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This work examines the understanding and regulation of chaotic systems via fractal system 
dynamics. The criteria for the asymptotic stability of the equilibrium point are examined. This 
signifies that the point is stable and demonstrates local attraction, which is essential for the 
system’s behavior over time. The independent uncertainty in the system, denoted by αj, may vary 
over time but is constrained by a constant δ > 0. This factor is crucial for comprehending the 
system’s responsiveness to varying environments. The system’s stability is further analyzed 
through the negative semi-definiteness of the fractional derivative of the Lyapunov function, 
indicating that the system’s origin stays stable given specific beginning circumstances. The study 
presents a thorough framework for analyzing and controlling chaotic systems using fractal 
system dynamics, emphasizing stability and the impact of uncertainty. 
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INTRODUCTION 

The research emphasizes the importance of chaotic systems across many fields, highlighting their complex behavior 

and sensitivity to initial conditions. This complexity requires advanced analytical and control methodologies. 

Fractional system dynamics is presented as an effective tool for modeling and regulating chaotic systems. These 

dynamics provide a more accurate depiction of real-world events than traditional integer order models [1][2]. The 

introduction discusses the importance of stability analysis in chaotic systems. It shows how derivatives of the 

fractional system can evaluate the stability of equilibrium points, which is essential for ensuring the reliability of the 

system dynamics [3][4]. The authors intend to create a model for analyzing and regulating the stability of chaotic 

systems using fractional system dynamics. This entails identifying the basic requirements for asymptotic stability and 

examining the effect of uncertainty on the system dynamics. Fractional calculus has emerged as an important 

mathematical tool for modeling many real-world phenomena in recent years [5][6][7]. It has been increasingly 

considered important by many scientists in various fields of engineering and science, including control engineering, 

electrochemistry, electromagnetism, biological sciences, and diffusion processes. Fractal order dynamics is proposed 

as a useful method for modeling and controlling chaotic systems [8][9]. This creates a foundation for further study 

of chaotic systems that can be described by fractal order equations. In the first part, important ideas such as the 

Riemann–Liouville derivative and other stability theorems are explained. These theorems tell us how to judge local 

and global stability in fractal order systems [10][11]. The theorems state the basic requirements for systems to exhibit 

asymptotic local and global stability, highlighting the importance of Lyapunov functions in stability assessments. The 

final section of the study examines the concept of synchronization in chaotic systems characterized by fractal order 

dynamics. The authors create a controller that ensures that the error between the master and slave systems 

approaches zero and establish a framework for evaluating the stability and management of chaotic systems using 

fractal order dynamics. This entails defining asymptotic stability criteria and examining the effect of uncertainty on 

system dynamics. The study describes a method for using finite matrix properties and Lyapunov stability criteria to 
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assess the long-term stability of linked systems. The traditional Riemann–Liouville definition of the fractional 

derivative has problems with the nonzero derivative of the constant. To fix these problems, Jomari came up with a 

different approach called the local modified Riemann–Liouville definition. Section 3 will analyze the results of Streep. 

We use the potential Lyapunov function to demonstrate controlled chaos for two fruit points using fractional control 

graphs (FCGs) of fractional order [12]. This shows that the original system is stable under certain conditions, in 

particular when α = 1. Using the unit design, skillful control may help in the efficient synchronization of chaotic 

systems of fractional order, which will greatly improve communications through noise. The results enhance chaos 

theory and its various applications by providing methods relevant to non-classical electronics [20][21]. 

PRELIMINARIES 

This research will concentrate on a dynamical system that fulfils We will assume that the function (𝜙(𝑢, 𝑠)) satisfies 

the stipulated criteria. 

                                                          𝑢˙  = 𝜙(𝑢, 𝑠), 𝑢(𝑠0) = 𝑢0  , 𝑢 ∈  ℝ
𝑛                                                                (1) 

 Definition 1. [18] The equilibrium points  𝑢∗ = 0 of (1 )is stable (Pertaining to the Lyapunov notion) at 𝑠 = 𝑠0 if 

for any 𝜍 >  0 there exists a 𝜚(𝑠0 )  >  0 such that 

                                                     ‖𝑢(𝑠0 )‖   <  𝜍 ⟹ ∥ 𝑢(𝑠) ∥ <  𝜚       ∀ 𝑠𝑡 ≥ 𝑠0                                                               (2) 

Definition 1 is independent of 𝑡0, hence equation (2) is applicable for all values of 𝑠0. The definition of asymptotic 

stability is articulated as stated below: 

 Definition 2. [19] An equilibrium points  𝑢∗ = 0  of (1) is asymptotically stable at 𝑠 = 𝑠0 if 

1.  𝑢∗ = 0 is stable, and 

 2.  𝑢∗ = 0demonstrates regional attraction; specifically, it exists 𝜍(𝑠0) in such a manner that 

                                                                     ∥ 𝑢(𝑡0 ) ∥ <  𝛿 ⟹ 𝑙𝑖𝑚
𝑠→∞

𝑢(𝑡)    = 0                                                                    (3) 

The previously described  definition indicates that asymptotic stability at time 0 is invariant. Uniform asymptotic 

stability requires:  

1.  𝑢∗ = 0 to be uniformly stable, and  

2.  𝑢∗ = 0  The model exhibits uniform local attractiveness, signifying the existence of 𝑎 𝜚 that is independent on 𝑠0, 

for which equation (3) holds true. Moreover, uniform convergence in equation(3)is essential [ 17]. 

Let 𝑛 ∈ ℤ+and 𝐷𝑡
𝑛 t denote the classical derivative of order 𝑛. 

Comparative strengthIn the next portions of the work, the symbol 𝐷𝑡
𝑚 t is utilized to denote the Riemann-Liouville 

derivative of order 𝑚 [30]. 

 Definition 3. [16] The fractional-order integral and derivative operators can be defined as  

           𝐷𝑠
𝛼1   =  

{
 

 

 
𝑑𝛼1

𝑑𝑠𝛼1
                                                     , 𝛼1 > 0    

  1                                            , 𝛼1 = 0                  

∫ (𝑑𝑠)−𝛼1
𝑠

𝑎
                             , 𝛼1 < 0                                   

                                                             (4) 

Where 𝛼1 is the fractional order of the operator, represented as a complex number.  

Definition4. [15] The 𝛼1
𝑡ℎ The Riemann-Liouville fractional-order integral of the function 𝑓(𝑠) is defined as 

                                                     𝑠0𝐼𝑠
𝛼1𝑓(𝑠) =

1

𝛤(𝛼−1) 
∫

𝑓(𝜔)

(𝑡−𝜔)(1−𝛼1)
𝑆

𝑠0
 𝑑𝜔                                                                               (5) 

where 𝑠0 is the initial time and 𝛤(𝛼1) is Gamma function which is determined as 

                                                  𝛤(𝛼1)  = ∫ 𝑒−𝑠𝑒𝛼1−1
∞

0
𝑑𝑠                                                                                                   (6) 

Where 𝛼1 is the operator of the Gamma function. 
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Definition 5. [14] Let 𝑛 − 1 < 𝛼1 ≤ 𝑛 , 𝑛 ∈ 𝑁 , the Riemann–Liouville fractional derivative of order 𝛼1of  𝑓(𝑡) is 

described by 

                                     𝑠0𝐷𝑠
𝛼1𝑓(𝑠) =

𝑑𝛼1𝑓(𝑠)

𝑑𝑠𝛼1
 =

1

𝛤(𝑛−𝛼1) 

𝑑𝑛

𝑑𝑠𝑛
∫

𝑓(𝜔)

(𝑡−𝜔)(1−𝛼1)
𝑆

𝑠0
 𝑑𝜔                                                               (7) 

Remark 1. [32] In the Riemann-Liouville fractional derivative (Eq. (7)), integration precedes differentiation; hence, 

the fractional derivative of a constant is not zero in this framework. 

 Definition6. [13]. The Caputo fractional derivative of order𝛼1of a continuous functional 𝑓(𝑠) is described by 

            𝑠0𝐷𝑠
𝛼1𝑓(𝑠) = {

1

𝛤(𝑚−𝛼1)
∫

𝑓(𝑚)(𝜔)

(𝑠−𝜔)𝛼1−𝑚+1

𝑆

𝑠0
 𝑑𝜔     ,       𝑚 − 1 < 𝛼1 < 𝑚

𝑑𝑚𝑓(𝑠)

𝑑𝑠𝑚
             ,      𝛼1 = 𝑚

                                                             (8) 

Where m is the first integer number, bigger than  𝛼1 . 

Lemma2.[22] Consider 𝑥 = 0 as equilibrium of fractional-order  

non- autonomous system 

                                                                       𝐷𝑥 = 𝑓(𝑥, 𝑠)                                                                                               (9) 

Where 𝑓(𝑥, 𝑠) fulfils the Lipschitzian condition with coefficient 𝑙¿ 0 𝑎𝑛𝑑     𝛼1 ∈ (0,1).Suppose that there exists the 

Lyapunov functional 𝑉(𝑠, 𝑥(𝑠)) guaranteeing 

                              𝛽1 ∥ 𝑥 ∥
𝛽≤ 𝑉(𝑥, 𝑠) ≤ 𝛽2 ∥ 𝑥 ∥                                                                                          (10)                                                                                                                   

                             𝑉̇ (𝑠, 𝑥)  ≤  −𝛽3 ∥ 𝑥 ∥                                                                                                            (11) 

Let 𝛽1 , 𝛽2, 𝛽3  and 𝛽 indicate positive benefits, and let ‖. ‖ . represent an arbitrary norm. Thus, the equilibrium of 

dynamics (9) is asymptotically stable. This lemma is pertinent to the Caputo and Riemann-Liouville 

definitionsMethods 

THE PROPOSED FRAMEWORK FOR FRACTIONAL-ORDER CHATICS 

This section analyses the synchronisation of two fractional-order chaotic systems, presenting a new integer-order 

hyperchaotic system and outlining its equations. 

                                                                      𝐷𝜇𝑣 = 𝑀 (𝑣)𝑣                                                                               (12) 

Where 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛)
𝑠  ∈ ℝ𝑛 Let (𝑣) Let the state vector be denoted as X, 𝑀 (𝑣) 

represent the parametric coefficient matrix of states, and 0  signify the fractional commensurate order [24]. The 

establishment of slavery is    

                                                                     𝐷 𝑣̃ = 𝐴 (𝑣̃)(𝑣̃) + 𝑢(𝑠)                                                                             (13) 

Let  𝑢(𝑠) denote the controller to be constructed. The equation 𝑒(𝑠) = 𝑥̂(𝑠) − 𝑢(𝑠) is defined. It is feasible to get the 

error system:  

                                                                            𝐷𝑞𝑒 = 𝐹(𝑒, 𝑢) + 𝑢(𝑒, 𝑢)                                                                   (14) 

Let 𝐹(𝑒, 𝑢) Let b be defined as the difference between 𝐴(𝑢)and the square of 𝑢̂. The synchronisation issue may be 

transformed into the design of a controller 𝑢 

𝑙𝑖𝑚
𝑠→∞

‖𝑒(𝑠)‖ = 0  

To facilitate further analysis, a valuable theorem is introduced [16]. Examine a category of cascade-connected systems 

characterized by 

                                                                          𝐷𝑢1
𝑣 = 𝑓(𝑢1)                                                                                             (15) 

𝐷𝑢(𝑢1, 𝑢2) = 𝐴(𝑢1, 𝑢2)𝑢2 + 𝐵(𝑢1, 𝑢2) 𝑔(𝑥1)   where 𝑢1 ∈ ℝ
𝑛  𝑢2 ∈ ℝ

𝑚, 𝑓(0) = 0 𝑎𝑛𝑑 𝑔(0) = 0. 𝑓(𝑢1) and 𝑔(𝑢1) are both 

𝐶1 vector fields. 𝐴(𝑢1, 𝑢2) and 𝐵(𝑢1, 𝑢2) are 𝐶𝑚 and 𝐶𝑛  The coefficient matrix, correspondingly. 
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Theorem 8. [27]  The subsystem 𝐷𝑣  𝑢1 = 𝑓(𝑢1)  exhibits global asymptotic stability at 𝑢1 = 0, (2) 𝐵(𝑢1, 𝑢2)  is a 

bounded matrix and  𝑙𝑖𝑚
𝑠→∞

𝑔(𝑢1) = 0 (3) 𝐴(𝑢1, 𝑥2)  is a matrix with the following structure: ) 𝐴(𝑢1, 𝑢2)   

                                                       

(

 
 

𝐴11(. ) 𝐴12(. )

𝐴21(. ) 𝐴22(. )
⋯ 𝐴1𝑛(. )

⋮ ⋱ ⋮
⋮ ⋮

𝐴𝑛1(. ) …
⋯ 𝐴𝑛𝑛−1(. ) 𝐴𝑛𝑛(. )

)

 
 

 

Where 𝐴𝑖𝑗(. ) ≤ 0, 𝑖 = 𝑗 , 𝐴𝑖𝑗(. ) =  −𝐴𝑖𝑗(. ) 𝑖 ≠ 𝑗    then system (12) is globally asymptotically stable at the equilibrium   

(𝑈1, 𝑈2) = (0,0) 

Proof. Given the subsystem 

                                                                                       𝐷𝑈1
𝑉 = 𝑓(𝑈1)                                                                               (16) 

Exhibits global asymptotic stability alone at -1=0  

Require introspection of the subsystem  𝐷𝑞(𝑢1, 𝑈2)= 𝐴(𝑢1, 𝑢2) 𝑢2 + 𝐵(𝑢1, 𝑢2)𝑔(𝑢1)     

Given assumption (2), it is evident that   𝑙𝑖𝑚
𝑠→∞

𝑔(𝑢1) = 0   Let us investigate the existence of a bounded matrix referred 

to as 𝐵(𝑥1, 𝑥2) According to Lemma 3, it is clear that   𝑙𝑖𝑚
𝑠→∞

[ 𝐵(𝑢1, 𝑢2)𝑔(𝑢1)] = 0                                      This indicates that 

the second element or component in the system   

                                                   𝐷𝑣(𝑢1, 𝑢2)= 𝐴(𝑢1, 𝑢2) 𝑢2 + 𝐵(𝑢1, 𝑢2)𝑔(𝑢1)                                                                (17) 

Can be ignored as t approaches zero. To investigate the asymptotic stability of system (12), it is adequate to 

concentrate on the subsequent model 

                                              𝐷𝑞(𝑢1, 𝑢2)= 𝐴(𝑢1, 𝑢2) 𝑢2                                                                                                    (18) 

    We demonstrate that system (18) is globally asymptotically stable at equilibrium using three distinct methodologies 

cite29. (𝑢1, 𝑢2) = (0,0)       

Initially, let us analyse the following equation: 

                                                                           𝐴(𝑢1, 𝑢2)𝜑 = 𝜆𝜑                                                                                       (19) 

where λ is one of the eigenvalues of 𝐴(𝑢1, 𝑢2)    and  𝜑  is a non-zero eigenvector of the matrix (ν). Calculate the 

conjugate transpose and position it on either side of the equation. (19) and we can obtain       

                                                                  (𝐴(𝑢1, 𝑢2)𝜑)
𝑇 = 𝜑−𝑄                                                                                       (20) 

Combine (19) with (20) Furthermore, we may obtain  

                             𝜉𝑄 = (𝑃𝐴(𝑢1, 𝑢2) + 𝐴(𝑢1, 𝑢2)
𝑄𝑃)𝜑 = (𝜆 + 𝜆−) 𝜑𝑄𝑃𝜉                                                                   (21) 

Furthermore, the structure of  𝐴(𝑢1, 𝑢2) 

 

(

 
 

𝐴11(. ) 𝐴12(. )

𝐴21(. ) 𝐴22(. )
⋯ 𝐴1𝑛(. )

⋮ ⋱ ⋮
⋮ ⋮

𝐴𝑛1(. ) …
⋯ 𝐴𝑛𝑛−1(. ) 𝐴𝑛𝑛(. )

)

 
 

 

(

 
 

𝐴11(. ) 𝐴12(. )

𝐴21(. ) 𝐴22(. )
⋯ 𝐴1𝑛(. )

⋮ ⋱ ⋮
⋮ ⋮

𝐴−𝑛1(. ) …
⋯ 𝐴−𝑛𝑛−1(. ) 𝐴𝑛𝑛(. )

)

 
 

 

The matrix   𝐴(𝑢1, 𝑢2) clearly satisfies the continuity requirement. Lyapunov equation 
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                                        [𝐴(𝑢1, 𝑢2)𝑃 + 𝑃𝐴(𝑢1, 𝑢2)
𝑄 = −𝑄]                                                                                            (22) 

 

where 𝑃 = 1 is the real symmetric identity matrix and 

                                                      [

−2𝛬11
                       −2𝛬22 

                                               −2𝛬33

]                                                                                   (23) 

Forms a Hermitian matrix. Furthermore, we can exhibit      

                             𝛬(𝑢1, 𝑢2)𝑃 + 𝑃𝛬(𝑢1, 𝑢2)
𝑄 = (𝐴(𝑢1, 𝑢2)𝑃 + 𝑃𝛬(𝑢1, 𝑢2)

𝑄)𝑄                                                               (24) 

  Specifically,  𝛬(𝑢1, 𝑢2)𝑃 + 𝑃𝛬(𝑢1, 𝑢2)
𝑄     is also a Hermitian matrix. Finally, based on the characteristics of positive 

definite and negative semidefinite matrices, we may derive two inequalities. 

                                         (𝜑𝑄𝑃𝛬(𝑢1, 𝑢2) + (𝛬(𝑢1, 𝑢2)
𝐻𝑃)𝜑 = 𝜑𝑄(−𝑔)𝜑 ≤ 0)                                                             (25) 

𝜑𝑄𝑃𝜑 > 0 

Thus, by combining equation (18), we may obtain 

                                                                       (Ѳ+Ѳ−)=
𝜑𝐻(−𝑔)𝜑

𝜑𝑄𝑃𝜑
            ≤ 0                                                                    (26) 

Clearly, any eigenvalue a of the coefficient matrix 𝛬(𝑢1, 𝑢2)    satisfies the following inequalcity   

                                                          |𝑎𝑟𝑔 (Ѳ)| ≥
𝜋

2
>

𝛽𝜋

2
                      (Ѳ< 1)                                                                      (27) 

From 7, we may conclude that system (18) is globally asymptotically stable at the equiLibrium point when u1 and u2 

are both (0,0). This completes the evidence  

A new integer-order hyperchaotic system was introduced. The system’s equations are specified as 

𝑑𝑥

𝑑𝑡
= 𝑎1𝑢 − 𝑎1𝑦 + 𝑙𝑥 − 𝑥𝑢 

                                                         
𝑑𝑦

𝑑𝑡
   = 𝑏1𝑥 + 𝑢 − 𝑥2                                                                                                           (29) 

𝑑𝑧

𝑑𝑡
= 𝑥2 − 𝑐1𝑧 

𝑑𝑢

𝑑𝑡
= 𝑑1𝑢 

where the constants a1, b1, c1, d1 ∈ R. The fractional form of system (29) is described as 

𝐷,,𝑥 = 𝑎1𝑢 − 𝑎1𝑦 + 𝑙𝑥 − 𝑥𝑢 

                                                                                  𝐷,,𝑦   = 𝑏1𝑥 + 𝑢 − 𝑥2                                                                                (30) 

𝐷,,𝑧 = 𝑥2 − 𝑐1𝑧 

𝐷,,𝑢 = 𝑑1𝑢 

where 0 < 𝑎1,≤ 2 The system (30)Exhibits three equilibria.𝑇𝑖(𝑥, 𝑦, 𝑧, 𝑢) = 0,1,2 where 𝑇0(0,0,0,0) , 𝑆1(𝜓, 𝜓
ℎ 𝑎1⁄ , 𝑏1, 0) 

and 𝑇2 = (−(𝜓1, (𝜓1
ℎ 𝑎⁄ , 𝜓 = √𝑏𝑐, 𝑎 ≠ 0, 𝑏𝑐 > 0 . Furthermore, system (30) possesses the unique equilibrium  

𝑇0(0,0,0,0)    when𝑎1,  = 0 or𝑏1𝑐1,, < 0. Recently, numerous numerical techniques for solving FDS have emerged, 

including the variational iteration method (VIM), the transfer function approximation method in the frequency 

domain , Adomian’s decomposition method (ADM) and the predictor-corrector method (PECE), which demonstrates 

enhanced efficiency and is extensively utilized in practical applications [29]. Consequently, the fractional systems in 

this study are integrated utilizing the PECE framework to handle FDS, namely, Predict, Evaluate, Correct, and 

Evaluate. The PECE algorithm requires a total of 𝑛 = 5 × 104points and a discretization step of 2 × 10−3 
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THE DYNAMIC ANALYSIS 

This section addresses the examination of dynamical systems exhibiting chaotic and hyper chaotic behavior, which 

has considerable implications across several domains. In addressing these intricate systems, a primary priority is the 

development of strategies to successfully manage or regulate chaos. The Linear Feedback Gains Control (LFGC) 

framework is relevant here [28] [34]. 

CHAOTIC AND HYPER CHAOTIC ATTRACTORS. 

A chaotic attractor in a four-dimensional fractional-order system (30) is demonstrated using the parameters 𝑎1 =

−3, 𝑏1 = 15, 𝑐1 = 0.6, 𝑑1 = −0.0001, ℎ1 =  1, 𝑎𝑛𝑑 𝛼1 = 0.95.The outcomes are illustrated in Fig. 6. The Lyapunov 

exponents (LEs) Ω𝑖,𝑠 are calculated utilising Wolf’s approach [31] for the specified parameter values as follows:Ω1 =

 0.0172, Ω2 = −0.0001, Ω3 = −0.9154, Ω4 = −1.1197. If the maximum Ω𝑖  (MLE) surpasses zero, the system 

transitions into a chaotic state. However, the system is hyperchaotic if it incorporates two Ω𝑖,𝑠 >  0. Parameter values 

of 𝑎1 = −3, 𝑏1 = 15, 𝑐1 = 0.6, 𝑑1 = −0.0001, ℎ1 = −1.5, 𝑎𝑛𝑑 𝛼1 =  0.95 are used to generate hyperchaos in system 

(30). Figure 7 depicts the hyperchaotic attractor of system (30) for this parameter configuration. The values of Ωi, S 

are computed as follows: Ω1 = =  0.7861, Ω2 =  0.0204, Ω3 =  =  −0.0001, Ω4  =  −3.4472. 

CHAOS REGULATION WITH A LINEAR FEEDBACK GAINS CONTROL (LFGC) FRAMEWORK.  

We consider the fractional-order controlled system 

                                                           𝐷𝛼1−1 𝜃(𝑠) =  𝑁(𝜃(𝑠)) +  𝑈(𝜃(𝑠)), 𝛼1  ∈  (0, 1]                                                          (31) 

where 𝜃(𝑠) ∈ 𝑅𝑛 , 𝑁 denotes a nonlinear vector function, and 𝑈(𝜃(𝑠)) represents a linear control vector function. Let 

bar S be an equilibrium point at the origin for the uncontrolled variant of system (31). Consequently, we present the 

subsequent lemma [22]: 

Lemma 9. [31] If a Lyapunov function 𝑉(𝜃(𝑠)) exists for the controlled system (31) with 𝛼1 = 1, then the equilibrium 

point at the origin, bar T, is at least locally asymptotically stable (LAS). 0 < 𝛼1 < 1 

 For 𝑇0 = (0, 0, 0, 0) and the positive feedback control gains (FCGs) 𝐶𝑖 ∈  𝑅
+, 𝑖 =  1, 2, 3, 4, denote a regulated variation 

of the equations. (30) is 

𝐷𝛼1  𝑥 =  𝑎1𝑢 − 𝑎1𝑦 + (ℎ1  −  𝐶1) 𝑥 –  𝑥𝑢 

 𝐷𝛼1 𝑦 =  𝑏1𝑥 +  𝑢 −  𝑥𝑧 −  𝐶2 

                                                                                   𝐷𝛼1 𝑧 = 𝑥2  −  (𝐶3 + 𝑐1) 𝑧                                                                                      (32) 

𝐷𝛼1 𝑢 =  (𝑑1 − 𝐶4) 𝑢 

So, we have 

Theorem 10.  [26], The hyper chaotic attractors in eqns. (32) are suppressed to 𝑇0 = (0, 0, 0, 0)  provided that 

𝐶1 >  
1

4𝐶2𝐶4  −  (4𝑑1 +  1)
  

{(|𝑎1  +  𝑏1|
2 (𝐶4 − 𝑑1) +  

|𝑎1||𝑎1  +  𝑏1|
 

2
)  +  ( 

|𝑎|||𝑎1  +  𝑏1|

2
  +  |𝑎1|

2 𝐶2 )  + 
𝛿𝑦
2

(𝑐 +  𝐶3)
   ( 𝐶2 (𝐶4  −  𝑑1) −  

1 

4
 )}  

+ 𝛿𝑧  +  𝛿𝑢  +  ℎ1                                                                                                                                                 (33) 

𝐶2  >  
1

4𝐶4 − 4𝑑1
  

 𝐶3  >  −𝑐1, 𝐶4  >  𝑑1  

where |𝑦| <  𝛿𝑦, |𝑧|  <  𝛿𝑧, |𝑢| <  𝛿𝑢. 

Proof. The subsequent function is a contender for the Lyapunov function of the controlled hyper chaotic system (32) 

as 𝛼1 =  1 
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                                                            𝑉 (𝜃1, 𝜃2, 𝜃3, 𝜃4) =
∑ 𝜃𝑖

2 4
𝑖=1 

2
                                                                                                             (34) 

where 𝜃𝑖 refers to a state variable of eqns. (30), i.e. 𝜃 =  (𝜃1, 𝜃2, 𝜃3, 𝜃4)  =  (𝑥, 𝑦, 𝑧, 𝑢). Hence, we get 

𝐷1𝑉 =  ∑𝜃𝑖
  

4

𝑖=1 

𝐷1 𝜃𝑖 

 =  ( 𝜃3 − 𝜃4 +  ℎ − 𝐶1)𝜃1
2  −  𝐶2𝜃2

2  −  (𝐶3  +  𝑐1)𝜃3
2 + (𝑑1  −  𝐶4)𝜃4

2 + (𝑏1 − 𝑎1)𝜃1 𝜃2  −  𝜃1 𝜃2 𝜃3  +  𝑎1𝜃1𝜃4  +  𝜃2𝜃4 

 ≤  (𝛿𝑧  +  𝛿𝑢  −  𝐶1  +  ℎ1)|𝜃1|
2 − 𝐶2|𝜃2|

2 − (𝐶3  +  𝑐)|𝜃3|
2 + (𝑑1  −  𝐶4)|𝜃4|

2  + | 𝑏1 + 𝑎1||𝜃1| |𝜃2|  + 𝛿𝑦 |𝜃1| |𝜃3|  

+  |𝑎1||𝜃1|
   |𝜃4|  +  |𝜃2| |𝜃4|  =  −𝜁

𝑇𝑀𝜁                                                                                                      (35) 

Where 

𝜁 =  [|𝑥||𝑦| |𝑧|| 𝑢|]𝑇   , 𝑀 =

(

 
 

(−ℎ − 𝛿𝑧 − 𝛿𝑤 − 𝐶1) −| 𝑏1 + 𝑎1|/2 −𝛿𝑦/2 

−| 𝑏1 + 𝑎1|/2 𝐶2 0
−𝛿𝑦/2

−|𝑎1|/2

0
−1/2

𝐶3 − 𝑐 − 1
0

    

−|𝑎1|/2
−1/2
0

𝐶4 − 𝑑1)

 
 

 

The Hermitian matrix M is strictly positive if all inequalities (33) are fulfilled. Consequently, it ensues 

that 𝐷1 𝑉 (𝜃1, 𝜃2, 𝜃3, 𝜃4) <  0 for all (𝜃1, 𝜃2, 𝜃3, 𝜃4) ≠  (0, 0, 0, 0) belongs to a domain 𝛹 ⊂  𝐶3 that contains a 

neighborhood of (𝜃1, 𝜃2, 𝜃3, 𝜃4) = (0, 0, 0, 0). Therefore, it is shown that the function V represents a Lyapunov function 

for the system (32) with 𝛼1 =  1. Consequently, according to Lemma 1, we deduce that the equilibrium point at the 

origin of equations (32) is at minimum locally asymptotically stable when 0 <  𝛼1  <  1. This indicates that the 

hyperchaotic states of equations (30) are regulated to the origin.𝑇0 = (0, 0, 0, 0). 

The system described in equation (32) is integrated using of 𝑎1 = −3, 𝑏1 = 15, 𝑐1 = 0.6, 𝑑1 = −0.0001, ℎ1 =

 −1.5, 𝑎𝑛𝑑 𝛼1 =  0.95 and the FCGs 𝐶1 =  165,  𝐶2 = 𝐶3 = 𝐶4 =  1 which satisfy Theorem 4 . Also, according to Fig. 7, 

the positive bounds 𝛿𝑦, 𝛿𝑧, 𝛿𝑢 are specified as 𝛿𝑦  =  20, 𝛿𝑧  =  40, 𝛿𝑢  =  0.02. So, Fig. 1 illustrates the excellent 

stabilisation outcomes. 

 STABILIZING 𝑻𝟏,𝟐 = (±𝝍,±𝝍𝒉𝟏/𝒂𝟏, 𝒃𝟏, 𝟎) VIA LFGC. 

 Now, suppose that 𝑇 ′̅̅ ̅ =  (𝑡𝑥̅ , 𝑡𝑦̅ , 𝑡𝑧̅, 𝑡𝑢̅) represents the non-origin equilibrium points 𝑇1 𝑜𝑟 𝑇2. So, we use the 

transformation 𝜃′ = 𝜃 − 𝑇 ′̅̅ ̅ , 𝜃′ =  (𝑦1 , 𝑦2, 𝑦3, 𝑦4) S to translate the point 𝑇 ′̅̅ ̅= (𝑡𝑥̅, 𝑡𝑦̅ , 𝑡𝑧̅, 𝑡𝑢̅) to the origin of coordinates. 

Then a controlled version of eqns. (30) to the equilibrium point  𝑇 ′̅̅ ̅= (𝑡𝑥̅, 𝑡𝑦̅ , 𝑡𝑧̅, 𝑡𝑢̅), is introduced by 

                                                    𝐷𝛼  𝑦1  =  𝑎1𝑦4  −  𝑎1𝑦2  +  ℎ𝑦1  − 𝑦1𝑦4  +  𝑣
′
1                                                                              (36) 

𝐷𝛼𝑦2  = 𝑦1  +  𝑦4  − 𝑣𝑦3  +  𝑣′ 2  

𝐷𝛼  𝑦3 = 𝑦1
2  −  𝑐1𝑦3  +  𝑣′3   

𝐷𝛼𝑦4  =  𝑑1𝑦4  +  𝑣
′
4  

where  𝑣′1 ,  𝑣
′
2 ,  𝑣

′
3 ,  𝑣

′
4 are linear control functions given as 

                                          𝑣′1  =  −𝑎1𝑡𝑢̅  + 𝑎1𝑡𝑦̅ + 𝑡𝑢̅𝑦1 + 𝑡𝑥̅𝑦4 + 𝑡𝑥̅ 𝑡𝑢̅  −  ℎ1𝑡𝑥̅  −

 𝐶1𝑦1                                                             (37) 

 𝑣′ 2  =  −𝑏1𝑡𝑥̅  +  𝑡𝑧̅𝑦1  +  𝑡𝑥̅𝑦3  +  𝑡𝑥̅𝑡𝑧̅  − 𝐶2𝑦2 

𝑣′ 3  =  𝑐1𝑡𝑧̅ −  2𝑡𝑥̅𝑦1  −  𝑡 ̅𝑥
2
 − 𝐶3𝑦3 

𝑣′ 4 = −𝑑1𝑡𝑢̅  −  𝐶4𝑦4 
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Figure 1. The trajectories of equations (32) converge to 0 with parameters 𝑎1 = −3, 𝑏1 = 15, 𝑐1 = 0.6, 𝑑1 =

−0.0001, ℎ1 =  −1.5, 𝑎𝑛𝑑 𝛼1 =  0.95 and the FCGs 𝐶1 =  165,  𝐶2 = 𝐶3 = 𝐶4 =  1. 

Lemma 11. [32] The hyper chaotic states in system (36) are suppressed to 𝑇1,2 = (±𝜓,±𝜓ℎ1/𝑎1, 𝑏1, 0) if the linear 

controllers (37) are implemented provided that the conditions (33) hold. For the specified parameter set, FCGs and 

fractional order 𝛼1 =  0.95, the controlled system (36) undergoes numerical integration utilising the linear controllers 

(37). As stated in Lemma 2, all trajectories of equations (36) converge to 𝑇1,2 = (±𝜓,±𝜓ℎ1/𝑎1, 𝑏1, 0) .Thus, Fig. 2 and 

Fig. 3 depict the satisfactory stabilization results for 𝑇1 and 𝑇2, respectively. 

Example 1. Examine the subsequent time-dependent system characterized by fractional order linearity, whereby 

0 < 𝛽 < 1 

𝐷𝑡
𝛽

0
𝐶  𝑢1(𝑡) =  −𝑠𝑖𝑛2 (𝑠) 𝑢1(𝑠) − 𝑠𝑖𝑛(𝑠) 𝑐𝑜𝑠(𝑠)  𝑢2(𝑠)  

                                             𝐷𝑡
𝛽

0
𝐶  𝑢2(𝑡) =  −𝑠𝑖𝑛(𝑠)𝑐𝑜𝑠(𝑠) 𝑢1(𝑠) −  𝑐𝑜𝑠2 (𝑠) 𝑢2(𝑠)                                                                    (38) 

Utilising the conventional Lyapunov direct method, we may ascertain the stability of system (38) by examining a 

quadratic function as a positive definite Lyapunov candidate. 

 

Figure 2. The trajectories of equations (36) converge to 𝑇1 =  (±𝜓,±𝜓ℎ1/𝑎1, 𝑏1, 0).Utilising 𝑎1 = −3, 𝑏1 = 15, 𝑐1 =

0.6, 𝑑1 = −0.0001, ℎ1 = −1.5, 𝑎𝑛𝑑 𝛼1 =  0.95 and the FCGs 𝐶1 =  165,  𝐶2 = 𝐶3 = 𝐶4 =  1.  and controllers ((37)) . 

                                                              𝑉 (𝑢1(𝑠), 𝑢2(𝑠)) =
1

2
 𝑢1
2 (𝑠) +

1

2
𝑢2
2 (𝑠)                                                                               (39) 

By applying the fractional derivatives property described in reference [1], which asserts that 𝑢˙(𝑠)  = 𝐷𝑠
1−𝛽

0
𝐶  𝐷𝑠

𝛽
0
𝐶   𝑢(𝑠), 

it is possible to determine that 

𝑢˙1(𝑠) =  − 𝐷𝑠
1−𝛽

0
𝐶   [𝑢1(𝑠)𝑠𝑖𝑛

2 (𝑠) + 𝑢2(𝑠) 𝑠𝑖𝑛(𝑠) 𝑐𝑜𝑠(𝑠)] 
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                                              𝑢˙2(𝑠) =  − 𝐷𝑠
1−𝛽

0
𝐶   [𝑢1(𝑠)𝑠𝑖𝑛(𝑠) 𝑐𝑜𝑠(𝑠) + 𝑢2(𝑠) 𝑐𝑜𝑠

2  (𝑠)]                                                           (40) 

And then  

𝑑𝑤(𝑢1(𝑠), 𝑢2(𝑠))

𝑑𝑠
= 𝑢1(𝑠)𝑢˙1(𝑠) + 𝑢1(𝑠)𝑢˙2(𝑠) =

=  −𝑢1(𝑠) 𝐷𝑠
1−𝛽

0
𝐶  [𝑢1(𝑠)𝑠𝑖𝑛

2 (𝑠)]𝑢1(𝑠) 𝐷𝑠
1−𝛽

0
𝐶 [𝑢2(𝑠) 𝑠𝑖𝑛(𝑠) 𝑐𝑜𝑠(𝑠)] − 𝐷𝑠

1−𝛽
0
𝐶 [𝑢2(𝑠) 𝑐𝑜𝑠

2  (𝑠)]

− 𝐷𝑠
1−𝛽

0
𝐶 [𝑢1(𝑠)𝑠𝑖𝑛(𝑠) 𝑐𝑜𝑠(𝑠)]                                                                                                            (41) 

As indicated by Eq. (40), it is challenging to ascertain a definitive sign for the first derivative of the Lyapunov function, 

hence complicating the determination of stability conclusions. Utilising the fractional-order extension of the 

Lyapunov direct method and presenting the Lyapunov candidate function (39), together with Property 1, it can be 

deduce that 

𝐷𝑠
−𝛽

0
𝐶 𝑉 (𝑢1(𝑠), 𝑢2(𝑠)) =

1

2
 ∑ (

−𝛽
𝑙
)∞

𝑘=0 𝑢1
(𝑙)(𝑠) 𝐷𝑠

−𝛽−𝑙
0
𝐶 𝑢1(𝑠) +

1

2
 ∑ (

−𝛽
𝑙
)∞

𝑘=0 𝑢2
(𝑙)(𝑠) 𝐷𝑠

−𝛽
0
𝐶 𝑢2(𝑠)                                     (42)     

According to Eq. (42), assessing the fractional derivative of the Lyapunov function necessitates the computation of 

an infinite summation, including both higher-order integer and fractional derivatives of the system’s states (38). This 

assignment is clearly challenging. Nevertheless, employing Lemma with the Lyapunov candidate function (39), it is 

readily established that 

𝐷𝑠
−𝛽

0
𝐶 𝑉 (𝑢1(𝑠), 𝑢2(𝑠))  =  

1

2
 𝐷𝑠

−𝛽
0
𝐶  𝑢1

2  (𝑠) +
1

2
 𝐷𝑠

−𝛽
0
𝐶  𝑢2

2  (𝑠) 

≤ 𝑢1(𝑠) 𝐷𝑠
−𝛽

0
𝐶 𝑢1(𝑠)  +  𝑢2(𝑠) 𝐷𝑠

−𝛽
0
𝐶 𝑢2(𝑠))  =  −[𝑢1(𝑠) 𝑠𝑖𝑛(𝑠) + 𝑢2(𝑠) 𝑐𝑜𝑠(𝑠)]

2 ≤  0                                    (43) 

 

Figure 3. The trajectories of equations (36) converge to 𝑇2 = (−𝜓,−𝜓ℎ1/𝑎1, 𝑏1, 0).Utilising 𝑎1 = −3, 𝑏1 = 15, 𝑐1 =

0.6, 𝑑1 = −0.0001, ℎ1 = −1.5, 𝑎𝑛𝑑 𝛼1 =  0.95 and the FCGs 𝐶1 =  165,  𝐶2 = 𝐶3 = 𝐶4 =  1  , and controllers as 

specified in (37). 

The negative semi-definiteness of the fractional derivative of the Lyapunov function, as seen in equation (43), 

indicates that the origin of the system (38) is stable. Figure 4 depicts the evolution of the system states (38) under 

the condition of −𝛽 = 0.8. According to the prior analytical analysis applicable to all limited initial conditions, it can 

be deduced that the system’s origin stays stable when  

𝑢1(0) =  3 𝑎𝑛𝑑 𝑢2(0) =  6. 

Exemple 2. Examine the fractional order nonlinear system characterised by 0 < −𝛽 < 1, as represented by the 

equation . 

𝐷𝑠
−𝛽

0
𝐶   𝑢1(𝑠) =  −𝑢1(𝑠) + 𝑢2

3(𝑠) 

                                                                              𝐷𝑠
−𝛽

0
𝐶   𝑢1(𝑠) =  −𝑢1(𝑠) − 𝑢2(𝑠)                                                                         (44)  

Let we analyses the subsequent Proposed Lyapunov candidate function demonstrating positive definiteness 
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                                                                           𝑉 (𝑢1(𝑠), 𝑢2(𝑠)) =
1

2
 𝑢1
2 (𝑠) +

1

4
𝑢2
4 (𝑠)                                                               (45) 

Now, applying Lemma , it can be found that 

𝐷𝑠
−𝛽

0
𝐶  𝑤(𝑢1(𝑠), 𝑢2(𝑠))  =

1

2
𝐷𝑠
−𝛽

0
𝐶  𝑢1

2 (𝑠) +
1

4
 𝐷𝑠

−𝛽
0
𝐶  𝑢2

4 (𝑠)  ≤  𝑢1(𝑠) 𝐷𝑠
−𝛽

0
𝐶  𝑢1(𝑠) +

1

2
 𝑢2
2 (𝑠) 𝐷𝑠

−𝛽
0
𝐶  𝑢2

2 (𝑠) ≤

             𝑢1(𝑠) 𝐷𝑠
−𝛽

0
𝐶 𝑢2

3 (𝑠) + 𝑢1(𝑠) 𝐷𝑠
−𝛽

0
𝐶 𝑢2(𝑠)   =  −𝑢1

2 (𝑠) − 𝑢2
4(𝑠) < 0                                                                                (46)    

 

Figure 4. Evolution of the state 𝑢1(𝑠) (left) and 𝑢2(𝑠) (right) of the system (38), using a 𝛽 = 0.8 . 

 

Figure 5. Evolution of the state 𝑢1(𝑠) (left) and 𝑢2(𝑠) (right) of the system (44), using a 𝛽 =  0.8 . 

From the negative definiteness of the fractional derivative of the Lyapunov function in Equation (46), it can be shown 

from Corollary 1 that the origin of the system (44) is asymptotically stable. Figure 5 depicts the evolution of the system 

states with 𝛼 =  0.8. The early analytical investigation indicates that the system’s origin is asymptotically stable under 

the limited beginning conditions of 𝑢1(0)  =  2 𝑎𝑛𝑑 𝑢2(0)  =  −1. 
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Figure 6. Chaotic attractor of system (30) is observed when 𝑎1 = −3, 𝑏1 = 15, 𝑐1 = 0.6, 𝑑1 = −0.0001, ℎ1 =

 −1, 𝑎𝑛𝑑 𝛼1 =  0.95 . 

 

Figure 7. The hyperchaotic attractor of system (30) is observed when 𝑎1 = −3, 𝑏1 = 15, 𝑐1 = 0.6, 𝑑1 = −0.0001, ℎ1 =

 −1.5 𝑎𝑛𝑑 𝛼1 =  0.95 

CONCLUSION 

The research illustrates that controller design may effectively synchronise fractionalorder chaotic systems, hence 

guaranteeing safe communications and control systems. It outlines a systematic two-step controller design 

methodology that guarantees the accurate convergence of errors between master and slave systems to zero. The study 

also demonstrates the system’s capacity to maintain stability under varying settings. The research illustrates 

successful stabilisation results for two equilibrium points, S1 and S2, employing fractional control gains (FCGs) with 
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a fractional order of 𝛼 =  0.95[23][25]. The system’s origin exhibits asymptotic stability under diverse beginning 

circumstances, corroborated by the negative semidefiniteness of the Lyapunov function. The results highlight the 

effectiveness of fractional order dynamics in controlling chaotic systems and preserving their stability [28] [30]. 
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