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Corona viral disease (COVID-19) has been declared a worldwide pandemic due to its fast spread. 

In order to prevent future infection and to protect lives, early detection of COVID-19 cases is 

crucial because failure to do so might result in death. The segmentation of patient COVID-19 

chest computed tomography (CT) image data is proposed in this study using the tuned Deep 

Long Short-Term Memory (Deep-LSTM) classifier by Grey Wolf Grasshopper Optimisation 

(GWGHO). The proposed model segmentation accuracy is enhanced by applying the 

recommended approach to tune the Deep-LSTM weights optimally. The suggested method is 

created by combining the characteristics of grasshoppers and grey wolves in such a manner as to 

inherit both animals' benefits in solving optimisation challenges. By applying the GWGHO 

algorithm's tuning procedure, the convergence is also improved. The suggested GWGHO-Deep 

LSTM model's efficacy is confirmed by an investigation of the model's performance indices, 

including segmentation accuracy, recall, precision, and Area under curve (AUC). The suggested 

GWGHO-Deep LSTM model's segmentation accuracy was achieved at 97.5226%, demonstrating 

the effectiveness of the model in segmenting data. 

Keywords: COVID-19, Chest CT image, Deep LSTM, Segmentation, and Optimization 

1. Introduction

The most crucial components of the human respiratory system are the lungs. The total air circulation system 

is impacted by lung illness, which has the potential to cause mortality.  Lung cancer, tuberculosis, and pneumonia 

are the other major lung diseases [12]. In addition, some microbes, such bacteria, viruses, and fungi, can cause illness 

that requires medical attention [1]. More than 200 nations have been affected by the extremely contagious and 

communicable illness COVID-19 during the past year. On the other hand, COVID-19 has expanded globally and is to 

blame for mortality, heart infections, and respiratory issues. The global economy has also suffered as a result of 

COVID-19. According to the study, the COVID-19 virus has a damaging effect on the lungs and swiftly mutates before 

the patient receives any diagnosis-based treatment [13][14][5]. More than 2 million confirmed cases, more than 

150,000 fatalities, and other statistics have been reported as of April 2019. Early identification is essential since there 
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is no therapeutic cure or vaccination for the rare COVID-19 disease, making it necessary to immediately isolate the 

suspected patient and lower the risk of infection in the wider population [3]. 

A COVID-19 virus may be found in patients using a number of techniques, including the RTPCR test [15], X-

ray imaging [16], CT scan [17], fast antigen [18], and serological test [19][5]. For respiratory or blood samples, RT-

PCR or gene sequencing are the primary screening methods for COVID-19 [20]. According to reports, however, the 

overall positive rate of RT-PCR for samples taken from throat swabs ranges from 30 to 60%, leaving unidentified 

individuals who might infect a sizable population of apparently healthy people [21]. Chest radiography imaging 

utilising X-ray and computerised tomography (CT) is a commonly used method for diagnosing pneumonia and offers 

speedy findings. Chest CT has a high sensitivity for the diagnosis of COVID-19 [22], while X-ray pictures show visual 

indices related to COVID-19 [23] [3]. The COVID-19 chest imaging data, which was initially released in January 2020, 

showed that the majority of hospitalised individuals had bilateral pulmonary complications with ground-level 

opacities. Since then, several papers on the results of the COVID-19 chest CT have been published at a rapid rate. 

Chest CT should be used properly in COVID-19 patients based on experience and, more importantly, 

scientific knowledge that has developed since the disease's emergence and is still growing [10]. Experts estimate that 

the COVID-19 virus has a one-week incubation period [24]. This is important because, during this period, the infected 

person acts as a viral carrier and unintentionally distributes the illness. Due to its very infectious nature, it spreads 

more quickly than it is discovered. Machine learning methods are particularly well-liked in healthcare applications 

[5]. In the present era, chest X-ray scans were utilised to predict COVID-19 using machine learning frameworks. The 

end-to-end deep learning structure is proposed, which forecasts COVID-19 disease using raw images without the 

need for feature extraction, in contrast to conventional techniques for medical image identification, which involve a 

two-step process, such as hand-crafted feature extraction and recognition [9]. It has been shown that deep learning-

based models outperform traditional AI techniques in the majority of computer vision and medical image processing 

tasks [3]. They have been used to solve a variety of problems, from the recognition, segmentation, and recognition of 

faces to super-resolution and image enhancement.  

Although various studies such as Deep Neural Network (DNN) [1], Deep transfer learning (DTL) [3],  

Residual Neural Network Version 50 (ResNet 50) [4], XCOVNet [5], Dilated Convolutional Neural Network (DiCNN) 

[6], Convolutional Support Vector Machine (CSVM) [7], Modified Convolutional Neural Network (MCNN) [8], 

Improved Deep Convolutional Neural Network (IDCNN) [37], and Automatic segmentation pipeline within 3-

dimensional U-Net architecture (3D U-Net) [38] are conducted to classify the COVID-19 CT chest image, they face 

significant issues such as limited generalization, overfitting, computational complexity, lack of standardization, large 

false positive detection, etc. Therefore, to overcome the issues faced by these state-of-art techniques we proposed a 

novel hybrid optimization-based deep learning architecture for COVID-19 CT chest image classification.  

This study presents a deep learning technique for segmenting the chest CT images of COVID-19 patients. The 

GWGHO technique is used to optimise the weights in the deep LSTM model, which effectively executes the 

segmentation process. The use of the GWGHO optimisation, which helps to increase the suggested segmentation 

model's effectiveness, is crucial to understanding the relevance of the presented model. The suggested segmentation 

model is well explained in this study, and the findings may be used to confirm the model's efficacy. Additionally, a 

thorough analysis of the effectiveness of the traditional segmentation procedures is provided to evaluate the 

superiority of the suggested method for segmenting chest CT images. The study's main contributions and subjects 

covered are, 

➢ For the purpose of segmenting the COVID-19 CT images, the proposed algorithm creates an automated deep 

learning approach. 

➢ The GWGHO method is used to optimise the Deep LSTM weights for better segmentation accuracy.  

➢ The new model is compared to the existing methodologies in terms of efficiency measures like precision, accuracy, 

recall, and ROC curve to confirm the efficacy of the proposed strategy. 

The paper is organised as follows: Section 1 provides a thorough introduction to the paper; Section 2 conveys 

a survey of current COVID-19 segmentation strategies and the difficulties they face; and Section 3 explains the 

proposed optimisation tuned deep learning framework for CT image segmentation. Section 4 discusses the outcomes 

of the suggested approach, and Section 5 concludes the article. 
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2. Literature survey 

The usual techniques for COVID-19 CT image segmentation are discussed in this part, along with the 

problems with the current model that served as the impetus for the creation of the suggested model. 

2.1 Related works 

According to the literature evaluation of the available techniques, DeepikaSelvaraj et al.[1] suggested a deep 

neural network (DNN) model prepared on a small dataset, with features chosen using a region-specific technique 

based on the Zernike moment (ZM) and grey level co-occurrence matrix (GLCM). The difficulty in detecting the 

Ground-glass opacification/opacity (GGO) from low-contrast CT images is a shortcoming of this model, which 

necessitates the use of additional features and augmentation approaches to offer more precise information. For the 

goal of segmenting chest CT images with COVID-19 infections, Qingsen Yan et al. [37] created a special deep 

convolutional neural network (DCNN) model. A feature variation block is developed that adaptively modifies the 

global characteristics of the features for segmenting the COVID-19 infection. This is motivated by the finding that the 

border of the infected lung may be enhanced by modifying the global intensity. The FV block may efficiently and 

adaptably improve the capacity of feature representation for a variety of applications. However, the DCNN model 

requires large amount of data for better classification. For COVID-19-infected areas, Dominik Müller et al. [38] 

created an inventive automated segmentation workflow that can handle limited datasets by using variant databases. 

The technique was centred on the on-the-fly production of distinct and random picture patches for training using a 

variety of pre-processing techniques and considerable data augmentation. However, it is crucial to remember that 

the bulk of segmentation techniques used in research today are not appropriate for clinical use. 

Deep learning methods were investigated by Shervin Minaeea et al. [3] in order to identify COVID-19 patients 

from CT scans. However, additional trials on the photographs are needed for a more consistent evaluation of these 

models' correctness because there are so few COVID-19 shots that have been made publicly available to far. Using a 

1/7 Darwin COVID-19 Chest X-ray Dataset, Alan Zhang [4] trained a U-Net based network for lung-region 

segmentation as well as a convolutional neural network (CNN) for diagnosis on chest X-ray images. In order to 

identify COVID-19, VishuMadaan et al. [5] proposed a two-phase X-ray image classification model called XCOVNet 

using CNN. The front viewed fixed dimension X-ray pictures used to evaluate the XCOVNet model are used to 

produce filtered images, which may not be optimal and require more study and development. Using chest X-rays, Md 

Gulzar Hussain and Ye Shiren [8] evaluated CNNs for the classification of COVID-19. The method has limited 

sensitivity, latency, and accuracy [8]. Umut ozkaya1 et al. [7] suggested a Convolutional Support Vector Machine 

(CSVM) to classify CT images automatically. Shailender Kumar et al. [6] proposed a robust CNN framework for the 

identification of COVID-19 using Chest X-rays (CXR) as well as the images of Chest CT Scans with the goal to reduce 

the time it takes to identify infected persons. The dataset only contains a few COVID positive pictures, which hinders 

the effectiveness of the recommended CNN models [6].  

2.2 Problem statement 

The difficulties with the current COVID 19 CT image segmentation techniques are discussed as, 

➢ Due to the reduced rate of publicly available COVID-19 images, more analysis are necessary on the larger set 

of clearly labeled COVID-19 images for the enhanced assessment of the accuracy of such models [2]. 

➢ An assessment method called sHapely Adaptive explanation (SHAP) does not offer causation. The strategy's 

behaviour and the information needed to construct the approach are the only details provided. Additionally, 

the technique may not accurately depict every COVID case, and a sizable number of false positives and 

negatives may be obtained [10].  

➢ The presence of data anomalies, particularly in medical imaging operations, continues to be a bothersome 

problem that typically leads to misidentification among the different classes in the dataset [11]. 

➢ The decline in the size of input image due to the pooling layers of CNN can be handled with the addition of 

Transpose Convolutional layers, however adding such layers also raises the count of parameters, leading to 

the need for long training period [6]. 
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3. Proposed model of COVID-19 chest segmentation 

With the widespread spread of the corona virus, which causes an acute respiratory disease, the globe is 

currently plagued by a fatal sickness condition. Due to the high contagiousness of COVID, patients are advised to 

keep to themselves in order to stop the spread of the illness. To stop others from contracting COVID-19 and negatively 

impacting the nation's economy, quality of life, and way of life, the affected individuals must be located as quickly as 

feasible [1]. A novel hybrid optimization tuned deep LSTM model is projected in this article to part the chest CT 

pictures of the patient role affected through COVID-19 in such a way to direct early detection of COVID-19. The 

schematic depiction of proposed model is depicted in figure 1. In the initial step, the chest CT images are extracted 

from the dataset, and the extracted images are subjected to pre-processing for re-sizing and normalizing the input 

image. Then, the proposed hybrid optimization tuned Deep LSTM model involves in the segmentation of the pre-

processed chest CT image. The Deep LSTM weights are optimised using the suggested GWGHO method, which 

contributes to improving the segmentation precision of the proposed model.  

 

Figure 1. Block diagram of proposed Chest CT segmentation model      

3.1 Input CT image 

The segmentation of chest CT image is crucial in medical applications, due to the needs associated with it in 

enhancing the detection accuracy of the proposed segmentation module. Initially, the chest CT images are extracted 

from the input dataset, and is mathematically represented as, 

  )1(; qpCTE p =      (1) 

Where, q refers to the total images of the input dataset and pCT is the 
thp  image of the input dataset. The 

input images extracted from the dataset are processed in such a way to perform the segmentation process in the 

proposed research. 

3.2 Pre-processing of image data 

Pre-processing is one of the first phases in the planned COVID-19 chest CT image segmentation module's 

effort to remove artefacts from the CT images' nonlinear and non-stationary components [25]. The image obtained 

is considered to be pre-processed to improve the segmentation accuracy of proposed Deep LSTM model. To make 

the raw picture appropriate for subsequent processing, the pre-processing phase normalises it. All of the dataset's 

photos were downsized to 128 × 128 pixels as part of the pre-processing stage of the proposed model in order to speed 

up the training phase's processing time. To eliminate the abnormalities in the Chest CT pictures, all the images were 

also normalised. 
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3.3 Segmentation of chest CT image 

The chest CT scan is routinely used to identify neurological diseases and check heart function. The CT is often 

acknowledged as a crucial step in evaluating clinical parameters, surgical planning, and particularly for the diagnosis 

of COVID-19 patients since it portrays critical components and structures from volumetric medical pictures. In a 

clinical environment, the doctor marks arcs around the structure of interest to define the area through the encircling 

tissues or organs. But because it takes longer and includes intra- and inter-rater variability, this method is 

inapplicable at a bigger footprint. As a result, it's critical to create a fully automated technique for segmenting and 

diagnosing medical images. Patches are employed as inputs instead of sending the entire image to the proposed setup 

because of the complexity inherent in chest CT imaging. The objective is the centre pixel/voxel, which the 

segmentation model segment using patches. Due to its capacity for identifying the position of the central pixel, the 

bigger patch provides spatial data. The smaller patch has a wealth of information about the region surrounding the 

core pixel. The proposed GWGHO optimisation tuned Deep LSTM model proposes segmenting the ideal segment of 

the chest CT image in order to simplify and improve the success of the subsequent classification procedure [26]. 

3.3.1 Proposed Brain CT image segmentation model based on optimized Deep Long Short-Term 

Memory network 

The working principle of Hybrid optimization tuned Deep-LSTM model is explained in detail in this section. 

The proposed hybrid inspect optimization tuned Deep-LSTM model make in use of the pre-processed CT image in 

such a way to perform the segmentation process. The GWGHO method, which is proposed, and which incorporates 

the features of the grey wolf search agents and the grasshopper search agents, must be tuned optimally to get the best 

segmentation results. The Deep LSTM model has been demonstrated to be effective in processing non-linear higher 

order CT images, and the majority of segmentation models in the literature are based on deep learning. The Deep-

LSTM is a collection of LSTM units that collect non-linear feature representations of various orders at varying depths 

in order to increase prediction performance [27]. However, the accuracy of segmentation is highly dependent on the 

weights of deep LSTM model being properly trained, leading to the invention of the GWGHO method, which 

combines the intrinsic qualities of grey wolf and grasshopper search agents. 

 

Figure 2. Architecture of LSTM model 

a) Architecture of Deep LSTM: Recurrent networks of the LSTM type can successfully address the issue of 

vanishing gradient. The suggested brain CT image segmentation uses a deep recurrent network, also known as the 

Deep-LSTM network, which is made up of a number of LSTM network layers. The synthesized network takes full 

advantage of the major benefits of LSTM recurrent networks and deep networks. The state of the cells determines 

the Deep-LSTM neural network's output, which supports the proposed model in segmentation. In addition to recent 

data, the Deep-LSTM model takes into account substantial past inputs. As shown in figure 2, the memory cell, which 

is made up of many subunits with different goals, lies at the memory cell of the Deep-LSTM network's operation. 

The input node bm accepts data br from the deep network's input layer and the node's previous hidden states

1−bm  in time instances. In order to increase prediction accuracy, the non-linear information used for prediction aids 
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the use of a deep LSTM model for the prediction of non-linear output in the presence of a non-linear element achieved 

by a sigmoid function. 

As a result, the weighted summation of br and 1−bm is send with a tanhfunction, as follows: 

( )nodeinputNmbNrbb nMmMrN ++= −1tanh     (2) 

The input gate bL is a unit sigmoid activation function that receives similar inputs, same as the input node. 

It's called that input gate as it obstructs inputs from new nodes from flowing to current node, resulting in a zero net 

value. It permits the values to flow only when the net measure is one [28]. The mathematical indication of the function 

is formulated as, 

( )gateinputNmbNrbb nMmMrBL ++= −1      (3) 

The internal state, denoted by bQ is a node in the presence of a self-loop recurrent edge possessing unit 

weight and a linear activation function, denoted by 

1−+= bbrb QNLQ       (4) 

The forget state, denoted as by , is a subunit for re-starting the memory cell's internal state and is expressed 

as, 

( )
forgetymbmrbb nMmMrBy ++= −1      (5) 

The output gates bR complete the task as follows in the end state: 

( )gateoutputSmbSrbb nMmMrBR ++= −1      
(6) 

The memory cell's final output is evaluated using the expression defined as, 

( ) bbb RQm = tanh       (7) 

Where, bbbbb yQLNQ += −1 .The construction of Deep LSTM is shown in Figure 3. 

 

Figure 3. Construction of deep LSTM model 

In the Deep LSTM based segmentation model's output, there is only one output layer. For the calculation of 

the weights, the suggested GWGHO technique is employed to train the Deep LSTM based segmentation model. 
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3.3.2 Proposed Grey wolf-Grasshopper optimization algorithm 

The GWGHO optimization strategy is a hybrid form of meta-heuristic that blends grey wolf search agents' 

leadership and hunting hierarchy attributes [29] with grasshopper search agents' social qualities [30]. Standard 

optimizations are built around dynamic properties, meaning a proactive approach to dealing with convergence issues. 

The proposed GWGHO algorithm addresses this problem by leveraging the population's self-motivated 

characteristics in grey wolf search agents, which improves the proposed algorithm's ability to achieve a better global 

optimal solution than general optimization techniques, which are more likely to produce local optimal solutions. 

a) Inspiration of proposed optimization algorithm: 

The leadership and hunting grading traits of grey wolf search agents are coupled with the social traits of 

grasshopper search agents to create the cross meta-heuristics, which is a population-incorporated optimisation. The 

wolf inhabitants in this optimization lives in groups and is a member of the wolf family. The presence of grey wolf 

search agents in the ranking-based hunting characteristics, such as Leader grey wolf search agents, representative 

grey wolf search agents, obeyer grey wolf search agents, and scapegoat grey wolf search agents, ensures effective 

convergence. As previously stated, hierarchical levels enhance the grey wolf search agents' ranking-based hunting 

practice, with the Leader grey wolf search agent at the top of the hierarchy and in charge of developing solutions for 

resting and hunting states. The Leader grey wolf search agents leads the other grey wolf search agents when they are 

foraging, despite not being the strongest of the group and never mating within the pack. The second level of the rank, 

the representative grey wolf search agents, direct the Leader search agent by communicating the choice to the obeyer 

and scapegoat search agents. The scapegoat grey wolf search agents are still guarding the entire force at the lowest 

level. The obeyer grey wolf search agents are slightly higher than the scapegoat grey wolf search agents and are largely 

responsible for carrying out the directives of the Leader grey wolf search agents [29]. The main steps of the suggested 

GWGHO algorithm are as follows: 

1) Social searching order 

2) Adjoining operation 

3) Grey wolf foraging hunting 

4) Social authority operation 

5) Phase of exploration 

The following is a mathematical model of the GWGHO algorithm on the basis of the social dominance nature 

of grey wolf search agents and the social features of grasshopper search agents: 

Mathematical design of proposed GWGHO optimization 

The proposed GWGHO was utilized to optimally tune the Deep-LSTM parameters to improve the 

segmentation efficiency of the Deep-LSTM for COVID-19 lesion classification. The optimization process commence 

with the initialization of grey wolves and grasshoppers population, which potentially defines the hyperparameters 

such as weights, learning rate, batch size, etc., of Deep-LSTM. This method integrates the exploration capability of 

grey wolves with the exploitation capacity of grasshoppers to obtain effective and balanced search process. In the 

optimization process, the GWGHO approach explores the solution space to estimate the optimal hyperparameters 

for the Deep-LSTM model. It adjusts the hyperparameter sequence iteratively based on the model performance on 

the validation set. The aim of this fine-tuning process is to maximize the accuracy lesion segmentation and to reduce 

the false-positives and false-negatives. This algorithm dynamically adjusts its search parameters like convergence 

rate, population size, and exploration-exploitation trade-off to confirm maximum convergence to an optimal 

solution. This adaptively of the proposed technique helps to find the optimal hyperparameter sequence for the Deep-

LSTM, reduces the issues like overfitting, and improves the generalization capacity of the proposed framework. The 

following is a summary of the mathematical model of grey wolf search agents at various stages: 

a) Social searching order: The hierarchy of grey wolf search agents is made up of the Leader, representative, 

obeyer, and scapegoat agents, with the Leader agent being the most physically fit. The representative and obeyer grey 

wolf search agents, respectively, are the second and third best grey wolf search agents and are recognised as such, 

while the rest are viewed as the scapegoat grey wolf search agents. 
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b) Adjoining operation: The grey wolf search agents surround the prey in this phase based on its needs and 

convenience. The surrounding operation's grey wolf search agents are portrayed as, 

.1 HGG s

u

s

gd −=+

      
(8) 

Where
1+s

gdG indicates the new location of 
thg  search agent on the 

thd coordinate axis. Let 1+s  denotes the 

prey's location, and   indicates the separation between the grey wolf search agents and the potential prey. The 

vector of distance is written as, 

ss

u GGP −= .1
      

(9) 

Where
sG denotes the grey wolf search agent's position in time s and 1P represents the coefficient trajectory. 

Moreover, the coefficient trajectories, such as H and 1P is systematically represented as. 

ijiH −= 1.2
      

(10) 

21 2 jP =
      

(11) 

Where i gradually falls from 2 to 0 with the increase in iterations, 1j and 2j  represents a random vector 

with a range of 0 to 1. 

c) Grey wolf foraging phase: The grey wolf search agents have the ability to recognize prey, with the Leader 

search agent leading the foraging process, with the representative search agent and the obeyer grey wolf search agent 

joining in. The essential foraging behaviors of grey wolves are stated mathematically as, 

GGP −=  1       (12) 

GGP −=  2       (13) 

GGP −=  3       (14) 

During the foraging phase,   ,,  shows the current course of the most effective search agent for grey 

wolves. ,, 21 PP and 3P denotes the grey wolf search agents' random parameters that balance the periods of exploration 

and exploitation. When the location of the prey is closer to that of the grey wolf search agent, the prey is surrounded 

by the grey wolf search agents. During this procedure, the Leader grey wolf search agent formulates a command, 

based on which the representative grey wolf search agent instructs the other grey wolf search agents to forage the 

prey. The distance vectors are written as follows: 

 11 HGG −=
      

(15) 

 22 HGG −=
      

(16) 

 33 HGG −=
      

(17) 

Where ,, 21 HH and 3H are the coefficient vectors, and G represents the most excellent solution at the given 

time s . ,, 21 HH and 3H  denotes the parameters that are tunable in the optimization procedure in responsibility of 
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achieving finest conjunction. In general, the first three best solutions based on Leader grey wolf search agents, 

representative grey wolf search agents, and obeyer grey wolf search agents [26] with respect to their positions as, 

3

3211 GGG
G s

gd

++
=+

           
(18) 

Where, in the optimization process, 1G is the location of the Leader grey wolf search agent, 2G is the location 

of the representative grey wolfs, and 3G is the position of obeyer grey, which refers to the first three best foraging 

places. 

The Grasshopper search agents look for traits like hopping and rolling in a cylinder-like motion. The foraging 

features of the Grasshopper search agent may be found in both the nymph and developed states of the agent, which 

is a unique feature. In comparison to the mobility in the mature stage, the Grasshopper search agent moves slowly. 

The Grasshopper search agent's food searching function is divided into two sections to carry out the exploitation and 

exploration phases of operations. During exploration, the Grasshopper search agent searches globally, while during 

exploitation, the Grasshopper search agents searches inside the space for search locally. The leadership and hunting 

hierarchy traits of the grey wolf search agents are combined with the social traits of the grasshopper search agents to 

advance the convergence features of the grey wolf search agents [30]. The Grasshoppers search agents' position 

update equation is as follows: 




=

+ +






 −
−

−
==  t

I

lj
k

lk

lkt

l

t

k
tts

GHO K
t

ww
wwx

VU
JJGG 14

1

2
   (19) 

kw is the 
thk grasshopper search agent, and lw  is the 

thl grasshopper search agent. tU is the upper bound 

dimension, and tV is the lower bound dimension, and 



tK represents the 
tht dimension value in the target. The 

distance among 
thl as well as 

thk grasshopper search an agent is a x function. The repulsion zone, attraction zone, 

and comfort zone all diminish as the coefficient J decreases. The typical equation for describing the position of the 

Grasshopper search agent is (20). Therefore, the position of the proposed GWGHO optimisation method is 

represented as, by combining the qualities of Grasshopper search devices and Grey Wolf search individuals. 

4

43211 GGGG
G s

GWGHO

+++
=+     (20) 
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(21) 

As a result, the above equation closely resembles the position of the suggested GWGHO optimization 

technique, which aids in the optimal tuning of Deep LSTM parameters to improve segmentation accuracy. 

d) Social authority operation: The grey wolf search agents are only seeking for prey in the hunt interplanetary 

in this phase, and they select the local ideal locations to assail the prey and finish the foraging procedure that is 

precisely described in terms of H changing between the intervals 12 j− to 12 j .The value of 1j decreases from 2 to 

0 with the increase in iterations. The position is updated based on the grey wolf search agents' social foraging rating 

and the satisfaction of the requirement 1H . 

e) Phase of Exploration: The grey wolf search agents, such as the Leader grey wolf search agent, representative 

grey wolf search agent, obeyer grey wolf search agent, and scapegoat grey wolf search agent, explore the solution 

outside of the space of solution and converge at the global optimal measure in this phase. The exploration phase 

fulfils the requirement 1H .The term P is in charge of ensuring that foraging abilities are improved. By rejecting 



864  

 

J INFORM SYSTEMS ENG, 10(10s) 

local optimal solutions and providing a global optimum solution, the proposed GWGHO optimization approach 

achieves a improved equilibrium among exploration and exploitation segments. 

 Algorithmic procedure of GWGHO algorithm: The step-wise clarification of proposed GWGHO procedure is 

as tracks: 

i) Initialization: In the first stage, the population of the grey wolf search agent is initialised as the initial set of 

answers, which is provided by, 

( ) ( )  dgGgd 1;1;      (22) 

Where,  represents the number of grey wolf search agents in use, and is where they are located on the 

organize axis. 

ii) Assessment of fitness performance: The highest possible value of accuracy obtained using the GWGHO 

algorithm is the fitness function of the proposed segmentation model. For the solution to be ideal and increase the 

efficacy of the suggested segmentation model, the value of fitness is anticipated to be maximum. 

iii) Realization of best solution: Depending on the fitness measure, which is maximal over all iterations, the 

optimal solution is regarded as  ,  and   grey wolf search agents. The other grey wolf search agents become 

involved in the process of updating the position of the Leader grey wolf after the best options have been identified. 

Equation (21) is the updated equation for the suggested GWGHO optimisation strategies. It combines the traits of 

the search agents for grey wolf and the Grasshoppers. 

iv) Coefficients updating: To maintain the proper stability between the exploration and exploitation steps, the 

coefficients of the optimisation process, including constants, parameters, and random metrics for optimisation, are 

adjusted.  

Table 1. GWGHO algorithm pseudocode 

Sl. No GWGHO algorithm pseudocode 

1 Input:
 

( ) ( )  dgGgd 1;1;   

2 Output: 
1+s

GWGHOG  

3 Create the population of the grey wolf search agents gdG  

4 Initialize the coefficients, j,  

5 Evaluate the fitness measure for all grey wolf search agents 

6 For all  

7 { 

8 
G as best grey wolf solution 

9 
G as best grey wolf solution 

10 
G as best grey wolf solution 

11 } 

12 While maxss   

13                     { 

14                      Update the position as per equation (21) 
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15                      } 

16 End For 

17          Update the coefficients, j,  

18            Evaluate fitness for all grey wolf search agents 

19               Update the solutions  GGG ,,  

20 1+= ss  

21   } 

22 EndWhile 

23 EndFor 

24 Return 
1+s

GWGHOG  

v) Termination: The process is carried out up until the worldwide best solution is identified.  Table 1 displays the 

GWGHO optimisation algorithm's pseudocode. The utilization of exploration and exploitation benefits of GWGHO 

fine-tunes and improves the performance of the deep LSTM. In addition to this, several changes in the deep LSTM, 

architecture improves its performance in COVID-19 lesion segmentation. The changes includes integrating skip 

connection, attention mechanism’s, multi-scale features, and dilated convolutions in deep LSTM architecture 

provides robust segmentation results. The integration of skip connections between the LSTM layers enables short 

route for data flow; this enables the model to learn about image features effectively by preserving and propagating 

gradients throughout the network. The incorporation of attention function allows the system to focus on extracting 

the spatial information from the image. This enables the deep LSTM model to dynamically weigh the various 

important image features correlative to COVID-19 lesion segmentation. Further, the introduction of multi-scale 

features makes the system to capture data at different levels, improving the segmentation performance. In addition, 

incorporating dilated convolutions in the deep LSTM increases the receptive field without increasing the parameter 

count. This allows to capture more contextual data from a larger region, leading to increased understanding of lesion 

structure by the model 

4. Results and discussions 

This section discusses the COVID-19 chest CT segmentation findings utilising the GWGHO-Deep LSTM 

approach.. 

4.1 Experimental arrangement 

The suggested GWGHO-Deep LSTM model is tested using the MATLAB tool, which is fixed in Windows 10 

and a 64-bit of operating system with 16GB of RAM.  

4.2 Dataset description 

The COVID segmentation Database [31] is utilised in the segmentation model that is suggested, which 

consists of 100 axial CT scans of individuals who are over 40 years old. The training pictures are 512x512 in size, as 

are the test images.  

4.3 Evaluation indices:  

The measures referred to as below metrics are used to gauge the performance of the GWGHO-based Deep 

LSTM model, 

a) Accuracy: Training accuracy is the percentage of successfully segmented data out of the complete quantity of 

data processed for segmentation, as opposed to testing accuracy, which is the percentage of properly segmented data 

out of the total number of cases utilised for testing. 

b) Precision: The term precision refers to the measure of quality, and system of higher precision provides more 

relevant outcomes as compared to irrelevant ones.  
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c) Recall: The term recall is a measure of quantity, and a higher recall measure represents that the system provides 

most of the relevant outcomes.  

d) Area under curve: The area under ROC cure, abbreviated as AUC is a singular scale measure that evaluates the 

overall performance of the Deep LSTM model in segmentation process.  

    

    

   
 

    

    

(a) (b) (c) (d) 

Figure 4. Experimental results of the proposed segmentation model, (a) Original CT image, (b) Pre-processed 

image, (c) Ground truth image, and (d) Segmented image 

4.4 Experimental results 

The experimental outcomes of the proposed GWGHO-Deep LSTM segmentation model are portrayed in this 

section. The visual identification of the segmented image is depicted in figure 4. The original chest CT image, pre-

processed image, ground truth image and the final segmented image are shown in figure 4. The segmented images 

are nearly equal to the ground truth image, which indicates the effectiveness of GWGHO-Deep LSTM in segmentation 

process. 
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4.5 Performance evaluation 

The performance assessment of the GWGHO-Deep LSTM segmentation model is discussed in this part based 

on the performance indices of precision, accuracy, recall, and AUC. Utilising the training percent and k-fold value, 

analysis is performed. 

4.5.1 Performance evaluation in terms of loss and accuracy  

 In this module, the convergence and robustness of the developed framework were examined by analyzing the 

accuracy and loss on training and validation dataset. The accuracy and loss are determined by increasing the number 

of iterations from 0 to 100. Figure presents the accuracy of the designed model on training and testing dataset. The 

training accuracy represents how well the proposed model functions on the training data sequence and it 

demonstrates how well it fits to the train set. Over the increasing number of iterations, the designed model achieved 

approximately 0.99 accuracy for the training dataset. This manifests that the developed model quickly captures the 

relationship between the data and correctly classifies the samples on the training set. The testing accuracy provides 

model performance on the test data sequence. It denotes how well the developed model can predict the COVID-19 

lesions in chest CT images. It also defines the models generalization capacity to the unseen chest CT images. The 

designed approach attained an average testing accuracy of 0.97, which illustrates that this model can perform well 

on unseen dataset.  

 

(a) 

 

(b) 

Figure Performance evaluation: (a) accuracy, (b) loss 

In addition, the training and validation loss were analyzed to evaluate the possibility of classification error in the 

proposed model. The training loss defines the error between the actual target labels and the detected output in 

training process. Figure presents the losses incurred by the proposed model. The presented model attained a lower 

training loss of 0.06, which defines that this framework efficiently adjusts its weights and other parameters to better 

approximate the ground truth labels. The testing loss measures the models generalization capacity and determines 

the variation between the actual and detected labels on unseen data samples. The proposed method earned less 

testing loss of 0.08, which describes that this approach performs well on unseen chest CT images and eliminates 

overfitting issue. The small deviation between the testing and training accuracy demonstrates good generalization 

and robustness of the developed model. Moreover, the designed model reaches stable and optimal performance 

during training quickly; this illustrates that the convergence speed of the model is fast and it quickly learns and adapt 

the patterns and interconnections between the data. This is achieved by integrating the hybrid optimization 

mechanism GWGHO for fine-tuning the Deep-LSTM approach. This fine-tuning enables the proposed model to reach 

its optimal segmentation accuracy quickly compared to the existing models. Furthermore, the computational 

requirements, resource utilization, training time, etc., of the developed model were examined. The computational 

time includes the time taken by the developed model for performing the computational tasks such as image pre-

processing, optimization, fine-tuning, lesion segmentation, model training, and others. The computational 

complexity of the proposed work is tabulated in Table 2.  
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Table 2 Computational complexity  

Tasks Time (ms) 

Image pre-processing  2.0 

Optimization and fine-tuning  4.5 

Deep LSTM training  4.0 

Lesion segmentation  3.2 

Other computational tasks (example: data loading) 1.1 

Total computational time  14.8 

 

To provide COVID-19 lesion segmentation, the developed model consumed total time of approximately 14.8ms, out 

of which the system consumes 2.0ms for image pre-processing, 4.5ms for optimization and fine-tuning of 

hyperparameters, 4.0ms for deep LSTM training, 3.2ms for lesion segmentation, and 1.1ms for performing other 

computational tasks. The minimum computational time illustrates that the designed model can process large volume 

of data precisely with less time consumption. However, the time consumption of the system increases over increase 

in dataset size. In addition, the computational requirements such as hardware resources includes accelerator’s, GPUs, 

etc., increases over increase in dataset size. However, the hybrid optimization integrated in the developed 

continuously updates the hyperparameters of the training model, and reduces the computational requirements like 

memory, batch size, number of parameters, etc. Moreover, this integrated framework effectively optimizes the 

architecture, weights, and other parameters of deep LSTM, leading to improved resource allocation and utilization 

during both training and inference stages. Thus, with improved resource utilization, the model can effectively handle 

the computational demands associated with deep learning and LSTM architectures, even when dealing with large 

volumes of medical imaging data. 

4.5.2 Performance evaluation in terms of training percentage 

Figure 5 shows the GWGHO-Deep LSTM's performance in terms of precision, accuracy, recall, and AUC in 

terms of training%. In Figure 5(a), the accuracy analysis is presented. The accuracy of the GWGHO-Deep LSTM 

model is 92.4799, 93.3621, 93.8173, 94.9646, and 95.3256, respectively, with a training percentage of 60% and an 

epoch of 20, 40, 60, 80, and 100. The accuracy of GWGHO-Deep LSTM model for the training percentage of 70%, 

with the epoch of 20, 40, 60, 80 and 100 are 92.9549, 93.8385, 94.336, 95.4733, and 95.7251, respectively. The 

accuracy of GWGHO-Deep LSTM model for the training percentage of 80%, with the epoch of 20, 40, 60, 80 and 100 

are 92.9791, 93.9554, 94.3486, 95.4954, and 96.1077, respectively. The accuracy of GWGHO-Deep LSTM model for 

the training percentage of 90%, with the epoch of 20, 40, 60, 80 and 100 are 93.0272, 94.2211, 94.3861, 95.5438, 

and 96.295, correspondingly. 

The evaluation in terms of accuracy is shown in Figure 5(b). The precision of GWGHO-Deep LSTM model 

for the training percentage of 60%, with the epoch of 20, 40, 60, 80 and 100 are 78.1803, 79.5944, 80.8487, 88.2016, 

and 95.4263, respectively. The precision of GWGHO-Deep LSTM model for the training percentage of 70%, with the 

epoch of 20, 40, 60, 80 and 100 are 78.2647, 80.3482, 81.4227, 93.4477, and 96.0744, respectively. The precision of 

GWGHO-Deep LSTM model for the training percentage of 80%, with the epoch of 20, 40, 60, 80 and 100 are 

80.2299, 80.7611, 82.5163, 94.8124, and 96.0784, respectively. The precision of GWGHO-Deep LSTM model for the 

training percentage of 90%, with the epoch of 20, 40, 60, 80 and 100 are 83.5192, 85.4488, 88.1218, 95.5242, and 

97.3996, respectively. 

Figure 5 (c) shows the analysis in terms of recall. The recall of GWGHO-Deep LSTM model for the training 

percentage of 60%, with the epoch of 20, 40, 60, 80 and 100 are 89.4199, 90.7261, 91.1414, 91.8226, and 92.9161, 

respectively. The recall of GWGHO-Deep LSTM model for the training percentage of 70%, with the epoch of 20, 40, 

60, 80 and 100 are 89.8527, 91.0371, 91.4575, 92.1913, and 93.0918, respectively. The recall of GWGHO-Deep LSTM 

model for the training percentage of 80%, with the epoch of 20, 40, 60, 80 and 100 are 89.9451, 91.2737, 91.4684, 

92.3059, and 93.1468, respectively. The recall of GWGHO-Deep LSTM model for the training percentage of 90%, 

with the epoch of 20, 40, 60, 80 and 100 are 90.1042, 91.4099, 91.471, 92.4614, and 93.9053, respectively. 
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(a) (b) 

 

 

(c) (d) 

Figure 5. Performance evaluation with respect to training percentage, (a) Segmentation accuracy, (b) precision, (c) 

recall, and (d) AUC 

The analysis is presented in terms of AUC in Figure 5(d). The AUC of GWGHO-Deep LSTM model for the 

training percentage of 60%, with the epoch of 20, 40, 60, 80 and 100 are 77.7603, 93.4846, 94.5069, 94.8407, and 

96.0253, respectively. The AUC of GWGHO-Deep LSTM model for the training percentage of 70%, with the epoch of 

20, 40, 60, 80 and 100 are 78.8936, 93.9705, 94.8388, 95.3465, and 96.5385, respectively. The AUC of GWGHO-

Deep LSTM model for the training percentage of 80%, with the epoch of 20, 40, 60, 80 and 100 are 79.3559, 94.1923, 

95.3356, 95.6336, and 96.7733, respectively. The AUC of GWGHO-Deep LSTM model for the training percentage of 

90%, with the epoch of 20, 40, 60, 80 and 100 are 80.6016, 94.2471, 95.5834, 95.6507, and 96.8331, correspondingly. 

4.5.3 Evaluation in terms of k-fold value 

The evaluation of GWGHO-Deep LSTM in terms of precision, accuracy, recall, and AUC with respect to k-

fold is portrayed in figure 6. Figure 6 (a) portrays the evaluation in terms of accuracy. The accuracy of GWGHO-Deep 

LSTM model for the k-fold of 2, with the epoch of 20, 40, 60, 80 and 100 are 74.3573, 83.2743, 90.6283, 92.0182, 

and 93.3708, respectively. The accuracy of GWGHO-Deep LSTM model for the k-fold of 3, with the epoch of 20, 40, 

60, 80 and 100 are 78.3059, 89.6237, 90.768, 92.0552, and 93.9872, respectively. The accuracy of GWGHO-Deep 

LSTM model for the k-fold of 4%, with the epoch of 20, 40, 60, 80 and 100 are 83.1692, 90.4024, 91.1893, 92.5107, 

and 94.3901, respectively. The accuracy of GWGHO-Deep LSTM model for the k-fold of 5%, with the epoch of 20, 

40, 60, 80 and 100 are 89.5057, 90.7577, 92.5415, 92.8933, and 94.8641, correspondingly. 

Figure 6(b) shows the assessment in terms of accuracy. The precision of GWGHO-Deep LSTM model for the 

k-fold of 2, with the epoch of 20, 40, 60, 80 and 100 are 82.949, 83.4156, 91.4418, 92.1616, and 93.6991, respectively. 
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The precision of GWGHO-Deep LSTM model for the k-fold of 3, with the epoch of 20, 40, 60, 80 and 100 are 89.578, 

90.0297, 92.6127, 92.6357, and 95.0188, respectively. The precision of GWGHO-Deep LSTM model for the k-fold of 

4, with the epoch of 20, 40, 60, 80 and 100 are 90.0577, 91.363, 93.5271, 95.1149, and 95.5425, respectively. The 

precision of GWGHO-Deep LSTM model for the k-fold of 5, with the epoch of 20, 40, 60, 80 and 100 are 91.2823, 

91.367, 93.7886, 95.633, and 96.1133, correspondingly. 

The recall evaluation is demonstrated in Figure 6(c). The recall of GWGHO-Deep LSTM model for the k-fold 

of 2, with the epoch of 20, 40, 60, 80 and 100 are 76.326, 83.1626, 89.6532, 91.3217, and 92.5609, respectively. The 

recall of GWGHO-Deep LSTM model for the k-fold of 3, with the epoch of 20, 40, 60, 80 and 100 are 76.7059, 

88.0829, 89.6579, 91.7201, and 93.6907, respectively. The recall of GWGHO-Deep LSTM model for the k-fold of 4, 

with the epoch of 20, 40, 60, 80 and 100 are 77.6232, 89.5232, 90.2956, 92.4278, and 93.9495, respectively. The 

recall of GWGHO-Deep LSTM model for the k-fold of 5, with the epoch of 20, 40, 60, 80 and 100 are 77.7681, 

90.0852, 90.6856, 92.6451, and 94.655, correspondingly. 

  

(a) (b) 

  

(c) (d) 

Figure 6. Performance evaluation with respect to k-fold value, (a) Segmentation accuracy, (b) precision, (c) recall, 

and (d) AUC 

Figure 6 (d) depicts the evaluation in terms of ROC. The ROC of GWGHO-Deep LSTM model for the k-fold 

of 2, with the epoch of 20, 40, 60, 80 and 100 are 81.9448, 82.2067, 89.6686, 91.301, and 93.6293, respectively. The 

ROC of GWGHO-Deep LSTM model for the k-fold of 3, with the epoch of 20, 40, 60, 80 and 100 are 88.6562, 89.196, 

90.0082, 92.3425, and 94.3961, respectively. The ROC of GWGHO-Deep LSTM model for the k-fold of 4, with the 

epoch of 20, 40, 60, 80 and 100 are 89.6612, 89.9905, 91.0069, 92.7314, and 94.4908, respectively. The ROC of 

GWGHO-Deep LSTM model for the k-fold of 5, with the epoch of 20, 40, 60, 80 and 100 are 90.0571, 90.7362, 

92.2659, 93.0632, and 94.7329, respectively. 

 



871  

 

J INFORM SYSTEMS ENG, 10(10s) 

 

4.6 Comparative assessment 

The comparative analysis of techniques used to segment chest CT images is covered in this section. Decision 

tree (DT) [33], support vector machine (SVM) [32], Adaboost classifier [34], CNN [35], and Deep convolutional 

neural network (DCNN) [36] are the approaches currently in use that are compared to the suggested GWGHO-Deep 

LSTM.  

4.6.1 Comparative evaluation of training rates 

Figure 7 shows a comparison of technique evaluations based on training %. Figure 7(a) shows the 

comparative evaluation in terms of accuracy. For a training percentage of 50%, the accuracy of techniques like SVM, 

DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model is 70.8253, 85.5212, 81.4921, 86.5176, 

90.0129, and 91.2974, respectively.  The accuracy of the methods, such as SVM, DT, Adaboost, CNN, DCNN, and the 

proposed GWGHO-Deep LSTM model for the training percentage of 60% is 72.8698, 86.8184, 82.994, 87.741, 

91.3355, and 92.658, respectively.  The accuracy of the methods, such as SVM, DT, Adaboost, CNN, DCNN, and the 

proposed GWGHO-Deep LSTM model for the training percentage of 70% is 74.1795, 87.341, 83.7449, 87.8148, 91.96, 

and 93.3073, respectively.  For a training percentage of 80%, the accuracy of several approaches, including SVM, DT, 

Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, is, respectively, 83.3828, 88.4398, 87.0002, 

89.0315, 91.9895, and 93.3511.   

Figure 7(b) shows the comparative evaluation in terms of accuracy. For a training percentage of 50%, the 

precision of several approaches, including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM 

model, is as follows: 72.2953, 75.6541, 73.7805, 84.0008, 86.0411, and 87.8148.  For a training percentage of 60%, 

the accuracy of the SVM, DT, Adaboost, CNN, DCNN, and suggested GWGHO-Deep LSTM model is 73.2392, 

76.4041, 74.0766, 84.5892, 86.0703, and 89.112 correspondingly.  The precision of the methods, such as SVM, DT, 

Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model for the training percentage of 70% is 73.6322, 

76.5848, 74.5772, 84.8269, 86.6094, and 90.4092, respectively.  For an 80% training rate, the accuracy of several 

approaches, including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, is calculated 

as follows: 74.4726, 79.2706, 76.9296, 85.5487, 86.8184, and 90.5825.   

  

(a) (b) 



872  

 

J INFORM SYSTEMS ENG, 10(10s) 

 
 

(c) (d) 

Figure 7. Comparative study of training %, (a) Segmentation accuracy, (b) precision, (c) recall, (d) AUC 

Figure 7(c) shows the comparative assessment with regard to of recall. For a training percentage of 50%, the 

recall for the SVM, DT, Adaboost, CNN, DCNN, and suggested GWGHO-Deep LSTM model is 81.6355, 86.5176, 

85.5212, 87.4509, 89.2607, and 90.0011, respectively.  For a training percentage of 60%, the recall for the techniques 

SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model is 81.8969, 87.0149, 85.942, 

88.4286, 89.4128, and 90.3414, respectively.  For a training percentage of 70%, the recall for the techniques SVM, 

DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model is 82.0241, 87.6452, 86.2894, 88.7263, 

89.565, and 90.3433, respectively.  For an 80% training rate, the recall of several approaches, including SVM, DT, 

Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, is, respectively, 82.5993, 87.8148, 86.8184, 

89.018, 89.7282, and 90.5175.   

Figure 7(c) shows the comparative assessment in terms of AUC. For a 50% training rate, the AUC of several 

approaches, including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, is 69.6369, 

83.2108, 71.9587, 85.5212, 87.4079, and 91.1392, respectively.  The AUC of the methods, such as SVM, DT, Adaboost, 

CNN, DCNN, and the proposed GWGHO-Deep LSTM model for the training percentage of 60% is 71.3303, 83.4484, 

74.3459, 86.8184, 87.7988, and 92.3333, respectively.  For a 70% training rate, the AUC for several approaches, 

including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, is 71.4116, 83.9302, 

79.839, 87.356, 87.8148, and 92.9004, respectively.  For an 80% training rate, the AUC of several approaches, 

including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, is, respectively, 72.4073, 

87.2168, 83.8059, 88.7339, 89.7873, and 93.2032.   

4.6.2 Comparative evaluation using the k-fold value 

Figure 8 illustrates the comparison of approaches' k-fold evaluations. Figure 8(a) displays the comparison 

analysis based on accuracy. For the k-fold value of 4, the accuracy of several techniques including SVM, DT, Adaboost, 

CNN, DCNN, and the proposed GWGHO-Deep LSTM model is 75.4214, 84.372, 80.6495, 86.1295, 90.5703, and 

93.0215, respectively.  For the k-fold value of 5, the accuracy of the various approaches, including SVM, DT, Adaboost, 

CNN, DCNN, and the proposed GWGHO-Deep LSTM model, is, respectively, 79.6121, 84.5462, 83.1588, 88.1002, 

91.6764, and 93.807.  For the k-fold number of 6, the accuracy of the various approaches, including SVM, DT, 

Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, is as follows: 81.6286, 86.4694, 84.8137, 

89.1568, 92.4235, and 94.545.  The accuracy of the methods, such as SVM, DT, Adaboost, CNN, DCNN, and the 

proposed GWGHO-Deep LSTM model for the k-fold value of 8 is 83.0558, 87.3913, 84.9838, 90.8941, 93.1221, and 

96.1359, correspondingly.   

Figure 8(b) shows the comparative assessment based on accuracy. For the k-fold number of 4, the accuracy 

of the various methods—including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM 

model—is, respectively, 74.8036, 84.5462, 80.5348, 86.1295, 90.5852, and 92.3831.  The accuracy of the various 

approaches, including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, is 77.1579, 

85.0953, 80.6859, 89.2465, 90.9011, and 93.744, respectively, for the k-fold value of 5.  The accuracy of several 

techniques, including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, are, 
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respectively, 79.7304, 85.1522, 82.015, 90.4154, 91.0942, and 93.861 for the k-fold value of 6.  The precision of the 

methods, such as SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model for the k-fold rate 

of 8 is 79.8443, 85.6304, 84.3933, 90.9737, 92.4031, and 96.4011, correspondingly.   

  

(a) (b) 

 
 

(c) (d) 

Figure 8. Comparative assessment using k-fold value, (a) Segmentation accuracy, (b) precision, (c) recall, (d) AUC 

Figure 8(c) illustrates the comparative assessment based on recollection. For the k-fold value of 4, the recall 

for several techniques including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model is 

73.3835, 85.6667, 76.8228, 86.1295, 86.5922, and 93.5923, respectively.  The recall for several algorithms, including 

SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, is 82.1827, 87.5445, 83.1607, 

88.2128, 91.6171, and 93.8454, respectively, for the k-fold rate of 5.  For the k-fold rate of 6, the recall for several 

approaches including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model is as follows: 

84.9817, 87.7128, 86.3958, 90.109, 92.2579, and 94.8331.  The recall of the methods, such as SVM, DT, Adaboost, 

CNN, DCNN, and the proposed GWGHO-Deep LSTM model for the k-fold value of 8 is 85.4523, 87.9095, 87.25, 

90.4761, 93.4684, and 95.1565, correspondingly.   

Table 2. Comparative discussion 

 

S.No 

 

Evaluation means 

 

Metrics 

Methods 

SVM DT Adaboost  DCNN DCNN  Proposed GWGHO-Deep 

LSTM 

 Training 

percentage 

Accuracy 

(%) 84.2292 88.7681 87.6422 89.6088 92.0396 93.4164 
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1 Precision 

(%) 80.2258 84.4593 81.8961 85.6195 88.8598 91.1133 

Recall (%) 82.6086 88.1156 86.9197 89.0460 89.9907 91.2644 

AUC (%) 77.2505 87.7097 84.7882 88.8862 90.2984 93.3369 

 

2 

K-fold value Accuracy 

(%) 83.7817 87.7128 86.0753 91.1021 94.0383 97.5226 

Precision 

(%) 80.3598 87.7128 85.3902 92.3068 94.2413 96.9988 

Recall (%)) 86.7873 88.8334 87.4573 90.7499 93.7446 95.9149 

AUC (%) 83.1711 87.7128 85.6304 90.6890 93.9609 97.3236 

 

Figure 8(c) shows the comparative assessment based on AUC. For the k-fold value of 4, the AUCs of several 

approaches, including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, are, 

respectively, 74.8609, 83.2153, 80.5348, 86.1295, 89.3694, and 91.8883.  For the k-fold value of 5, the AUC of the 

various methods—including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model—is, 

respectively, 77.7935, 84.5462, 82.3743, 86.1549, 90.5219, and 92.3137.  For the k-fold number of 6, the AUCs of 

several approaches, including SVM, DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model, are, 

respectively, 80.0696, 85.9334, 83.7307, 88.7114, 90.9029, and 93.4585.  The AUC of the methods, such as SVM, 

DT, Adaboost, CNN, DCNN, and the proposed GWGHO-Deep LSTM model for the k-fold value of 8 is 81.9539, 

87.0778, 84.5516, 90.0169, 92.0162, and 95.7412, respectively.   

Table 2 contains the comparative analysis of the techniques used to segment chest CT images. From the 

evaluation, it is identified that the GWGHO-Deep LSTM model assist in the segmentation process with enhanced 

accuracy, precision, recall, and AUC as compared to the existing methods.  

4.6.3 Comparison with state-of-art techniques  

In this module, the performances achieved by the developed model are compared with the state-of-approaches like 

DNN, DTL, ResNet-50, XCOVNet, DiCNN, CSVM, MCNN, IDCNN, and 3D U-Net. Here, the performances including 

accuracy, recall, precision, and specificity are compared and validated with these techniques. Figure 9 portrays the 

comparison of proposed model performance with the state-of-art techniques. Fig 9 (a) illustrate the accuracy 

comparison. The state-of-art techniques including DNN, DTL, ResNet-50, XCOVNet, DiCNN, CSVM, MCNN, 

IDCNN, and 3D U-Net attained accuracy  87.5%, 90.2%, 90.8%, 86.3%, 89.7%, 84.6%, 88.9%, and 84.6%, 

respectively. The presented approach achieved an approximate accuracy of 95.46%.   
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(d) 

Figure.9 Comparison with state-of-art approaches: (a) accuracy, (b) precision, (c) recall, and (d) specificity 

The comparison of precision with state-of-art models is displayed in figure 9 (b). The approaches like DNN, DTL, 

ResNet-50, XCOVNet, DiCNN, CSVM, MCNN, IDCNN, and 3D U-Net obtained precision rate of 89.3%, 89.6%, 

90.5%, 82.4%, 87.9%, 80.7%, 86.5%, and 83.8%, respectively. But the presented technique attained precision of 

93.58%, which is greater compared to the state-of-art models. Figure 9 (c) displays the recall comparison. The 

methods including DNN, DTL, ResNet-50, XCOVNet, DiCNN, CSVM, MCNN, IDCNN, and 3D U-Net earned 85.2%, 

89.6%, 90.5%, 82.4%, 87.9%, 80.7%, 86.5%, and 83.8%, respectively. The proposed model attained an average recall 

rate of 93.58%. Figure 9 (d) displays the specificity comparison. The state-of-art models like DNN, DTL, ResNet-50, 

XCOVNet, DiCNN, CSVM, MCNN, IDCNN, and 3D U-Net obtained specificity percentage of 88.7%, 91.3%, 90.1%, 

87.5%, 90%, 85.2%, 89.2%, and 83.2%, respectively. The developed technique earned 93.85%; this illustrates that 

the designed model obtained greater performance compared to the above-mentioned state-of-art techniques.  



876  

 

J INFORM SYSTEMS ENG, 10(10s) 

Table 3 Comparison with state-of-art techniques 

Techniques Accuracy (%) Recall (%) Precision (%) Specificity (%) 

DNN 87.5 85.2 89.3 88.7 

DTL 90.2 89.6 91.1 91.3 

ResNet 50 90.8 90.5 91.3 90.1 

XCOVNet 86.3 82.4 88.1 87.5 

CSVM 89.7 87.9 90.5 90 

MCNN 84.6 80.7 85.8 85.2 

IDCNN 88.9 86.5 89.7 89.2 

3D U-Net 84.6 83.8 84.8 83.2 

Proposed 95.46 93.58 94.05 93.85 

 

The comparative study illustrates that the designed technique exhibited superior performance compared to the 

conventional state-of-art approaches for the task of COVID-19 CT chest image classification. The greater accuracy, 

recall, specificity, and precision obtained by the designed technique signify its efficiency in correctly classifying 

COVID-19 cases from CT images. Table 3 lists the overall comparative analysis with the state-of-art methods. These 

findings verify that the designed model has greater potential in clinical practice and patient management.  

4.7 Discussion 

This study presented hybrid optimization tuned deep LSTM algorithm for the timely detection of COVID-10 lesions 

in chest CT images. The framework was developed to address the need for quick and accuracy diagnosis of COVID-

19 cases from the chest images. The diagnosis process begins with the collection of CT images containing both normal 

and COVID-19 infected chest images. The acquired image database undergoes pre-processing mechanism, which 

includes image resizing, contrast enhancement, normalization, and standardization. This process confirms that all 

images available in the collected database have same dimensions and intensity range. The pre-processed CT images 

are then segmented using the hybrid optimization tuned deep LSTM model. This proposed framework integrates the 

benefits of deep LSTM and GWGHO algorithms for effective lesion segmentation. The deep LSTM architecture 

enables the system to capture spatial dependencies and temporal data within the images effectively and provides 

accurate lesion segmentation. In addition, the integrated hybrid optimization GWGHO iteratively fine-tunes and 

optimizes the hyperparameters of deep LSTM including weights, network depth, number of layers, learning rate, 

batch size, etc., to enhance the segmentation precision. This hybrid optimization –based tuning process provides 

combined benefits of grey wolves exploration and grasshopper exploitation capacities. This algorithm searches for 

the optimal sequence of hyperparameters for the deep LSTM model to improve the segmentation efficiency. This 

improved segmentation efficiency of the system demonstrates that the developed model can potentially distinguish 

the COVID-19 lesions from the surrounding healthy tissues, leading to more reliable and accurate results. In addition, 

the developed model can classify the different types of COVID-19 lesions by utilizing the diverse and high quality 

dataset for training purpose. The training of developed model using the diverse dataset containing CT images of 

different types of lesions enables us to categorize the different lesion types accurately. This training process requires 

a training database, which covers wide range of lesion types and includes ground-truth annotations indicating the 

presence and location of different lesion types. The intensive training, the developed model can detect the types of 

COVID-19 lesion accurately. Thus, the developed model can be applied to real-world scenarios for COVID-19 lesion 

prediction.  

Therefore, the proposed model can be seamlessly integrated into the existing medical imaging system to support the 

radiologists in COVID-19 lesion segmentation and helps to provide effective measures for disease monitoring and 

treat evaluation. Using the proposed framework, the radiologist can simply upload the chest CT images into the 

software and the integrated module performs lesion segmentation using the optimized deep LSTM algorithm. Finally, 

the module produces the segmented images enabling the radiologist to assess disease progression and treatment. 

This seamless integration of proposed work in the clinical practices has potential implications including early 

detection and diagnosis, enables faster and reliable assessment, support decision-making, effective treat planning 

and monitoring, reduces workload, and provides personalized treatment process. By aiding radiologists in lesion 
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segmentation, the model contributes to effective disease monitoring and treatment evaluation, leading to better 

management of COVID-19 patients. Thus, the presented framework acts a powerful mechanism for early 

identification of COVID-19. At last, the efficiency and performances of the proposed model were analyzed in terms of 

different training percentage and k-fold value. The high accuracy and minimum loss in the training and validation 

process manifest the convergence speed and robustness of the proposed model. Furthermore, the models 

effectiveness was evaluated by segmenting the CT images with different severity range and the segmented images are 

compared within actual label images to assess the models precision and reliability.  

However, the proposed model lacks interoperability and explainability and these issues can be resolved by utilizing 

the attention mechanisms. This utilization mechanism makes the system's decision-making process transparent and 

provides visualization regarding the important attributes employed for lesion segmentation. In addition, comparing 

the segmented outcomes with the clinical results improves transparency. The utilization of these mechanisms’ 

enables the radiologists and clinicians to understand and trust the segmentation outputs, aiding diagnostic 

interpretation for COVID-19 patients. In addition to this, the real-time implementation of the proposed work in 

clinical practice poses certain limitations including need for interpretability, low generalizability across diverse 

patient populations and imaging protocols. In addition, the developed model ace challenges imaging variability, 

patient population, lesion variability, labeling variability, etc. To overcome these limitations, a robust training on 

diverse databases should be given to the proposed work; this makes the system efficient for real-time COVID-19 

lesion segmentation with increased cross dataset performance. 

5. Conclusion 

For the purpose of to segment Chest CT images and identify COVID-19 patients, this research suggests a 

unique Grey wolf-Grasshopper optimisation (GWGHO) optimised Deep Long short term memory (Deep-LSTM) 

model. By optimising the weights of the Deep-LSTM, the GWGHO, an integration of the characteristics of grey wolves 

and grasshoppers, plays a significant part in improving the effectiveness of the suggested segmentation model. 

Segmentation accuracy, recall, precision, and AUC are the evaluation indices used to evaluate the effectiveness of the 

GWGHO-Deep LSTM approach. When compared to the current approaches, the segmentation accuracy of the 

proposed GWGHO-Deep LSTM is high at 97.5226%. To further improve the segmentation accuracy of the suggested 

model, the segmentation procedure will be carried out in the future employing ensemble classifiers. 
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