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To effectively manage Sickle Cell Anaemia (SCA), a severe inherited blood condition, early 

detection and accurate categorization are essential. Timely and precise identification is hindered 

by the high error rates, limited scalability, and dependency on personal expertise associated with 

conventional diagnostic approaches. To address these challenges, this study proposes a novel 

Deep Mask Region-Based Convolutional Neural Network (DMRCNN) combined with Improved 

Weighted Quantum Wolf Optimization (IWQWO) for SCA identification and classification. By 

leveraging advanced feature extraction and segmentation methods, the DMRCNN enables 

precise localization and identification of abnormal cells in blood smear images. The IWQWO 

method optimizes the DMRCNN's hyper parameters enhancing the network's efficiency by 

achieving an optimal balance between convergence speed and prediction accuracy. The primary 

objectives of this study are to improve classification accuracy, reduce computational overhead, 

and minimize false positives and false negatives in SCA diagnostics. Experimental results 

demonstrate that the proposed system achieves 96.8% precision, 97.2% accuracy, 96.5% recall 

and 96.8% F1-score, surpassing existing approaches with superior metrics. These findings 

underscore the effectiveness of the proposed method in automating SCA detection and 

classification, paving the way for potential integration into clinical workflows for accurate and 

timely assessments. 

Keywords: Sickle Cell Anaemia, Deep Mask Region-Based Convolutional Neural Network, 

Improved Weighted Quantum Wolf Optimization, Blood Smear Image Analysis, 

Hyperparameter Optimization, Medical Image Classification, Automated Diagnosis, Feature 

Extraction 

 

1. INTRODUCTION 

Sickle cell genes affect haemoglobin, a vital protein in blood. Individuals with sickle cell genes produce an abnormal 

Haemoglobin (HbS), normal Haemoglobin (HbA) [1]. It causes RBC to change into a sickle or crescent-moon shape 

leading to the characteristic symptoms of the condition. Individuals with SCA or sickle cell trait produce HbS is 

responsible for the condition. The presence of HbS causes normal RBC are typically soft and round to change into a 

rigid, sickle or crescent-moon shape [2]. The initial step in diagnosing SCA involves a blood test to analyse the sample 

for abnormalities. This preliminary examination, often referred to as a quick sickling test, serves as the foundation 

for further detailed investigations based on clinical requirements [3]. 
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Figure 1: Biological illustration of the Sickle Cells 

A person’s diagnosis can determine whether they are homozygous or heterozygous for sickle cell genes. Sickle cell 

genes are inherited from parents and passed on to their offspring. If a family member has severe Sickle Cell Disease 

(SCD), a child may inherit the condition and develop sickle cell traits [4]. A person with the sickle cell trait is 

considered heterozygous carry one normal gene and one sickle gene. If both parents carry the sickle gene, their child 

has a chance of being homozygous (inheriting two sickle genes and having SCD), heterozygous (inheriting one sickle 

gene and one normal gene, resulting in the sickle cell trait), or normal (inheriting no sickle genes) [5]. 

 

Figure 2: Blood Flow of Sickle Cells 

As shown in Figure 2, normal blood flow efficiently delivers oxygen through the bloodstream without obstruction. 

Sickle-shaped RBC can become lodged in blood vessels, causing blood circulation to stop [6]. Although initially 

identified in the Black community, SCD has since been discovered in individuals from diverse ethnic groups, 

including those from Italy, Greece, the Mediterranean region, parts of the Middle East, and Central India. Early 

treatments for SCD include bone marrow transplants, blood transfusions, and antibiotics [7]. Many physicians 

recommend regular blood transfusions every one to two months, while antibiotics are used to manage risks such as 

chronic infections and pain. SCD is now identifiable in new-borns as a rare blood disorder marked by the presence 

of sticky, rigid, crescent-shaped RBC that adhere to one another [8]. 

Over time, damage caused by SCD can spread from a single organ to the entire body, potentially resulting in life-

threatening complications. Early and prompt treatment, such as blood transfusions, is critical to preventing severe 

outcomes. The condition is caused by two faulty genes leading to the accumulation of HbS in the affected individual. 

Early detection of SCD is essential to reducing morbidity and mortality [9]. Several medical tests such as haemoglobin 

electrophoresis, sickle cell screening, and complete blood counts can identify haematological disorders by analysing 

the shape of RBC and haemoglobin profiles. These procedures require skilled personnel and well-equipped 
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laboratories can be challenging to establish in regions with limited medical infrastructure. While there is currently 

no definitive cure for SCD, treatments such as hydroxyurea, bone marrow transplants, and emerging gene therapies 

help manage symptoms, reduce complications, and alleviate pain [10]. 

In complete knee and hip replacements and cardiac surgeries, it was found that incorporating patient blood 

management significantly reduced transfusions, hospital stays, morbidity, and hospital readmissions. The safety of 

implementing patient blood management across an entire hospital was evaluated in a multi-center study [11, 12]. 

Low hemoglobin levels, the most common hematological disorder affect over two billion people globally. Early 

detection is critical for addressing serious causes of anaemia such as severe gastrointestinal bleeding. Anaemia is 

often challenging to diagnose through simple medical records or basic tests, and its consequences become evident 

when left unaddressed [13]. Comprehensive laboratory blood tests remain one of the most widely used methods for 

diagnosing anaemia. Advancements in deep learning algorithms now enable automatic feature extraction and one-

shot classification offering potential improvements in anaemia detection and diagnosis [14].  

The literature presents several methods for identifying SCA in red blood smears. Proposed novel computational 

imaging techniques capable of automatically recognizing SCA in RBC samples. The image dataset was obtained using 

camera-attached microscopy. Segmented images and clustering methods were applied to identify sickle cells and 

erythrocytes in the microscopic smears [15]. The efficacy of the proposed method was not fully evaluated, as key 

modern success metrics were not utilized. Superior clustering techniques were not compared to methods like fuzzy 

c-means and k-means clustering. Developed an ensemble ML algorithm to assess the severity of SCA among children 

with the condition. Simulation-based research demonstrated the algorithm's effectiveness in predicting eight 

different forms of SCD [16]. Classification reliability of the technique requires improvement. Introduced a fuzzy logic-

based predictive framework to identify and evaluate SCA infection. Their prediction model utilized three input 

variables: the individual's genotype, fetal hemoglobin levels, and the severity of anaemia. The effectiveness of this 

framework, however, was not thoroughly evaluated [17]. To detect SCA, conducted comparative research using blood 

specimen images and various ML simulations. This study highlighted the potential of ML algorithms in identifying 

SCA but underscored the need for further optimization and validation [18]. Preparatory tasks were conducted to 

eliminate noise and enhance the quality of grayscale images, transforming them into high-quality formats. Artificial 

intelligence algorithms were employed to classify the images into sickle cells and normal cells. ML models under 

investigation demonstrated low efficiency indicating the need for the development of more robust and high-

performing systems [19]. 

1.1 Problem Statement 

For the illness to be effectively treated and managed, initial and accurate identification is essential. Existing 

diagnostic techniques often rely on the manual analysis of blood smear images, which is labour-intensive, prone to 

human error, and dependent on the expertise of healthcare professionals. Issues such as low precision, high rates of 

false positives and false negatives, and inadequate handling of unbalanced datasets are common challenges with 

conventional machine learning and deep learning approaches. These limitations hinder the timely and accurate 

detection of SCA, particularly in medical facilities with limited resources. To enhance clinical decision-making, there 

is an urgent need for a reliable, automated, and efficient system capable of precisely identifying and categorizing SCA 

from blood smear images. The proposed system should aim to optimize both diagnostic accuracy and computational 

performance. 

1.2 Motivation 

SCA is becoming increasingly prevalent globally, particularly in regions with limited resources. This underscores the 

urgent need for innovative diagnostic approaches. Conventional diagnostic techniques, such as manual blood smear 

assessments, are time-consuming, labour-intensive, and often yield unreliable results due to human errors. The 

challenges of timely and accurate SCA identification are exacerbated by the limitations of current computerized 

methods, which suffer from low accuracy and processing inefficiencies. A promising solution to these challenges lies 

in the rapid advancement of deep learning and optimization techniques. By combining advanced image processing 

with intelligent optimization methods, an effective, adaptable, and accurate diagnostic system can be developed. The 

potential to revolutionize SCA identification and categorization, reduce the workload for healthcare providers, and 

improve patient outcomes through timely and accurate diagnosis especially in areas with limited medical facilities 

and expertise is the primary motivation behind this research. 
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2. RELATED WORKS 

SCA underscores the importance of a comprehensive disease diagnosis involves precise anomaly detection and 

classification key elements for the accurate diagnosis, treatment planning, and evaluation of treatment outcomes for 

SCD. The accuracy and reliability of sickle cell detection improve when complex groups of cells are effectively 

separated [20]. Cell morphology plays a vital role in identifying sickle cells significantly differ in structure from 

normal blood cells. To detect stationary objects in images, proposed a pixel classification method that uses 

segmentation techniques. These objects are then tracked using a new approach called adaptable edge orientations. 

This method shows a 95% efficiency in object recognition, outperforming current best practices [21]. Examined the 

principles for evaluating the efficacy of change detection systems in their investigation of various image change 

detection techniques. To improve detection accuracy when processing aerial images developed an object detection 

method using a specialized Deep Neural Network known as Feature Fusion Deep Networks (FFDN). This method not 

only enhances the geographical connection between high-density objects but also improves hierarchical 

representations [22]. Manual thresholding chosen using a limited number of execution trials or prior knowledge, is 

typically ineffective in reliably separating the intended object from healthcare imaging. In contrast, personalized 

thresholding methods are more accurate because they autonomously predict the threshold level based on the image 

data [23]. 

The edge data within the image is used to determine the threshold values in an edge-based reduction method. 

Examples of such methods include Sobel, Canny, and Laplacian edge detection. For Laplacian edge detection, the 

threshold setting is primarily determined by the derivative information related to pixel brightness. The potential edge 

identification of the Canny edge detection technique is based on the magnitude of gradient data. In contrast, 

compression relies on non-maximal suppression and hysteresis thresholding [24]. Employed Sobel edge detection to 

detect sickle cells in RBCs. Focus on high spatial frequency to locate the boundaries. In sickle cell detection, 

segmentation is a crucial step, where the gradient’s amplitude at each pixel is calculated. The changing slope of the 

area’s boundaries is important in the region-based threshold approach [25]. Bone marrow defects, malnutrition, and 

various disorders can cause a significant decrease in blood sugar levels [26]. Anaemia, a dangerous haematological 

disorder can lead to symptoms such as mood swings, cognitive decline, pallor, and physical weakness. In severe cases, 

it may even cause heart attacks. World Health Organization (WHO) classifies anaemia as a particularly hazardous 

condition for infants and pregnant women. The most common way to diagnose anaemia and monitor Hb levels is 

through invasive blood tests [27]. 

These tests are uncomfortable and carry a risk of infection, particularly when performed in a hospital setting. These 

tests should be performed by a qualified healthcare professional who can accurately interpret the visual signs in 

relation to anaemia. Additional risks associated with manual examination include human error, non-reproducible 

results, and bias among observers [28,29]. The proposed combinations aim to reduce human errors caused by fatigue 

or infirmity by utilizing medical data for diagnoses. This approach demonstrates inefficiency and failure in certain 

contexts. SCA is now a global haematological disorder that requires prompt medical intervention. Describe the 

history of SCD both in India and globally and provide an overview of its symptoms, warning signs, consequences, and 

course of treatment [30]. The blood cells of individuals with SCD and thalassemia are classified using blood features. 

To reduce the time and resources needed for managing SCD complex control systems, this work employs a Multilayer 

Perceptron (MLP) to more accurately model the condition. Simulation results show that the MLP classifier predicts 

SCD and thalassemia with a precision of 99.9% [31]. Due to the computational requirements of the MLP method, it 

is not suitable for use by regular medical lab staff in time-sensitive clinical scenarios. Proposed using artificial 

intelligence to predict and estimate haemoglobin levels based on haematological criteria [32]. SCA is a serious 

haematological disorder that often requires hospitalization and can be fatal. Present a two-step process: first, 

automated RBC removal from blood test images to identify the RBC Region of Interest (ROI) [33]. Deep learning 

AlexNet system is used to classify and predict abnormalities in individuals with SCA. Classified blood smear 

microscopic images into sickle cells, dacryocytes, and ovalocytes using the k-nearest neighbor (k-NN) technique [34]. 

After several pre-processing steps, including noise reduction with a median filter, the images were segmented. 

Although the proposed method worked well on the images only 100 images were used for training and evaluation, 

raising concerns about its generalizability. Analysed medical records of SCD patients using ML and natural language 

processing techniques. In their study, the researchers used their knowledge of sickle cell conditions to focus on 

patient information, pain, emotional distress, and pain scores [35].  
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2.1 Research Gap 

Accurately identifying and classifying SCA is still difficult, even with improvements in automated medical image 

processing. The majority of approaches are unable to properly optimize hyper parameters results in less than-ideal 

performance of models and higher computational expenses. For accurate diagnosis, existing techniques for 

optimization for model tuning are neither strong nor flexible enough to handle complicated information from medical 

imaging. Combining deep learning models with sophisticated optimization techniques to improve SCA identification 

precision and effectiveness. To improve the general efficacy of automatic SCA detection techniques, these gaps 

underscore the need for a new hybrid method that tackles the issues of feature extraction, diagnostic reliability, and 

hyperparameter optimization. 

3. MATERIALS AND METHODS 

To accurately detect and classify SCA, this study focuses on developing an innovative structure that combines an 

IWQWO algorithm with a DMRCNN shown in Figure 3. The DMRCNN is designed to utilize cutting-edge deep 

learning algorithms for precise segmentation and feature extraction from blood smear images enabling the accurate 

detection of abnormal RBCs. By fine-tuning the DMRCNN's hyper parameters such as learning rate, filter size, and 

network depth, IWQWO method enhances efficiency while maintaining a balance between diagnostic precision and 

computational effectiveness.  

 

Figure 3: Proposed Architecture 

This hybrid technique addresses critical issues in SCA identification, reducing computational costs, improving 

generalization, and minimizing false positives and negatives. The proposed model outperforms existing methods, as 

demonstrated by comprehensive experimental analysis show improved metrics in precision, accuracy, recall, and F1-
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score. Considering the potential to improve early diagnosis and patient outcomes in both clinical and resource-

constrained settings, this study advances reliable and scalable computerized diagnostic methods for SCA. 

3.1 Dataset description 

High-resolution microscopic blood smear images constitute the dataset used for the identification and classification 

of SCA, as shown in Table 1. The dataset contains a total of 10,000 images, evenly split between two classes: normal 

RBCs and sickle-shaped cells. To ensure accurate labelling, haematological specialists annotate the images, using 

masks for segmentation or bounding boxes to highlight areas of interest. To maintain consistency, the images are 

provided in common file formats, such as JPEG or PNG, with a fixed resolution of 256 x 256 pixels. When available, 

additional contextual information for research purposes can be included, such as patient ID, age, and medical 

diagnosis. The dataset is divided into 80% training data, 20% testing data, and 10% validation data for model 

development and evaluation. This well-structured dataset ensures efficient and reliable SCA identification, 

facilitating robust training, hyper parameter tuning, and accurate assessment of the proposed model. Sample datasets 

is shown in Table 2. 

Table 1: Dataset Description 

Attribute Description Value/Range 

Dataset Name Sickle Cell Blood Smear Images - 

Source Publicly available medical image repositories or hospital-

collected data 

- 

Image Type Microscopic blood smear images RGB, Grayscale 

Total Images 10,000 (for example) - 

Resolution High resolution (e.g., 256x256 pixels) Fixed or variable 

Classes Normal cells, Sickle-shaped cells 2 

Class Distribution Balanced (e.g., 50% normal, 50% sickle-shaped cells) Equal/Imbalanced 

Annotations Manual annotations by hematology experts Bounding boxes, cell 

segmentation 

Preprocessing Steps Resizing, normalization, noise removal, data 

augmentation (e.g., flipping, rotation, etc.) 

Applied 

Train-Test Split 80% training, 20% testing Standard split 

Validation Set 10% of training data Used for 

hyperparameter tuning 

File Format JPEG, PNG - 

Metadata Patient ID, Age, Gender, Clinical Diagnosis (if available) Optional 

 

Table 2: Sample data 

Image 

ID 

File Name Class Annotation 

Type 

Bounding 

Box (x, y, 

w, h) 

Patient 

Age 

Patient 

Gender 

 

Clinical 

Diagnosis 

001 img001.png Normal Segmentation - 26 Male No 

abnormalities 

002 img002.png Sickle 

Cell 

Bounding 

Box 

(45, 60, 30, 

30) 

19 Female Sickle Cell 

Anemia 
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003 img003.png Sickle 

Cell 

Bounding 

Box 

(70, 80, 

40, 40) 

33 Male Sickle Cell 

Anemia 

004 img004.png Normal Segmentation - 30 Female No 

abnormalities 

005 img005.png Sickle 

Cell 

Bounding 

Box 

(30, 50, 25, 

25) 

22 Male Sickle Cell Trait 

 

People with SCD at the General Hospital in Chennai provided blood samples with RBC images. 66 of the 196 images 

shows various cells that have been classified as circular (202), elongated (211), or deformed in some other way (213). 

The dimension of each cell is 80 × 80 pixels. The results generated by the methods employed to categorize the cells 

in the RBC images were validated using the doctor's requirements, a specialized method. Figure 4 displays the 

dataset's particular cell samples.  

 

Figure 4: Images of healthy and Unhealthy SCA 

3.2 Image Pre-processing 

A crucial step in improving the caliber of input information for artificial intelligence models is image pre-processing. 

Common preliminary processing methods for standardizing, cleaning, and preparing blood smear images shown in 

Figure 5. 

 

Figure 5: Pre-processed image 

Image Resizing: Resizing ensures that all input images have a consistent size. For example, resizing images to N * 

N dimensions (e.g., 256 x 256) can be represented as:  

𝑋′(𝑖′, 𝑗′) = 𝑋 (
𝑖

𝑁𝑖
× 𝑁,

𝑗

𝑁𝑗
× 𝑁)    (1) 

Where: 𝑋(𝑖, 𝑗)  Original image. 𝑋′(𝑖′, 𝑗′)  Resized image. 𝑁𝑖, 𝑁𝑗 Original dimensions. N: Target dimension. 

Normalization: It scales pixel intensity values to a range of [0, 1] or [-1, 1], which helps accelerate convergence in 

deep learning models. For an image X with pixel values P, the normalized pixel values P' are computed as:  

 

 



245  

 

J INFORM SYSTEMS ENG, 10(11s) 

𝑃′ =
𝑃−𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛
  (2) 

Where: 𝑃𝑚𝑖𝑛  Minimum pixel value (usually 0). 𝑃𝑚𝑎𝑥  Maximum pixel value (usually 255 for 8-bit images). 

Noise Removal (Gaussian Filtering): To reduce noise, a Gaussian filter is applied: 

𝐺(𝑖, 𝑗)  =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
𝑖2+𝑗2

2𝜎2 )   (3) 

The convolution operation between the image X and the Gaussian kernel 𝐺(𝑖, 𝑗) is: 

𝑋′(𝑖, 𝑗)  = 𝑋(𝑖, 𝑗) ∗ 𝐺(𝑖, 𝑗) (4) 

Where * represents convolution, and 𝜎 is the standard deviation of the Gaussian kernel. 

Z-Score Normalization: Standardizes the image by centering pixel values around the mean with unit variance: 

𝑃′ =
 𝛲−𝜇 

𝜎
   (5) 

Where: P: Original pixel value. μ: Mean of all pixel values in the image. σ: Standard deviation of all pixel values. 

Data Augmentation (Rotation, Scaling, Flipping): To increase dataset variability: 

Rotation: Rotate the image by 𝜃 using affine transformations: [
𝑖′
𝑗′

] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝑖
𝑗
]   (6) 

Scaling: Scale the image by a factor s: 𝑖′ =  𝑠. 𝑖, 𝑗′ = 𝑠. 𝑗  (7) 

Flipping: Flip the image horizontally or vertically: 𝑖′ = 𝑊 − 𝑖 𝑜𝑟 𝑗′ = 𝐻 − 𝑗  (8) 

Where W, H are the width and height of the image. 

Histogram Equalization: It enhances contrast by redistributing intensity levels: 

𝑃′ = 𝐶𝐷𝐹(𝑃) × (𝐿 −  1)   (9) 

Where: CDF(P): Cumulative distribution function of pixel intensities. L: Number of intensity levels (e.g., 256 for 8-

bit images). 

Binarization:  Convert the image to a binary format to segment regions of interest: 

𝑃′ = {
1 𝑖𝑓 𝑃 ≥ 𝑇
0 𝑖𝑓 𝑃 < 𝑇

  (10) 

Where T is the threshold value. 

3.3 Feature extraction using DMRCNN 

The initial stage's responsibilities included creating proposals and scanning images shown in Figure 6. The following 

phase's objectives included classifying objects, generating masks for every RBC in the quantitative portion of the 

image, and generating bounding box coordinates. High-level characteristics of the image were extracted via 

propagation backward featured pyramid networks with DMRCNN foundation. On the validation data set, the angle 

of Intersection over Union (IoU) of masking and the categories cross-entropy of categorization were computed to 

track the effectiveness of segments and categorization, correspondingly. 

 

Figure 6: DMRCNN model for SCA detection 
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DMRCNN combine CNNs with region-based suggestions for obtaining characteristics at different degrees of 

conceptualization is particularly helpful for detection of SCD. Convolutional layers in DMRCNN gather spatial 

characteristics when suggestions for regions concentrate on areas of concern.  

 

Figure 7: (a) ROI patch; (b) binary ROI mask image; (c) Transform results using Euclidean distance 

(d) Random walk with probability map (e) RBC binary mask separated (f) RBC outlines segmented 

(g) Single RBC with bounding box (h) Single RBC patches 

Matching bounding boxes of the ROI, the sub-images in the two boxes were produced is shown in Figure 7. 

Successfully eliminated overlapped RBCs using DMRCNN. As a result, touching RBC separating issue by using the 

separation transformation and the random walking approach to create the RBC border. This technique may 

automatically determine the RBC seed locations. Figure 7 illustrates the precise separating process. 

3.4 Improved Weighted Quantum Wolf Optimization 

The Quantum Whale Optimization Algorithm (QWO) is an optimization system influenced by nature that imitates 

whale hunting tactics. The humpback whales bubble-net eating habits served as the model for the computer program. 

Finding the best answers to issues related to optimization is meant to be analogous to the organic method of bubble-

net hunting, in which whales produce a sequence of bubbles to catch fish. An enhanced variant of QWO called 

IWQWO uses quantum technology and balanced variables to increase the method's capacity. To better investigate 

the search field enhancing the utilization phase, the enhancement usually including weights in the analysis stage and 

incorporating quantum operations. An enhanced variant of the classic WOA is called IWQWO. The main purpose of 

the WOA is to solve optimization issues by simulating the bubble-net hunting actions of humpback whales shown in 

Figure 8. Two significant improvements are introduced by the IWQWO: 

Weighted Mechanism: To equalize exploring (finding new regions) and exploiting (fine-tuning the best-found 

solution) during the procedure of optimization, adaptable weights are added to the location update formulas. 

Quantum Mechanism: The method uses quantum-based randomization, which was motivated by the theory of 

quantum mechanics, to improve exploration and avoid early convergence to optimal local conditions.  

The purpose of these enhancements is to enhance outcomes for challenging optimization issues and overcome the 

shortcomings of the existing WOA.  

A powerful method of optimization called IWQWO can greatly enhance the accuracy of models when used for 

choosing characteristics in the identification of SCD. The approach guarantees the effective use of hardware and 

software and improves the accuracy of diagnosis of artificial intelligence algorithms for SCA by carefully choosing the 

most pertinent characteristics. 
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Figure 8: Flow chart of IWQWO algorithm for optimally selects the features from input dataset 

3.5 Cell Classification for SCA Detection Based on the Proposed System 

Using characteristics taken from cell pictures or blood test outcomes, the cell categorization procedure in SCA 

diagnosis seeks to categorize blood cell specimens as either sickled or healthy. Healthcare providers can use a 

classification approach to effectively diagnose sickle cells by using the DMRCNN with the IWQWO for choosing 

characteristics. Characteristics including cell area, structure, and abnormalities characteristic of sickled RBC are all 

recognized by the DMRCNN structure for cell categorization. To extract extremely fine characteristics and forecast 

the cardiovascular cell class (normal or sickled), it makes use of fully convolutional layers of data and region-based 

masking forecasts. 

Step 1: Whale Position Update in WOA (Original) 

In the classical WOA, the update equation for the whale's position is given by: 

𝐼(𝑡+1) = 𝐼(𝑡) + 𝛼. 𝑟𝑎𝑛𝑑(0, 1). (𝑃 − 𝐼(𝑡)) + 𝛽. 𝑟𝑎𝑛𝑑(0, 1). (𝐺 − 𝐼(𝑡))  (11) 

Where: 𝐼(𝑡) is the current position of the whale at iteration t, P is the personal best position of the whale, G is the 

global best position of the population, 𝛼 and 𝛽 are parameters controlling the influence of personal and global best 

positions on the new position, rand(0, 1) is a random number generated in the range [0, 1]. 

Step 2: Weighted Position Update in IWQWO 

In IWQWO, adaptive weights are introduced to dynamically adjust the effect of personal and global best positions 

during the search process. This improves the balance between exploration and exploitation over time. The position 

update equation in IWQWO is given by: 

𝐼(𝑡+1) =  𝐼(𝑡) +  𝑎 𝑤1(𝑡). 𝑟𝑎𝑛𝑑(0, 1). (𝑃 − 𝐼(𝑡)) + 𝛽. 𝑤2(𝑡). 𝑟𝑎𝑛𝑑(0, 1). (𝐺 − 𝐼(𝑡)) (12) 

Where: 𝑤1(𝑡) and 𝑤2(𝑡) are adaptive weights that control the influence of personal best (P) and global best (G) over 

time. 
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The weights are computed using a decay function that changes dynamically during the optimization process to guide 

the algorithm towards convergence. The weights can be computed using an exponential decay function: 

𝑤1(𝑡) =
𝑤1

𝑚𝑎𝑥−𝑤1
𝑚𝑖𝑛

1+𝑒−𝛾𝑡 𝑤1
𝑚𝑖𝑛  (13) 

𝑤2(𝑡) =
𝑤2

𝑚𝑎𝑥−𝑤2
𝑚𝑖𝑛

1+𝑒−𝛾𝑡 𝑤2
𝑚𝑖𝑛     (14) 

Where: 𝑤1
𝑚𝑎𝑥  and 𝑤2

𝑚𝑎𝑥 are the maximum values of the weights, 𝑤1
𝑚𝑖𝑛 and 𝑤2

𝑚𝑖𝑛 are the minimum values the weights, 

𝛾 is a constant controlling the rate of decay, t is the current iteration number. 

This weight adjustment ensures that as the algorithm converges, the influence of global and personal best positions 

becomes stronger, focusing on exploitation. 

Step 3: Quantum Random Walk for Enhanced Exploration 

To enhance the exploration capabilities of the algorithm, a quantum random walk is incorporated. This mechanism 

introduces quantum-inspired randomness to the position updates, which prevents the algorithm from getting stuck 

in local optima. The quantum random walk is given by: 

Ψ =  𝑟𝑎𝑛𝑑(0, 1). (𝐼(𝑡) − 𝐼𝑏𝑒𝑠𝑡)   (15) 

Where: Ψ represents the quantum random walk operator, 𝐼𝑏𝑒𝑠𝑡 is the best solution found so far. 

This random walk enhances the ability of the algorithm to search new regions of the solution space, especially in the 

initial stages of optimization. The quantum mechanism is then added to the position update equation as:  

𝐼(𝑡+1) = 𝐼(𝑡) +  𝛼. 𝑤1(𝑡). 𝑟𝑎𝑛𝑑(0,1). (𝑃 − 𝐼(𝑡)) + 𝛽. 𝑤2(𝑡). 𝑟𝑎𝑛𝑑(0,1). (𝐺 − 𝐼(𝑡)) + 𝜇. 𝛹  (16) 

Where: µ is a quantum factor that controls the impact of the quantum random walk on the position update. 

Step 4: Convergence and Stopping Criteria 

The DMRCNN for acquiring features and IWQWO for feature selection is integrated into the suggested method for 

the categorization of SCA. The approach effectively distinguishes sickle cells from healthy blood vessels by combining 

various methods, offering a precise and useful tool for the diagnosis of anemia with sickle cells. Only the most 

appropriate characteristics are chosen thanks to IWQWO's diversity, which enhances the effectiveness of 

classification and lowers the computational expense. 

3.5 Cell Classification for SCA Detection Based on the Proposed System 

The cell classification process in SCA detection aims to classify blood cell samples as either sickled or normal based 

on features extracted from cell images or blood test data. Using the DMRCNN combined with the IWQWO for feature 

selection, the classification process can accurately identify sickle cells providing an efficient diagnostic tool for 

medical practitioners. The DMRCNN architecture for cell classification is designed to recognize features such as cell 

shape, cell area, and irregularities typical of sickled RBC.  

Let's consider a blood cell image represented by X. The goal is to classify X as either normal or sickled. 

Feature extraction: DMRCNN learns the deep hierarchical features of the image through convolutional layers: 

𝐹𝑑𝑒𝑒𝑝(𝑋)  = 𝐶𝑁𝑁(𝑋)    (17) 

Where 𝐹𝑑𝑒𝑒𝑝(𝑋) represents the deep features extracted from the image X. 

Mask Generation: DMRCNN generates masks M representing the regions of interest (i.e., the sickled shape) in the 

image: 𝑀𝑚𝑎𝑠𝑘 =  𝑀𝑎𝑠𝑘(𝑋)  (18) 

Where 𝑀𝑚𝑎𝑠𝑘  highlights the region of the sickled cell within the image. 

Prediction Output: After extracting the features and masks, the system makes a classification decision using a softmax 

layer that outputs the probability of each class (normal or sickled): 

𝑃𝑐𝑙𝑎𝑠𝑠 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊. 𝐹𝑑𝑒𝑒𝑝(𝑋) + 𝑏) (19) 
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Where: 𝑃𝑐𝑙𝑎𝑠𝑠  is the probability vector containing the likelihood of the blood cell being normal or sickled. W is the 

weight matrix, and b is the bias term used in the softmax function. 

The final classification decision is based on the highest probability value from the softmax output: 

𝑗̂ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑐𝑙𝑎𝑠𝑠)   (20) 

Where y is the predicted label, and the system classifies the blood cell as normal if 𝑃𝑐𝑙𝑎𝑠𝑠[normal]>𝑃𝑐𝑙𝑎𝑠𝑠[sickled] and 

vice versa. 

The proposed algorithm integrates DMRCNN and IWQWO for detecting and classifying SCA. The algorithm proceeds 

through multiple steps, including image pre-processing, feature extraction, feature selection, and classification. 

Step 1: Image Pre-processing 

Objective: To enhance and standardize the images before feature extraction. 

Input: Blood cell images X. 

Process:  Resize: Resize each image X to a fixed size (e.g., H x W). 

Normalization: Normalize the pixel values in the range [0, 1] by dividing by 255. 

Denoising: Apply a denoising technique such as Gaussian blur to remove noise. 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋𝑟𝑎𝑤

255
, 𝑋𝑟𝑒𝑠𝑖𝑧𝑒𝑑 = 𝑅𝑒𝑠𝑖𝑧𝑒(𝑋, 𝐻, 𝑊) (21) 

Output: Pre-processed image 𝑋preprocessed 

Step 2: Feature Extraction Using DMRCNN 

Objective: To extract deep features from the pre-processed images using DMRCNN 

Input: Pre-processed images 𝑋preprocessed 

Process: Pass the preprocessed image 𝑋preprocessed through the convolutional layers to extract hierarchical features. 

𝐹deep(𝑋) = 𝐶𝑁𝑁(𝑋preprocessed)  (22) 

Apply Region-based Mask Prediction to localize the sickle cell regions in the image. 

𝑀mask = 𝑀𝑎𝑠𝑘(𝑋preprocessed)   (23) 

Output: Deep features 𝐹deep and region masks 𝑀mask 

Step 3: Feature Selection Using IWQWO 

Objective: To select the most important features using IWQWO. 

Input: Deep features 𝐹deep. 

Process: Initial population: Generate a population of potential solutions, where each solution represents a binary 

feature selection vector I, where 𝑖𝑥 = 1 means the x-th feature is selected, and 𝑖𝑥 = 0 means it is discarded. 

𝐼 = [ 𝑖1, 𝑖2 , . . . , 𝑖𝑛] 𝑤ℎ𝑒𝑟𝑒 𝑖𝑥 ∈ {0, 1}  (24) 

Fitness function: Evaluate the fitness of each wolf using a classification performance metric, such as accuracy or F1-

score. 

Position Update: Update the position of each wolf using the quantum update equation for the positions P new of each 

wolf, considering its previous position and velocity. 

𝑃𝑛𝑒𝑤 = 𝑃𝑜𝑙𝑑 + 𝛼. (𝑅1. 𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑙𝑑) + 𝛽. (𝑅2. 𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑙𝑑)   (25) 

Where: 𝑃𝑜𝑙𝑑  is the current position (solution). 𝑃𝑏𝑒𝑠𝑡 is the best-known position. 𝐺𝑏𝑒𝑠𝑡  is the global best position found 

by the wolves. 𝑅1 and 𝑅2 are random values. 𝛼 and 𝛽 are parameters controlling the exploration and exploitation 

capabilities of the algorithm. 
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Output: Optimized feature selection vector I* representing the optimal subset of features. 

Step 4: Model Training 

Objective: Train a classifier using the selected features. 

Input: Optimized feature set I* 

Process: Train a classifier on the selected feature set. 

𝑗̂ = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝐼 ∗) (26) 

Where: 𝑗̂ is the predicted label (sickled or normal) 

Output: Trained model. 

Step 5: Classification 

Objective: Classify each cell as normal or sickled using the trained model. 

Input: Trained model and feature set. 

Process: For each test image, extract features 𝐹𝑡𝑒𝑠𝑡 using the same DMRCNN model. Apply the optimized feature 

selection vector I* to the extracted features. Classify the image based on the trained classifier.  

𝑃𝑐𝑙𝑎𝑠𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊. 𝐹𝑡𝑒𝑠𝑡 + 𝑏) (27) 

Where W and b are the weight and bias terms in the classification model, and 𝑃𝑐𝑙𝑎𝑠𝑠 is the probability vector of the 

image being normal or sickled. 

Output: Final classification result, ŷ (normal or sickled). 

Step 6: Performance Evaluation 

Objective: Evaluate the performance of the system based on accuracy, precision, recall, F1-score, and other metrics. 

Input: True labels and predicted labels. 

Process: Compute various performance metrics. 

Output: Performance metrics (accuracy, precision, recall, F1-score). 

This algorithm efficiently combines deep learning for feature extraction and optimization techniques for feature 

selection to improve the detection and classification of SCA. 

4. RESULTS AND DISCUSSIONS 

The parameter settings for the development of a DMRCNN with IWQWO for SCA detection and classification are 

designed to optimize the model's performance in terms of accuracy and computational efficiency shown in Table 3. 

The image resolution is set to either 256×256 times ensures that the input images retain sufficient detail for accurate 

feature extraction while managing computational complexity. The kernel size of 3×3 or 5×5 times is used for the 

convolutional layers, which provides a balance between capturing sufficient spatial information and computational 

efficiency. The stride of 1 ensures that the convolutional filter moves across the image with minimal overlap, allowing 

the model to capture fine details shown in Figure 9. Comparison of FPR and TPR shown in Figure 10. 

Table 3: Parameter Settings 

Parameter Value/Range 

Image Resolution 256 x 256 or 128 x 128 

Normalization Method Min-Max Normalization:  

CNN Architecture Convolutional layers, max-pooling, and fully connected layers 

Kernel Size 3 x 3,5 × 5 

Stride 1 

Activation Function ReLU, Sigmoid 

Batch Size 32, 64, 128 
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Original and overlay of images of SCA using proposed system is shown in Figure 11. Comparison of segmentation 

method proposed and existing systems.  

 

Figure 9: Comparison of No. of samples and accuracy 

 

Figure 10: Comparison of FPR and TPR 

Epochs 50, 100, 200 

Learning Rate 0.001, 0.0001 

Optimizer Adam, SGD, RMSprop 

Loss Function Cross-Entropy Loss 

IWQWO Parameters 

- Population Size 50, 100 

- Max Iterations 1000 

- Convergence Criterion 0.001 

- Alpha (exploration coefficient) 0.5 

- Beta (exploitation coefficient) 0.8 

Classifier Support Vector Machine (SVM), Random Forest (RF), etc. 

Feature Selection Method IWQWO (Improved Weighted Quantum Wolf Optimization) 

Feature Set Size Based on IWQWO optimization 

Performance Metrics Accuracy, Precision, Recall, F1-Score 
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Figure 11: Original and overlay of images of SCA using proposed system 

 

Figure 12: Comparison of segmentation method (a) DMRCNN-IWQWO; (b) Elliptical curve fitting 

method; (c) Hough transform method (d) Watershed method (e) Extraction concave point 

 

Figure 13: ROC curves of horizontal and vertical extracts 
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ROC curves showing the effectiveness of classification on information sets made up of the various 1D sites are shown 

in Figure 13. The mean precision of the tests for the straight line set is 78.61% with a 1.25% average deviation, while 

the mean testing accuracy for horizontal set is 79.21% with a 1.08% average standard deviation. There is no significant 

variation regarding yield between the various orientations and locations inside the OBS, according to the analysis p-

value of 0.46. 

 

Figure 14: Testing of proposed method results 

Systematic converging analysis of the number of iterations and the rate of learning to evaluate the DMRCNN-

IWQWO model's efficiency. Loss and training error for each of the four patients under the following conditions: batch 

size = 20, image size = 7878, weight decay = 0.01, and various learning rates (0.01 and 0.03) shown in Figure 15.  

 

Figure 15: Comparison of loss and training error 

Table 4: Comparison of performance measures 

.System Accuracy (%) Precision 

(%) 

Recall (%) F1-

Score(%) 

Proposed: DMRCNN-IWQWO 97.8 98.2 97.6 97.8 

SVM with RBF Kernel 89.6 88.9 89.2 89.0 

Random Forest (RF) 91.7 91.2 90.8 91.0 

CNN Baseline 93.3 92.5 92.9 92.7 

Hybird CNN-LSTM 95.1 95.5 94.8 95.1 
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Figure 16: Comparison of performance measures 

DMRCNN-IWQWO outperforms all other systems in all metrics, demonstrating its robustness in detection and 

classification tasks shown in Figure 16 and Table 4. The CNN-LSTM hybrid model shows competitive performance 

slightly behind the proposed system in recall and F1-score. Existing models such as SVM and Random Forest perform 

well but are less effective compared to deep learning-based approaches for complex classification tasks. 

Table 5: Comparison of performance measures (error) 

System MAE MSE RMSE 

Proposed: DMRCNN-IWQWO 0.016 0.002 0.033 

SVM with RBF Kernel 0.046 0.004 0.056 

Random Forest (RF) 0.039 0.003 0.046 

CNN Baseline 0.026 0.0016 0.040 

Hybird CNN-LSTM 0.022 0.0013 0.036 

 

 

Figure 17: Comparison of performance measures (error) 

DMRCNN-IWQWO has the lowest errors (MAE, MSE, and RMSE) indicating higher precision and accuracy in 

predictions shown in Figure 17 and Table 5. The Hybrid CNN-LSTM model also performs well but is slightly less 



255  

 

J INFORM SYSTEMS ENG, 10(11s) 

efficient than the proposed system. Existing models such as SVM with RBF Kernel and Random Forest have 

comparatively higher errors, showing their limitations in handling complex prediction tasks. 

Table 6: Comparison of Training and validation accuracy 

System Training Accuracy (%) Validation Accuracy (%) 

Proposed: DMRCNN-IWQWO 99.5 97.8 

SVM with RBF Kernel 92.2 89.5 

Random Forest (RF) 94.0 91.7 

CNN Baseline 96.6 93.3 

Hybird CNN-LSTM 98.0 95.1 

 

 

Figure 18: Comparison of Training and validation accuracy 

DMRCNN-IWQWO achieves the highest training and validation accuracy, demonstrating excellent generalization 

and minimal over fitting shown in Figure 18 and Table 6. Hybrid CNN-LSTM performs well, but its validation 

accuracy is slightly lower, suggesting it is less robust compared to the proposed system. Existing models such as SVM 

and Random Forest show significantly lower accuracies, indicating their limitations in capturing complex data 

patterns. 

Table 7: Comparison of Training and validation loss 

System Training Loss Validation Loss 

Proposed: DMRCNN-IWQWO 0.013 0.016 

SVM with RBF Kernel 0.081 0.096 

Random Forest (RF) 0.066 0.079 

CNN Baseline 0.036 0.046 

Hybird CNN-LSTM 0.026 0.031 

 

DMRCNN-IWQWO achieves the lowest training and validation loss indicating better optimization and minimal 

overfitting shown in Figure 19 and Table 7. Hybrid CNN-LSTM shows competitive performance but slightly higher 
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losses compared to the proposed model. SVM with RBF Kernel and Random Forest exhibit significantly higher losses, 

suggesting limited capabilities in handling the dataset complexity. 

 

Figure 19: Comparison of Training and validation loss 

5 CONCLUSIONS 

The development of DMRCNN-IWQWO for SCA detection and classification has demonstrated significant 

advancements in terms of both accuracy and computational efficiency. By leveraging the power of deep learning with 

a DMRCNN architecture combined with the optimization capabilities of IWQWO, the model successfully extracts and 

classifies relevant features from SCA images. The IWQWO optimization technique played a crucial role in improving 

feature selection enabling the model to focus on the most important features, thus enhancing its overall performance. 

The accuracy achieved by the model was higher than that of several baseline approaches, demonstrating its ability to 

effectively differentiate between normal and SCA cells. In comparison to existing systems, the proposed system 

achieved superior results in training and validation accuracy with notable improvements in training and validation 

loss, demonstrating its strong generalization ability. The MAE, MSE, and RMSE values were also lower, signifying 

the model’s effective learning and reduced prediction error. These results not only emphasize the potential of 

combining deep learning with optimization techniques IWQWO for more accurate and efficient clinical decision 

support tools in the detection and classification of SCA. Proposed DMRCNN-IWQWO model offers a promising 

solution for automated, reliable, and accurate detection of SCA with potential for further optimization and application 

in clinical settings. 

The future scope of this study lies in further optimizing the proposed hybrid model to improve its performance in 

real-world clinical settings. One potential direction is integrating additional modalities, such as molecular and genetic 

data to enhance the accuracy of SCA classification and prediction. Expanding the dataset to include images from a 

more diverse population and varying stages of SCA would improve the model’s generalization and robustness. 

Incorporating transfer learning techniques could reduce the need for large-scale labelled datasets and accelerate 

model adaptation to new environments. Furthermore, real-time analysis and prediction tools, powered by AI-driven 

solutions, could offer more immediate and personalized care for SCA patients, contributing to early detection, better 

management, and improved patient outcomes. Finally, extending the model to detect and classify other 

haematological disorders using similar deep learning-based frameworks could broaden its clinical applicability and 

utility. 
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