity 

than the deep CNN-BES and has a sensitivity of 98.38%. 

As shown in Figure 6c), the HOA-based deep CNN model performs 1.06% better at detecting pain intensity than the 

deep CNN-BES and has a sensitivity of 99.35%. 

 

 

(a) (b) 
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c) 

 

Figure 6: Comparative analysis concerning TP a) accuracy, b) sensitivity and c) specificity 

5.5.2 Comparative analysis based on K-fold: 

Figure 7) presents the metrics for the K-fold 10, which is utilized to contrast the effectiveness of the HOA-based deep 

CNN with that of the other comparison techniques. 

The HOA-based deep CNN model's accuracy in determining pain intensity is seen in Figure 7a). The HOA-based deep 

CNN achieves 94.95% accuracy during the k-fold 10, which is 7.71% more accurate than the deep CNN-BES. 

As demonstrated in Figure 7b), the HOA-based deep CNN model performs 6.13% better at detecting pain intensity 

than the deep CNN-BES and has a sensitivity of 97.33%. 

As shown in Figure 7c), the HOA-based deep CNN model performs 12.13% better at detecting pain intensity than the 

deep CNN-BES and has a sensitivity of 99.04%. 

 

 

(a) (b) 

 
c) 

 

Figure 7: Comparative analysis concerning k-fold a) accuracy, b) sensitivity and c) specificity 
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5.6 Comparative discussion: 

The results of the models used to determine pain intensity are assessed in this section. SVM [27], MLP [28], CNN 

[29], BiLSTM [30], deep CNN [31], deep CNN based bald eagle search optimization [32], and deep CNN based 

flamingo [33] are shown in the table 1 and 2. In terms of the metrics, the HOA-based deep CNN model performs 

better than the other models. 

Table 1: Comparative analysis based on TP 

 TP 

Models Accuracy Sensitivity Specificity 

SVM 65.30 64.82 65.11 

MLP 69.17 66.27 66.39 

CNN 71.39 68.37 68.61 

BiLSTM 74.25 79.50 72.16 

deep CNN 75.94 84.03 74.16 

deep CNN based bald eagle 

optimization 87.63 86.45 93.74 

deep CNN based flamingo 88.85 89.67 98.30 

HOA-based deep CNN 90.06 98.38 99.35 

 

Table 2: Comparative analysis based on K-fold 

 K-fold 

Models Accuracy Sensitivity Specificity 

SVM 65.12 72.42 62.92 

MLP 67.23 75.77 66.97 

CNN 71.72 78.76 68.06 

BiLSTM 71.92 80.04 70.08 

deep CNN 83.24 86.85 72.44 

deep CNN based bald eagle 

optimization 87.40 88.44 86.69 

deep CNN based flamingo 87.63 91.37 87.03 

HOA-based deep CNN 94.95 97.33 99.04 

 

6. Conclusion: 

This research presents a Hybrid Optimization Algorithm (HOA)-based deep Convolutional Neural Network (CNN) 

model designed to recognize pain from facial expressions and assess its intensity. The UNBC dataset, which serves as 

the primary source of data, undergoes preprocessing to enhance its quality. Subsequently, a Region of Interest (ROI) 

extraction is performed to isolate relevant areas of the image, focusing on key features necessary for pain recognition. 

The next step involves feature extraction, utilizing the RESNET 101 architecture and weighted hybrid facial activity 

descriptors, along with other facial activity descriptors. These features are then inputted into an ensemble deep CNN 

classifier to identify various levels of pain. 
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To optimize the deep CNN model, hybrid optimization methods are applied. These methods provide optimal tuning, 

significantly reducing computation time and speeding up convergence. As a result, the HOA-based deep CNN model 

achieves impressive performance metrics. For the TP (test protocol), the accuracy, sensitivity, and specificity are 

90.06%, 98.38%, and 99.35%, respectively. In the K-fold validation setup, these values improve to 94.95% accuracy, 

97.33% sensitivity, and 99.04% specificity. 

In summary, the model demonstrates high efficiency and effectiveness in recognizing pain and evaluating its 

intensity, with notable performance across both TP and K-fold test scenarios. 
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