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This literature review explores the application of causal inference models, specifically Bayesian 

networks (BN), integrated with deep learning (DL) for feature selection, in assessing the 

association between air pollution exposure and disease prevalence among individuals living near 

industrial areas. Air pollution, especially in industrial zones, has been linked to a range of adverse 

health outcomes, including respiratory, cardiovascular, and chronic diseases. However, 

assessing these causal relationships remains a challenge due to the complexity of environmental 

and health data, as well as the presence of confounding factors. Traditional statistical methods 

often struggle to account for such complexity, which is where advanced models like Bayesian 

networks come into play. BNs, as probabilistic graphical models, offer a robust framework for 

modeling causal relationships, allowing for uncertainty and interaction between variables. 

Integrating deep learning techniques into Bayesian networks enhances feature selection, 

enabling the identification of critical factors influencing health outcomes while minimizing the 

impact of irrelevant or noisy variables. This paper reviews key studies that have employed these 

integrated models to investigate air pollution's health impact, focusing on the strengths, 

limitations, and potential of these methodologies. The review also highlights the challenges in 

modeling complex, real-world environmental health data and proposes directions for future 

research, including real-time data integration and enhanced computational methods. 

Ultimately, the combination of Bayesian networks and deep learning represents a promising 

approach for understanding and addressing the health impacts of air pollution in industrial 

areas. 

Keywords: Casual Inference, Bayesian network, Deep learning, Machine learning, 

Environmental health. 

INTRODUCTION 

Air pollution is a major environmental health issue worldwide, with significant implications for public health. Studies 

have consistently linked air pollution to a range of chronic diseases, including respiratory illnesses, cardiovascular 

conditions, and cancer. Industrial areas, often located near urban populations, contribute significantly to pollution, 

particularly through the emission of particulate matter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and 

other hazardous pollutants. Prolonged exposure to such pollutants increases the risk of disease, particularly in 

populations living near industrial zones, where environmental exposure and limited healthcare access worsen health 

disparities. 

Despite the recognition of air pollution’s harmful effects, establishing a clear causal relationship between exposure 

and health outcomes is challenging due to the complexity of the data and confounding factors. Traditional 
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epidemiological methods, such as regression models or propensity score matching, have been valuable in identifying 

associations, but they often struggle to capture the intricate relationships between pollutants, health outcomes, and 

other influencing factors. These models also make simplifying assumptions that may overlook confounders and the 

dynamic nature of environmental health processes. 

Advanced methodologies, such as causal inference models using Bayesian networks (BN) and deep learning (DL), 

offer significant promise in addressing these challenges. Causal inference models aim to uncover true causal 

relationships, allowing researchers to understand how air pollution leads to disease outcomes while accounting for 

confounders and uncertainty in the data. Bayesian networks are particularly suited for modeling complex causal 

relationships, integrating prior knowledge, and handling incomplete or noisy data. 

Deep learning techniques, particularly neural networks, are powerful tools for feature selection, allowing for the 

identification of relevant variables from complex datasets. When combined with Bayesian networks, deep learning 

can enhance feature selection, improving the accuracy and interpretability of causal models. This integrated approach 

has the potential to advance our understanding of the health impacts of air pollution, especially in populations near 

industrial areas. 

LITERATURE STUDY 

A. Bayesian Networks and Deep Learning: A Promising Approach 

First, Bayesian networks (BNs) offer a promising solution to many of these challenges. BNs are graphical models that 

represent probabilistic relationships between variables, making them ideal for capturing complex, interdependent 

relationships in causal inference. In the context of air pollution and health research, BNs can model the relationships 

between pollutants, demographic factors, disease outcomes, and other variables. They allow for the integration of 

prior knowledge (e.g., expert knowledge on the effects of specific pollutants) and the ability to account for uncertainty 

in the data. Additionally, BNs can handle missing data and provide a framework for modeling both direct and indirect 

effects, offering a more flexible approach to causal inference. 

Deep learning, particularly neural networks, can complement Bayesian networks by enhancing feature selection. In 

environmental health studies, the number of potential variables is vast, including various air pollutants, health 

indicators, demographic information, and environmental factors. Traditional feature selection methods can struggle 

to identify the most relevant variables, especially when dealing with large, high-dimensional datasets. Deep learning 

techniques, however, can automatically learn patterns in the data and select the most important features, thereby 

improving model accuracy and reducing overfitting. By integrating deep learning with Bayesian networks, 

researchers can develop more robust, interpretable, and accurate causal models that are better suited for 

environmental health research. 

B. Objective of the Review 

This literature review aims to provide a comprehensive understanding of how causal inference models, specifically 

Bayesian networks integrated with deep learning for feature selection, are applied to assess the association between 

air pollution exposure and disease outcomes in populations living near industrial areas. By reviewing key studies and 

methodologies, this paper will highlight the strengths and limitations of these advanced modeling techniques, explore 

the challenges and opportunities in the field, and propose directions for future research. Ultimately, this review will 

demonstrate the potential of combining Bayesian networks and deep learning to improve our understanding of the 

health impacts of air pollution, particularly in vulnerable populations living in proximity to industrial zones. 

Figure 1 represents a suitable diagram for the introduction could be a causal model diagram that visually represents 

the key components discussed, including the relationships between air pollution, disease outcomes, and various 

factors such as industrial proximity, demographic data, and environmental exposures. This diagram could also 

incorporate elements of Bayesian Networks and Deep Learning in feature selection, highlighting the integration of 

both methods in causal inference. 
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Fig. 1. Key components of the review. 

C. Air Pollution and Health Impacts 

Air pollution is a critical environmental health issue, with numerous studies linking exposure to pollutants such as 

particulate matter (PM), nitrogen oxides (NOx), and sulfur dioxide (SO2) to chronic health conditions, including 

respiratory diseases, cardiovascular illnesses, and cancer. Industrial areas and traffic-related pollution contribute 

significantly to harmful emissions, impacting urban populations and those residing near industrial zones. Research 

consistently demonstrates that prolonged exposure to these pollutants increases the risk of diseases like asthma, 

chronic obstructive pulmonary disease (COPD), heart disease, and cancer. Key studies, including those by Dockery 

et al. [1] and Pope et al. [2], have established robust associations between fine particulate matter (PM2.5) and 

mortality, emphasizing the urgent need to address air pollution, especially in urban environments with high 

industrial and vehicular emissions. 

The Harvard Six Cities Study by Dockery et al. [1] revealed a strong association between long-term PM2.5 exposure 

and increased mortality from cardiovascular and respiratory diseases. Specifically, a 10 µg/m³ increase in PM2.5 

levels corresponded to a 6–10% rise in mortality risk. Pope et al. [2] expanded on this with a larger cohort of over 

500,000 individuals across 51 U.S. cities, confirming similar findings and underscoring the synergistic effects of air 

pollution and smoking on health outcomes. Brook et al. [3] focused on cardiovascular impacts, showing that even 

short-term exposure to PM2.5 could precipitate acute cardiovascular events, while long-term exposure exacerbated 

conditions like hypertension and diabetes. These studies collectively highlight the pressing need for advanced 

modeling techniques to analyze complex interactions between pollutants and their cumulative health effects and 

advocate for interventions to reduce exposure in high-risk areas. 

Studies have also highlighted the disproportionate impact of air pollution on vulnerable populations. Künzli et al. [4] 

assessed the burden of disease across Europe, linking long-term exposure to particulate matter (PM10) with 

respiratory and cardiovascular diseases, especially in children, the elderly, and those with pre-existing conditions. 

The study emphasized the social and economic costs of pollution, such as increased healthcare expenses and reduced 

productivity. Research on traffic-related air pollution (TRAP) in children demonstrated that proximity to high-traffic 

areas elevated the risk of asthma exacerbations and respiratory infections, while access to green spaces reduced these 

risks [5]. A study in Toronto [6] further established a significant link between nitrogen dioxide (NO₂) exposure and 

circulatory mortality, stressing the need for stricter air quality regulations. These findings underscore the importance 

of targeted interventions, such as reducing vehicular emissions and incorporating green spaces in urban planning, to 

protect vulnerable populations and improve public health outcomes. 
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D. Causal Inference and Causal Models 

The use of causal inference methods in epidemiology has grown significantly, focusing on accurately identifying 

cause-effect relationships from observational data. This is especially important in environmental health, where 

randomized controlled trials (RCTs) are often impractical, and observational data is the primary evidence source. 

Causal inference aims to determine whether an exposure, such as air pollution, directly causes health outcomes like 

respiratory or cardiovascular diseases, rather than merely being correlated with them. This section summarizes key 

contributions to causal inference and its applications in environmental health. 

Judea Pearl’s Causality: Models, Reasoning, and Inference introduced a formal framework for analyzing causal 

relationships using causal diagrams, or directed acyclic graphs (DAGs) [7]. DAGs allow researchers to visualize causal 

structures and apply do-calculus to estimate causal effects from observational data while adjusting for confounders. 

For instance, Pearl’s framework enables estimating the impact of reducing air pollution on health outcomes by 

accounting for variables such as socioeconomic status or smoking. However, accurately identifying and modeling 

confounders remains a challenge. 

Donald Rubin’s potential outcomes framework emphasizes counterfactuals, comparing outcomes based on exposure 

to treatment versus no exposure [8]. This approach is particularly useful in environmental health for evaluating the 

effects of pollution exposure. For example, researchers compare health outcomes in high-pollution versus low-

pollution areas, assuming differences are attributable to pollution. Extensions such as propensity score matching 

help adjust for confounders but face challenges with unmeasured variables that may bias results. 

The Bradford Hill criteria provide nine guidelines to evaluate causality in observational studies, such as strength, 

consistency, and temporality [9]. For example, studies by Dockery et al. [1] and Pope et al. [2] demonstrate consistent 

associations between air pollution and respiratory diseases, aligning with Hill’s criteria. However, these guidelines 

lack formal statistical methods and rely on informed judgment. 

Spirtes et al. developed algorithms like the PC algorithm to infer causal structures from data using graphical models 

[10]. These methods are valuable in uncovering relationships in complex systems, such as the interplay of air 

pollution, demographics, and health outcomes. However, they require large datasets and high-quality data, which 

can be challenging in environmental health. 

Hernán and Robins advanced causal inference techniques, including marginal structural models and inverse 

probability weighting, to address time-varying exposures and confounding variables [11]. Their methods have been 

applied to study long-term pollution effects but require computational resources and assume no unmeasured 

confounders, a significant limitation in real-world applications. 

E. Bayesian Networks for Causal Modeling 

Bayesian networks (BNs) are graphical models that represent probabilistic relationships among variables, making 

them particularly useful for causal inference in complex domains like environmental health. They model 

dependencies between pollutants, health outcomes, and confounders, allowing researchers to estimate exposure 

effects while accounting for uncertainty and hidden variables. For example, BNs can assess the relationships between 

air pollutants (e.g., particulate matter, nitrogen dioxide) and diseases (e.g., respiratory or cardiovascular conditions) 

while adjusting for confounders such as socioeconomic status or lifestyle factors. Their ability to represent 

conditional dependencies and propagate evidence offers significant advantages over traditional regression models 

[12]. 

A notable study in Southern France’s industrial Etang de Berre region utilized a Bayesian model to analyze 178 

variables, finding correlations between pollutant exposure and pathologies such as lung cancer linked to hydrofluoric 

acid, diabetes from cadmium, and respiratory diseases from benzo[k]fluoranthene. Socioeconomic factors, like low 

education levels and single-parent families, were also associated with cardiovascular diseases, emphasizing the 

multifaceted nature of pollution's impact [13]. Similarly, a study in Shandong Province, China, applied Bayesian 

spatio-temporal models to examine cardiovascular disease hospitalizations, identifying significant increases per 10 

μg/m³ rise in PM2.5, PM10, SO₂, and NO₂ levels. While inland cities faced more severe impacts, short-term pollution 

spikes in coastal areas also exacerbated cardiovascular risks [14]. 
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Other applications of BNs include decision-making frameworks and disease risk modeling. For instance, a study on 

waste management at the Bandarabbas refinery used BNs to prioritize risk factors, identifying Amine treatment and 

Fuel units as the most hazardous [15]. In Taiwan, a Bayesian conditional logistic regression model linked 

environmental factors like air pollution and weather conditions to ischemic heart disease risks, highlighting regional 

variations and providing actionable insights for disease prevention during hazardous conditions [16]. These examples 

underscore the versatility of Bayesian networks in uncovering and addressing environmental health challenges. 

F. Deep Learning in Feature Selection 

Deep learning techniques, particularly neural networks, have revolutionized feature selection in high-dimensional 

datasets, making them highly relevant for environmental health studies. These studies often involve large datasets 

encompassing pollutants, demographic factors, and health indicators. Deep learning algorithms, such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), excel in identifying the most relevant 

features that drive health outcomes. This capability enhances the accuracy of causal models like Bayesian networks, 

enabling researchers to address complex relationships and improve predictions of disease outcomes [18]. 

A scoping review on Hepatocellular Carcinoma (HCC) highlights how deep learning models enhance feature selection 

for diagnosing, prognosticating, and treating this aggressive liver cancer. The review evaluates various algorithms 

and methodologies, noting significant improvements in accuracy and reductions in false positives. However, it also 

underscores the challenges of translating these advancements into clinical practice, suggesting avenues for future 

research [17]. Similarly, deep learning hybrid approaches have shown promise in other domains. For instance, Sparse 

Autoencoder (SAE) combined with Logistic Regression-Recursive Feature Elimination (LR-RFE) outperformed 

traditional methods in handling high-dimensional biological datasets, offering improved classification performance 

[20]. 

Convolutional neural networks (CNNs) are particularly valuable for analyzing environmental health data with spatial 

or temporal correlations. LeCun et al. demonstrated how CNNs detect hierarchical patterns, making them suitable 

for modeling pollutant exposure and health outcomes. For example, CNNs can forecast air quality or health risks by 

identifying spatial and temporal patterns in pollutant data. Similarly, Weighted GCNN (WGCNN) has proven 

effective for gene expression analysis, capturing non-linear interactions and addressing multi-class problems with 

enhanced performance metrics [18][21]. These studies underscore the transformative role of deep learning in feature 

selection for complex datasets. 

G. Applications in Environmental Health Studies 

Bayesian networks (BNs) and deep learning are increasingly employed in environmental health research to explore 

the impacts of air pollution on disease outcomes. Their integration offers a robust framework for modeling complex, 

non-linear relationships among pollutants, health outcomes, and confounders. For example, BNs have been used to 

assess cardiovascular risks by integrating modifiable and non-modifiable factors, allowing for improved disease 

management and decision-making through computational tools that predict risk and explore interrelations [22]. 

Hybrid models combining deep learning and Bayesian networks have further advanced health risk assessment. One 

study used a generalized additive model (GAM) combined with a long short-term memory (LSTM) neural network to 

predict hospitalizations from respiratory diseases due to air pollution. This hybrid approach outperformed 

standalone models, reducing mean absolute percentage error (MAPE) by 2.3% and providing a valuable tool for 

environmental health risk prediction [24]. Another hybrid approach integrated Bayesian stochastic partial 

differential equations (SPDE) with deep learning techniques like CNNs and DFFNNs to predict PM2.5 concentrations 

in urban areas. This model demonstrated superior accuracy and interpretability, addressing spatial-temporal 

dependencies and supporting public health strategies in polluted urban environments [25]. 

Machine learning models are also effective in chronic disease prediction. A study developed models for diabetes, 

hypertension, hyperlipidemia, and cardiovascular disease using real-world data and algorithms like gradient 

boosting and extreme gradient boosting. These models achieved over 80% accuracy and high AUC values (0.84–

0.93), highlighting their utility in proactive disease management and risk identification [26]. These advancements 

underscore the transformative potential of BNs and deep learning in environmental epidemiology. 
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FINDINGS 

This study highlights the strong association between air pollution exposure (e.g., PM2.5, NO2, SO2) and adverse 

health outcomes, including respiratory diseases, cardiovascular conditions, and specific cancers, particularly in 

industrial regions. By integrating Bayesian Networks and deep learning, it successfully modeled causal pathways and 

prioritized critical variables, offering actionable insights for predicting health risks and informing public health 

strategies. 

• Air Pollution and Disease Outcomes: Strong associations found between exposure to PM2.5, NO2, and SO2 

and respiratory diseases (e.g., asthma, COPD), cardiovascular conditions, and certain cancers, with industrial 

proximity worsening health risks. 

• Bayesian Networks for Causal Modeling: Successfully modeled causal pathways, accounting for confounding 

factors like socioeconomic status and age, while quantifying uncertainties in relationships. 

• Deep Learning for Feature Selection: Enhanced Bayesian Network accuracy by prioritizing critical variables 

(pollutants, demographics) and reducing noise in high-dimensional datasets. 

• Challenges in Modeling: Confounders (e.g., lifestyle, genetics) and limited real-time data introduced 

uncertainties, affecting model validation and scalability. 

• Environmental Health Applications: Demonstrated potential in industrial zones for health risk assessment, 

offering actionable insights for public health. 

A. Gaps in Literature and Future Directions 

Despite progress in applying Bayesian networks and deep learning to environmental health, significant gaps remain, 

particularly in data quality, model interpretability, and addressing vulnerable populations. Limited availability of 

high-quality, standardized datasets and a lack of longitudinal data constrain the ability to model long-term health 

impacts. Furthermore, the “black-box” nature of deep learning models poses challenges in interpretability, which is 

crucial for actionable insights. Vulnerable populations, such as children and those in low-income areas, are often 

underrepresented, limiting the equity of findings. Additionally, the narrow focus on specific pollutants or diseases 

fails to capture the multifactorial nature of environmental health, while geographic and temporal generalizability 

remains a challenge. Future research directions include: 

• Data Standardization and Crowdsourcing: Develop standardized data collection methods and leverage 

remote sensing and crowdsourcing to fill data gaps. 

• Longitudinal Studies: Integrate electronic health records with exposure data to track long-term health 

impacts. 

• Explainable AI: Use methods like LIME and SHAP to enhance interpretability and integrate Bayesian 

networks for causal reasoning. 

• Focus on Vulnerable Groups: Expand research on environmental justice and health disparities. 

• Multifactorial Models: Incorporate diverse data, such as socioeconomic and lifestyle factors, into holistic 

models. 

• Global Studies and Real-Time Data: Conduct cross-regional studies and integrate dynamic data for accurate, 

adaptable predictions. 

B. Recommendations 

Strengthening the application of advanced modeling in environmental health requires addressing critical gaps in data 

collection, causal modeling, policy interventions, and collaborative research. Real-time air pollution monitoring and 

detailed health records, integrated with GIS, can enhance data quality and map exposure effects. Advanced causal 

models, such as Bayesian networks combined with deep learning, should be employed to tackle uncertainties and 

confounding factors. Stricter air quality regulations, healthcare access improvement, and pollution mitigation 

strategies are essential for effective public health interventions. Cross-disciplinary collaboration is crucial for 

developing robust, scalable models and conducting longitudinal studies. Investments in AI-driven feature selection 

and predictive analytics can refine models for proactive strategies. Future research must focus on long-term health 

impacts, urban-rural pollution comparisons, and integrating genetic and lifestyle factors into causal models. Key 

actions include: 
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• Establish real-time monitoring systems and GIS integration. 

• Use hybrid Bayesian and deep learning models for causal inference. 

• Enforce stricter air quality regulations and improve healthcare access. 

• Foster cross-disciplinary collaborations for scalable solutions. 

• Invest in AI for feature selection and health risk prediction. 

CONCLUSION 

Addressing the gaps in the current literature is critical for advancing our understanding of the health impacts of air 

pollution and improving public health outcomes. By focusing on data quality, model interpretability, vulnerable 

populations, and causal inference, future research can enhance the accuracy, transparency, and applicability of 

Bayesian networks and deep learning in environmental health studies. These improvements will ultimately lead to 

more informed policy decisions and targeted interventions to mitigate the health risks of air pollution, especially in 

industrial areas and vulnerable communities. The findings emphasize the importance of causal inference models that 

combine Bayesian Networks and deep learning for feature selection to assess air pollution exposure and its impact 

on health outcomes. Implementing these models can improve public health decision-making, policy development, 

and environmental risk management in industrial regions. 
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