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Revolutionary technologies like blockchain and artificial intelligence (AI) have come together 

due to the fast Internet of Things (IoT) growth. Thanks to these technologies coming together, 

complex infrastructures like "smart homes," "smart cities," and "smart industries" have become 

possible to build. While IoT gadgets may provide excellent connection and convenience, they 

often use insecure conventional network interfaces. These older communication protocols and 

interfaces may be vulnerable if they aren't securely upgraded and protected. This research has 

developed a strong framework that utilizes the AI along with blockchain technology capabilities 

to work with the security concerns related to smart home systems (SHS). To start, the research 

used an isolation forest (IF) algorithm with random segmentation, anomaly score computation, 

route length, as well as thresholding phases to get rid of the weird data in a normal dataset for 

SHS. To further categorize the data as either attack or non-attack, the dataset is then used to 

train classification algorithms including Catboost, K-nearest neighbors (KNN), support vector 

machines (SVM), and linear discriminate analysis (LDA). When protecting sensitive information 

from data manipulation assaults, it is also stored in an interplanetary file system (IPFS). In order 

to save non-attack data safely, IPFS functions as an onsite storage system; the generated hash is 

then sent to the immutable register of the blockchain. Different performance metrics were used 

to assess the proposed framework.   

Keywords: Blockchain, Artificial Intelligence, K-Nearest Neighbors, Linear Discriminate 

Analysis, Internet of Things 

 
1 INTRODUCTION 

In the next 30 years, the global use of renewable energy is predicted to increase by 147%. 2019 saw roughly 10 times 

as much money spent globally on renewable energy as it did in 2004. Furthermore, from 5.2% in 2007 to 13.4% in 

2019, the proportion of renewable electricity in the world's energy production has grown [1]. In order to meet these 

two needs, two cutting-edge technologies have been developed: AI and blockchain. AI enables the best possible 

operational management of power systems, while the blockchain offers decentralized energy market trading 

platforms. The goal of this study is to discuss how to use AI and blockchain technology in smart grids to enable 

prosumers to trade energy [2]. 

Smart grids (SGs) are designed to replace conventional grids that rely heavily on fossil fuels with distributed energy 

resources (DERs). They do this by combining several current and new technologies, such as digital communications 

and information, to handle a multitude of processes [3]. This study offers a comprehensive overview to enhance 

energy management systems employing AI techniques. In particular, in the next few years, building energy 

management systems will need to be improved. These advancements will be largely attributed to the role that AI 

methods play [4]. 

In this context, the literature has used blockchain knowledge, which has the automation characteristics, 

immutability, irreversibility, decentralization, consensus, and security, to address the issues that centralized IoE 
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architecture is now facing. Furthermore, another significant worry for Internet of Energy (IoE) technology is the 

security and privacy problems resulting from centralization [5]. This study suggests a safe energy trading system for 

residential properties based on blockchain technology. To choose miners and create blocks, a proof-of-computational 

closeness (PoCC) consensus mechanism is given. Additionally, an analytical energy pricing strategy aims to address 

the issue with current energy pricing strategies in a distributed trading environment [6]. 

In this article, an AI and blockchain-based IoT architecture is proposed, showcasing the combination of both 

technologies for IoT applications. Both qualitative and quantitative measurements are used to assess the performance 

of the proposed architecture [7]. Block IoT Intelligence: An AI-powered blockchain-enabled intelligent IoT 

architecture that offers an effective means of fusing blockchain as well as AI for IoT with existing methods [8]. 

The remaining tasks will be carried out using surveys. Part II offers a synopsis of a number of recent and ongoing 

projects. Section III defines the proposed approach. Section IV provides a summary of the results and analysis, and 

then the sources are given. 

2 RECENT WORKS FOR RESEARCH 

This research review some of the most current publications on IoT-based SHS in this section. Discover all the 

information you need in Table 1, which summarizes and identifies the pros and cons of the AI for categorization 

creation. 

Paper and Author  Method Advantage Limitation 

Kumari et al. [9] Blockchain 

(BC) and AI    

Integrate the BC skill 

along with AI in the 

ECM system 

highlight the research issues of 

the BC-AI-based ECM system 

Yang et al. [10]  IoT develop a blockchain-

based transactive energy 

management system 

evaluate the feasibility and 

performance 

Van Cutsem et al. [11] Blockchain advanced 

decentralized 

mechanisms that 

balance distributed 

supply as well as 

demand 

Considers only Smart-Buildings 

Ahmed et al. [12]  Blockchain and 

AI 

advanced AI‐based 

technologies and 

approaches, like, 

machine learning and 

deep learning 

Does not work for sustainable 

IoT applications 

Khattak et al. [13] IoT various new methods 

have been devised to 

meet modern society’s 

electricity needs 

Smart contracts of hyperledger 

fabric specify the permissions 

and resident’s access for a 

dynamic price 

Ali et al. [14] intelligent 

energy 

management 

systems 

various appraches along 

with new solutions 

proposed for managing 

the energy resources 

intelligently 

No real tune 

Pandiyan et al. [15] smart energy 

management 

Provides based on their 

applications. 

smart cities and delivers 

valuable insights for 

researchers, industry 

professionals, along with 

policymakers working towards a 

more sustainable future 
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Kumari et al. [9] discuss the SG system has faced many challenges in recent years, the massive expansion of 

distributed energy generation (EG) with renewable energy sources (RES), the widespread of IoT devices, the 

emergence of security pressures, and the objective of maintaining the SG efficiency, stability, as well as reliability. 

The energy cloud management (ECM) system, which integrates energy infrastructure with intelligent energy 

consumption as well as value-added services based on customer demand, was developed to address these problems. 

Secure data transfer and effective demand-side forecasting are essential for achieving objectives. The challenges of 

energy management make it very important to use BC and AI to discover sustainable solutions. 

Yang et al. [10] provided a blockchain-based transactive energy management system for IoT-enabled smart homes 

is developed. A comprehensive range of choices for smart houses to engage in transactive energy. In order to reduce 

grid load, smart houses may engage in vertical transactions with the grid, such as adding more solar energy to the 

system as well as offering demand response services. Peer-to-peer energy trading is one example of the horizontal 

transactions that smart homes may carry out in conjunction with other peers. 

Van Cutsem et al. [11] described the renewable energy sources (RES), this study proposes a decentralized 

cooperative distributed resource (DR) architecture for managing daily energy exchanges. By allowing participants to 

choose a community power profile for the day ahead, the suggested algorithm takes advantage of their flexibility and 

guarantees prediction tracking for the next day. In actuality, the algorithm is completely decentralized thanks to BC 

technology, which also ensures autonomous monitoring along with payment by smart contracts and provides a 

reliable channel of communication for participants. 

Ahmed et al. [12] applied to better understand how blockchain technology as well as AI are combining to create 

intelligent and sustainable IoT applications, this paper will look at this convergence. Our major discussion topic was 

how blockchain technology may help improve and establish sustainable IoT applications. A smart as well as 

sustainable conceptual framework based on the conversation, which makes use of cloud computing, IoT devices, also 

AI to analyze and gather relevant data. 

Khattak et al. [13] detailed the electric cars and renewable energy resources (RER). Large data saves, data loss, 

manipulation, and modification are among the current issues. Additionally, it does away with the need for 

middlemen. Its distributed architecture and inherent security make it an excellent choice for enhancing the services 

as a whole. Upon execution, the smart contract's rules are automatically enforced. 

Ali et al. [14] discussed the topic of intelligent energy management systems (IEMSs) has seen tremendous 

advancements over the last ten years, with new ideas and approaches put forward for intelligent resource 

management. Unexplored is a crucial problem that is linked to achieving the intended results: how to extract valuable 

insights from the dearth of scholarly literature in the era of digital publication. By turning the limited literature into 

visual presentations, this research suggests a unique approach to methodically reviewing the relevant studies in order 

to lessen the problem. 

Pandiyan et al. [15] described the developments in technology that lead to smart energy management. There is a 

lack of evidence from the aforementioned methods that smart home security systems can be enhanced via the 

integration of AI and blockchain. This research proposes the following additions as a result of the aforementioned 

articles on blockchain and anomaly detection implementation in SHS. 

• A secure framework with AI and BC to combat network-related attacks. There is an urgent need for strong 

security measures and cutting-edge security solutions since these systems are far more vulnerable to cyber 

threats and illegal access. 

•  The proposed study uses the typical SHS data set to train AI classifiers including Catboost, KNN, SVM, 

and LDA to categorize attack as well as non-attack data.  

• To exclude erroneous information from the initial dataset for the SHS, this work uses anomaly-detection 

algorithms like IF and local outlier factor (LOF) before classification.  

• To address concerns about data integrity, we also implemented the Ethereum blockchain, which is based 

on the IPFS protocol. For safe data storage, here is where AI classifiers' non-attack data may reside.  



652  
 

J INFORM SYSTEMS ENG, 10(10s) 

• The non-attack data is validated using a variety of user-defined methods in a smart contract that is 

specifically developed for that purpose. Integrating IPFS improves the blockchain network's 

responsiveness and scalability. 

• Various performance criteria, including accuracy of the blockchain, are used to assess the proposed 

system. 

3 PROPOSED METHODOLOGY 

For the IoT-based SHS, this section offers the framework used. The proposed framework consists of many layers, 

including AI and blockchain, that offer a sequential flow, including data collection, data classification, along with 

blockchain security. Figure 1 shows the entities of the proposed framework. 

3.1 AI Layer 

Various AI algorithms, including Catboost, KNN, SVM, and LDA, are used in this part to illustrate the AI layer 

working. Both "Dataset Description" and "Adoption of AI algorithms" make up this section. The following is an in-

depth description of each part. 

3.2 Dataset Description 

This work made use of the TON IoT dataset, which is a commonplace collection of data from SHS that includes 

several IoT sensors, including garage door, fridge, weather, and motion detectors. There are several distinct service 

profiles inside the whole dataset, such as those for IoT refrigerators, garage doors, location trackers, thermostats, and 

many more. Consider a dataset that includes weather (𝐷5), motion (𝐷4), garage door (𝐷1), fridge (𝐷2), GPS tracker 

(𝐷3), and other related data. Thus, the representation of a dataset for a SHS is denoted as 𝐷𝜖{𝐷1, 𝐷2, . . , 𝐷5} . Equation 

(12) represents the rows (𝑤) and columns (𝑞) count that make up each dataset (𝐷𝑖) 𝜖𝐷. 

𝐷𝑖
𝑤×𝑞

=𝐷𝑖
6401×5  (1) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The proposed framework 

3.3 Dataset Preprocessing 

Here, the dataset (𝐷𝑖) 𝜖𝐷 is preprocessed utilizing the following procedures. Missing values, infinite values, not a 

number (NaN), as well as data type casting are all examples of errors in 𝐷𝑖. Take into consideration the 𝐷𝑖  dimension, 

which is stated as 

                                           (

𝑑1,1 𝑑1,2 ⋯ 𝑑1,𝑞
⋮ ⋱ ⋮

𝑑𝑤,1 𝑑𝑤,2 ⋯ 𝑑𝑤,𝑞

)
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠
→      {1, 𝑖𝑛𝑓(∞), 𝑁𝑎𝑁}                (2) 
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where {” −”} are the missing values, NaN is the value as well as ∞ is infinity values that is filled employing the 

central tendency value, i.e., mean (ν). 

                                           

                                          (

𝑑1,1 − − ⋯ 𝑑1,𝑞
⋮ ⋱ ⋮

−𝑖𝑛𝑓 𝑑𝑤,2 ⋯ 𝑑𝑤,𝑞

)
𝑓𝑖𝑙𝑙𝑒𝑑 𝑤𝑖𝑡ℎ 𝑣
→         (

𝑑1,1 𝑣 ⋯ 𝑑1,𝑞
⋮ ⋱ ⋮

𝑣  𝑑𝑤,2 ⋯ 𝑑𝑤,𝑞

)                (3) 

The dataset normalization, 𝐷𝑖  was also examined. In this case, the ith column values of 𝐷𝑖  were not appropriately 

scaled, for instance, 𝑑1,1 ≫ 𝑑2,1or𝑑1,1 ≪ 𝑑2,1. The data set 𝐷𝑖 's columns must thus undergo normalization. We used 

the min-max scalar, written as in (4) 

                                                             𝜃 =
𝑑𝑖−𝑑𝑖

𝑚𝑖𝑛

𝑑𝑖
𝑚𝑎𝑥−𝑑𝑖

𝑚𝑖𝑛   (4) 

 Where  𝜃 the rescaled output for 𝐷𝑖, and falls inside the [0, 1] range. The lowest as well as maximum values of the 

ith column of 𝐷𝑖  are denoted as 𝑑𝑖
𝑚𝑎𝑥 and 𝑑𝑖

𝑚𝑖𝑛, respectively, where 𝑑𝑖 is the input value. Additionally, the datatype of 

several columns in the 𝐷𝑖  makes them unusable for AI models. For instance, an AI system based on conditional 

probability cannot adopt the column with the object datatype. Therefore, 𝐷𝑖has to undergo an appropriate datatype 

conversion.  

                                                                      𝑖𝑛𝑡 𝑑𝑖=(𝑖𝑛𝑡)𝑑𝑖                     (5) 

For the AI algorithms to train on the data set 𝐷𝑖, explicit data type casting is done in Equation (16). 𝐷𝑖 
′ is the final 

preprocessed dataset. 

3.4 Anomaly Detection 

After being preprocessed, the data set is passed on to the AI layer, where several AI models are used for anomaly 

detection. To verify the model's parameters, the preprocessed data set 𝐷𝑖 
′ is split into the training along with testing 

data sets. 

∀𝐷𝑖
′ = {

𝐷𝑡𝑟𝑎𝑖𝑛
′

𝐷𝑡𝑒𝑠𝑡
′    (6) 

The (𝐷𝑖 
′ ) training and testing sections, are denoted as D0 train and D0 test, respectively. The train_test_split () 

technique is used to divide the dataset into two parts: one for training (0.8:80%) and one for testing (0.2:20%). The 

model's validation encompasses the many parameters used to assess its performance. Rerunning the model on the 

test data has confirmed its correctness. The (𝐷𝑖 
′ ) dataset is checked for anomaly detection before classification. This 

checks to see whether the attacker has tampered with the dataset. AI models are trained on as well as deliver false 

results if an attacker has altered the data set values. The functionality of the whole SHS is thereby put at risk. To begin 

with, under the AI layer, the dataset (𝐷𝑖 
′ ) is iterated through anomaly-detection algorithms in order to identify data 

behavior or if the data are abnormal. The program detects anomalies or outliers in the data and categorizes them as 

anomaly or nominal data. We discovered that IF outperforms all other anomaly-detection algorithms in terms of how 

well it identifies outliers as anomalies via our model performance study. Comparable to the random forest method, 

IF follows a similar logic structure. To determine its behavior (anomaly or nominal), the tuple that is handled at a 

specific moment in time during the model iteration will be separated. An estimate is the quantity of divisions needed 

to identify the position of a certain point or tuple. Building an ensemble of isolation trees is how IF functions. For the 

construction of each isolation tree, a feature along with a split value within that feature's range are chosen at random. 

This is done in a cyclical fashion until every data point is placed in its own leaf node. According to what was said 

before, when the tree is built, the nature of that occurrence is determined by calculating the feature value of the 

anomaly score. A possible formulation for the anomaly score Z is  

                                                                                            𝑍(𝑜) = 2
−𝐸(ℎ(𝑜))

𝑐(𝑠)    (7) 

where o is the data point that is being used to generate the anomaly score. The term  (𝐸(ℎ(𝑜)))gives the average 

path length over all trees for each data point o in the ensemble. In addition, the normalization factor, denoted as 𝑐(𝑠), 
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is the isolation trees average path length; here, s is the total data points count. The formula provides a definition of 

the word 𝑐(𝑠),. 

                                                            𝑐(𝑠) = {
2ℎ(𝑠 − 1) − 2

𝑠−1

𝑛
, 𝑓𝑜𝑟 𝑠 > 2

1, 𝑓𝑜𝑟 𝑠 = 2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (8) 

The point's behavior is determined by the anomaly score Z value. Anomaly is classified as a score that is close to 1. 

It is classified as a minimum point if it is close to 0.5. The anomaly-free dataset, which contains just nominal data, is 

the updated dataset 𝐷𝑎. 𝐷𝑎 still contains attack as well as non-attack data. To classify the data in 𝐷𝑎, classification 

algorithms are thus required. A number of performance indicators are used to classify the data once supervised 

learning algorithms have been created and validated. For classification catbbost algorithm is used in the work and is 

compared with some other AI algorithms. 

Gradient Boosting Decision Tree (GBDT) is the foundation of CatBoost, a machine learning framework. After a 

weak learner finish learning, the GBDT method calculates the current loss function gradient also utilizes the next 

weak learner to fit the gradient. Decision trees are utilized as weak learners in this process. The sum of these weak 

learners becomes a strong learner in due time. Some of CatBoost's most notable characteristics are the usage of an 

enhanced GBDT algorithm and the following:  

(1) Catboost solves the issue of having too much categorical data in intrusion detection system by adding a way to 

process categorical variables that uses both numerical encoding and one-hot encoding. This approach is able to 

effectively handle categorical features. This is the encoding technique that CatBoost employs for category features 

when their unique value count is higher than the threshold. To be more specific, let's pretend that we have a dataset 

of observations denoted as 𝐷 = (𝑋𝑖𝑌𝑖), where i ranges from 1 to n. In this dataset, 𝑋𝑖 is a vector containing m 

characteristics, some of which are numerical and some of which are categorical. 𝑌 is a label value belonging to the set 

R. The encoded value of 𝑥𝜎𝑝,𝑘 is given by the permutation 𝜎 = (𝜎1, … , 𝜎𝑛). 

∑ [𝑥𝜎𝑗,𝑘=𝑥𝜎𝑝,𝑘]𝑌𝜎𝑗+𝑎.𝑃
𝑝−1
𝑗=1

∑ [𝑥𝜎𝑗,𝑘=𝑥𝜎𝑝,𝑘]𝑌𝜎𝑗+𝑎
𝑝−1
𝑗=1

   (9) 

Iverson brackets, denoted by [·], are defined as follows: [𝑥𝑗,𝑘 = 𝑥𝑖,𝑘] =1 if 𝑥𝑗,𝑘= 𝑥𝑖,𝑘 and 0 otherwise. Prior values are 

P and a > 0. Records in the dataset will have various encodings based on their placements, even if they have the same 

feature value, as shown in the calculation. 

(2) To handle highly unbalanced data, Catboost offers a weighted cross-entropy loss function that makes it simple 

to modify the weight of various variables in the loss function. It has the potential to rectify the systemic issue of 

category imbalance [17].  

In anomaly detection, catboost thus evaluate the risk related with a certain data point or location. This allows to 

make educated judgments. The proposed system produces an alert if the model's behavior is discovered to be an 

attack after classification. Conversely, the data is saved in the BC network defined in the BC layer if the behavior is 

determined to be non-attack. 

3.5 Blockchain Layer 

This layer is responsible for transmitting as well as securely storing the AI layer's non-attack data. An attacker may 

theoretically launch many security attacks against a SHS since its non-attack data is saved in a online storage. That 

is why it's crucial to have transparent, secure storage that can deal with data integrity concerns. One significant 

answer to this problem is blockchain technology. We implemented it by creating a smart contract that verifies 

incoming data that is not related to attacks. After the AI classifier validates the incoming data for non-attack 

purposes, IPFS permits the data to be kept secure. An application programming interface (API) for Filebase that 

enables programmatic interaction with IPFS enables this. A unique content identifier (CID) is obtained in order to 

access the material later, when the smart contract's certified data is published to IPFS via Filebase. In addition, IPFS 

may calculate data hashes and send them to an immutable blockchain ledger. The blockchain network becomes 

visible when all SHS entities are required to register with it. Enlightening the security of the SHS is possible thanks 

to the transparency aspect of blockchain, which allows one to identify the person responsible for data modification 

[16]. 
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4 RESULTS 

4.1 Analysis of Results 

This research uses the Jupyter Notebook for implementation task. Also, the proposed analysis results is done with 

diverse performance parameters, including statistical measures. This research employs the anaconda distribution 

6.3.0 version. 

4.2 Discussion 

This section displays the outcomes of anomaly detection in SHS. When looking at the accuracy of identifying 

abnormalities from the SHS, Figure 2 shows how well the proposed framework has done. The x-axis shows the 

detection accuracy, while the y-axis shows the chosen anomaly-detection algorithms (i.e., IF as well as LOF).  

 

Figure 2. Anomaly-detection algorithms accuracy 

With a remarkable 99.95% accuracy rate, the IF-SKL model reveals anomalies more effectively than any of the 

competing algorithms. Because of the vital importance of identifying even small security breaches in a smart home 

context, this shows that the algorithm is excellent at separating unusual activity. On a consistent basis, IF-SKL 

outperforms LOF (74.34%), One-Class SVM (84.38%) [18], DBSCAN (87.33%) [19], and autoencoders (93.47%) [20]. 

IF-SKL excels in handling high-dimensional data and massive datasets. The data produced by smart home devices 

and sensors is often high-dimensional, and the number of these devices and sensors might be large. Instead of 

autoencoders or DBSCAN, which may be inefficient with big, noisy datasets or demand a lot of computational 

resources, IF-SKL can handle this kind of data very well. In Internet of Things (IoT) settings where data streams are 

continuous and large-scale anomaly detection is required in real time, scalability and speed are crucial. 

Unpredictability and diversity in data supplied by various IoT devices are major obstacles for smart home systems. 

By removing the very out-of-the-ordinary data points, Isolation Forest is able to successfully deal with noisy data and 

outliers. On the other hand, the accuracy of LOF, which stands at 74.34%, is lower because it struggles with sparse or 

highly variable datasets. Although it works well, One-Class SVM isn't as resilient as IF-SKL when it comes to handling 

the specific data features of smart homes. Unlike DBSCAN, which depends on establishing distance thresholds and 

the minimum number of points, IF-SKL does not need sophisticated parameter adjustment. This facilitates its 

implementation and adjustment for real-world uses. IF-SKL outperforms more complicated models like 

autoencoders due to its efficiency and simplicity, making it suitable for real-time deployment in settings with limited 

resources like smart homes. For smart homes, where quick actions are required to reduce security concerns, IF-SKL's 

real-time anomaly detection efficiency is crucial. For real-time detection in real-world settings, algorithms such as 

autoencoders are efficient but may be computationally costly. IF-SKL is the top option for smart home security 

because it combines excellent accuracy with little computational overhead and speed. 

4.3 Classification-Based Result Discussion 

Various AI classifiers, including catboost, KNN, SVM, and LDA were used to implement the findings in this 

subsection. AI classifiers, which fall under the umbrella of supervised learning, are therefore more effective in these 
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situations for classification tasks. In Figure 3, we can see how the accuracy used on the dataset, which contains the 

class labels "1" and "0" for anomaly and nominal, respectively, is compared. An AI classifier's accuracy may be 

expressed in the following way: Where µ, γ, θ, along with 𝜗  stand for the true positive, true negative, false positive, 

as well as false negative values. Accuracy is equal to the sum of these four variables plus one. 

                                                                𝐴𝑐𝑐 =
𝜇+𝛾

𝜇+𝛾+𝜃+𝜗
  (10) 

 

Figure 3. Accuracy of AI classifiers. 

To further understand how well the catboost algorithm worked, additional outcome parameters are shown in 

Figures 3. Summarizing a classifier's performance, a confusion matrix is a statistical performance metric that relies 

on matrices. The confusion matrix incorporates the following parameters: One important indicator is the true positive 

(µ) value, which indicates how many positive outcomes were accurately classified as positive according to the data. 

The false-positive category is the sum of all the negative results that the algorithm falsely iterates as positive 

outcomes. 3. True Negative (): This group includes all outcomes that were correctly classified as negative. 4. The 

fourth parameter is the false negative (𝜗) value, which is the sum of all the negative outcomes that were mistakenly 

forecast as positive.  

When dealing with tabular or structured data, the gradient boosting technique CatBoost shines. Its foundation in 

decision trees allows it to efficiently and quickly deal with categorical data directly, without requiring their 

preprocessing into one-hot encoding. The 99.85% accuracy rate is a testament to CatBoost's prowess in huge datasets 

with intricate feature interactions and in data classification tasks with non-linear correlations. Smart home systems 

often collect complex, multi-dimensional data, which includes multiple categorization variables such as the types of 

devices, their on/off states, and more. The model's exceptional performance is largely attributable to its 

regularization-based ability to avoid overfitting and its efficient handling of categorical data. Internet of Things (IoT) 

settings, such as smart houses, often include complicated, non-linear correlations and interactions between features; 

CatBoost outperforms more conventional algorithms in this regard. 

For instance-based learning, there is KNN, a straightforward algorithm. This method is able to categorize data 

points by taking into account the feature space majority class of their K nearest neighbors. This method is known as 

a lazy learner, as it doesn't require any specific training. With an accuracy of 99.53%, KNN is clearly doing well on 

your dataset. KNN excels when you properly partition the data and select the appropriate K value. When compared 

to other algorithms, it performs better when using the correct distance metric, such as the Euclidean distance. 

Because IoT devices in smart home systems often produce data that is relatively close in feature space, the KNN 

algorithm is a suitable match. With a discernible pattern among the data points, the algorithm's simplicity makes it 

useful. For smaller to medium datasets and easier challenges, KNN usually works effectively. But when working with 

high-dimensional data or massive datasets, it could be sluggish. Because of its superior performance compared to 
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more complicated models like SVM or LDA, its accuracy in this case implies that the data may not be too sparse or 

high-dimensional. 

One use of SVMs is in classification tasks that need supervised learning. To do this, it searches the feature space 

for a hyperplane that effectively divides the classes. In order to improve generalization to new data, the model strives 

to increase the margin between the two classes. SVM demonstrates good performance on the dataset, with an 

accuracy of 97.29 percent.  When there is a large gap between the classes, SVM performs well. It is well-suited for 

complicated data because, thanks to kernels, it can successfully handle non-linear boundaries. By identifying the 

limits between typical and anomalous data points, SVMs are able to successfully categorize data in smart home 

systems. Despite their effectiveness, SVMs are sensitive to kernel and parameter choices (such as C and gamma). 

Data that is high-dimensional, like in smart homes equipped with several sensors, might make SVM inefficient 

compared to CatBoost, which is designed to handle such complexity. 

The goal of linear combination of features (LDA), a linear classification approach, is to identify the optimum way 

to distinguish between classes. To establish a decision border between the classes, LDA optimizes the ratio of inter-

class variance to within-class variance, in contrast to logistic regression that employs probability for classification. 

When the data shows a linear separation between the classes, LDA performs well (97.15% accuracy). It becomes quite 

helpful when the classes are well defined and the data follows a normal distribution. By reducing the dimensionality, 

LDA makes the classification problem simpler and is therefore well suited to high-dimensional data. When dealing 

with complicated interactions (non-linearity), LDA may not function as well as it does with simpler, linearly separable 

datasets. However, more complicated systems, such as smart homes, benefit from the performance of CatBoost and 

KNN because of their superior handling of non-linear connections. 

Because it is so good at dealing with complicated feature interactions and non-linear correlations, CatBoost gets 

the best accuracy (99.85%). It has built-in support for categorical data and is resistant to overfitting. Using its 

gradient boosting approach, it may build a powerful model by combining the strengths of several weak learners, such 

as decision trees. Smart home systems, dealing with complex, high-dimensional data, benefit from CatBoost's 

superior processing power on large datasets, which includes categorical characteristics, and its ability to prevent 

overfitting. KNN achieves an impressive 99.53% accuracy using a straightforward and easy-to-understand method. 

Some datasets involving smart homes may include data points that are comparable in feature space, making it an 

effective choice. However, performance could suffer with high-dimensional data (the curse of dimensionality), and 

computational costs might increase with dataset size. SVM achieves respectable results (97.29% accuracy) because it 

establishes distinct decision boundaries across classes. When there is a distinct boundary between the two variables, 

it works well. However, it may not always outperform alternatives such as CatBoost and may struggle with data with 

numerous dimensions. When data is linearly separable, LDA does a decent job (97.15 percent accuracy), but it has a 

challenging time when feature correlations aren't linear. Algorithms like CatBoost outperform LDA when dealing 

with IoT data, which might include intricate patterns. Once the validation is complete, the secure storage system 

based on IPFS receives the data that was not a victim of an attack. 

5 CONCLUSION 

To address security risks connected with SHS, the article proposed a secure as well as intelligent framework. To 

eliminate SHS anomalous data, the proposed AI framework makes use of the automation along with intelligence of 

AI algorithms. This is performed by training an IF algorithm that employs an ensemble strategy to identify as well as 

remove anomalous data points from the data set. The AI classifiers are trained to classify data once the anomalous 

data have been deleted. Only non-attack data is permitted to help improve the performance of the smart framework, 

which scarifies the attack data. In addition, the non-attack data is sent to the immutable blockchain nodes to fortify 

the SHS security. By storing smart home non-attack data on blockchain nodes, the likelihood of data tampering is 

reduced. After comparing the proposed framework to the existing work, the findings clearly demonstrate greater 

performance. To lessen the burden on participants and the environment, we want to use proof-of-stake (PoS) and 

hybrid methods in the future work.  

REFERENCES 

[1] Li, Joey, Munur Sacit Herdem, Jatin Nathwani, and John Z. Wen. "Methods and applications for Artificial 

Intelligence, Big Data, Internet of Things, and Blockchain in smart energy management." Energy and AI 11 

(2023): 100208. 



658  
 

J INFORM SYSTEMS ENG, 10(10s) 

[2] Hua, Weiqi, Ying Chen, Meysam Qadrdan, Jing Jiang, Hongjian Sun, and Jianzhong Wu. "Applications of 

blockchain and artificial intelligence technologies for enabling prosumers in smart grids: A review." 

Renewable and Sustainable Energy Reviews 161 (2022): 112308. 

[3] Kumar, Nallapaneni Manoj, Aneesh A. Chand, Maria Malvoni, Kushal A. Prasad, Kabir A. Mamun, F. R. Islam, 

and Shauhrat S. Chopra. "Distributed energy resources and the application of AI, IoT, and blockchain in smart 

grids." Energies 13, no. 21 (2020): 5739. 

[4] Aguilar, J., Alberto Garces-Jimenez, M. D. R-moreno, and Rodrigo García. "A systematic literature review on 

the use of artificial intelligence in energy self-management in smart buildings." Renewable and Sustainable 

Energy Reviews 151 (2021): 111530. 

[5] Miglani, Arzoo, Neeraj Kumar, Vinay Chamola, and Sherali Zeadally. "Blockchain for Internet of Energy 

management: Review, solutions, and challenges." Computer Communications 151 (2020): 395-418. 

[6] Samuel, Omaji, Nadeem Javaid, Turki Ali Alghamdi, and Neeraj Kumar. "Towards sustainable smart cities: A 

secure and scalable trading system for residential homes using blockchain and artificial intelligence." 

Sustainable Cities and Society 76 (2022): 103371. 

[7] Sharma, Ashutosh, Elizaveta Podoplelova, Gleb Shapovalov, Alexey Tselykh, and Alexander Tselykh. 

"Sustainable smart cities: convergence of artificial intelligence and blockchain." Sustainability 13, no. 23 

(2021): 13076. 

[8] Singh, Sushil Kumar, Shailendra Rathore, and Jong Hyuk Park. "Blockiotintelligence: A blockchain-enabled 

intelligent IoT architecture with artificial intelligence." Future Generation Computer Systems 110 (2020): 721-

743. 

[9] Kumari, Aparna, Rajesh Gupta, Sudeep Tanwar, and Neeraj Kumar. "Blockchain and AI amalgamation for 

energy cloud management: Challenges, solutions, and future directions." Journal of Parallel and Distributed 

Computing 143 (2020): 148-166. 

[10] Yang, Qing, and Hao Wang. "Privacy-preserving transactive energy management for IoT-aided smart homes 

via blockchain." IEEE Internet of Things Journal 8, no. 14 (2021): 11463-11475. 

[11] Van Cutsem, Olivier, David Ho Dac, Pol Boudou, and Maher Kayal. "Cooperative energy management of a 

community of smart-buildings: A Blockchain approach." International Journal of electrical power & energy 

systems 117 (2020): 105643. 

[12] Ahmed, Imran, Yulan Zhang, Gwanggil Jeon, Wenmin Lin, Mohammad R. Khosravi, and Lianyong Qi. "A 

blockchain‐and artificial intelligence‐enabled smart IoT framework for sustainable city." International 

Journal of Intelligent Systems 37, no. 9 (2022): 6493-6507. 

[13] Khattak, Hasan Ali, Komal Tehreem, Ahmad Almogren, Zoobia Ameer, Ikram Ud Din, and Muhammad 

Adnan. "Dynamic pricing in industrial internet of things: Blockchain application for energy management in 

smart cities." Journal of Information Security and Applications 55 (2020): 102615. 

[14] Ali, Muhammad, Krishneel Prakash, Md Alamgir Hossain, and Hemanshu R. Pota. "Intelligent energy 

management: Evolving developments, current challenges, and research directions for sustainable future." 

Journal of Cleaner Production 314 (2021): 127904. 

[15] Pandiyan, Pitchai, Subramanian Saravanan, Kothandaraman Usha, Raju Kannadasan, Mohammed H. 

Alsharif, and Mun-Kyeom Kim. "Technological advancements toward smart energy management in smart 

cities." Energy Reports 10 (2023): 648-677. 

[16] Shah, Khush, Nilesh Kumar Jadav, Sudeep Tanwar, Anupam Singh, Costel Pleșcan, Fayez Alqahtani, and Amr 

Tolba. "AI and Blockchain-Assisted Secure Data-Exchange Framework for Smart Home Systems." 

Mathematics 11, no. 19 (2023): 4062. 

[17] Wei, Zizhong, Fanggang Ning, Kai Jiang, Yang Wang, Zixiang Bi, Qiang Duan, Jichen Zhang, and Rui Li. 

"CatBoost-based Intrusion Detection Method for the Physical Layer of Smart Agriculture." In ITM Web of 

Conferences, vol. 60, p. 00009. EDP Sciences, 2024. 

[18] Vos, Kilian, Zhongxiao Peng, Christopher Jenkins, Md Rifat Shahriar, Pietro Borghesani, and Wenyi Wang. 

"Vibration-based anomaly detection using LSTM/SVM approaches." Mechanical Systems and Signal 

Processing 169 (2022): 108752. 

[19] Jain, Praphula Kumar, Mani Shankar Bajpai, and Rajendra Pamula. "A modified DBSCAN algorithm for 

anomaly detection in time-series data with seasonality." Int. Arab J. Inf. Technol. 19, no. 1 (2022): 23-28. 

[20] Zhou, Yingjie, Xucheng Song, Yanru Zhang, Fanxing Liu, Ce Zhu, and Lingqiao Liu. "Feature encoding with 

autoencoders for weakly supervised anomaly detection." IEEE Transactions on Neural Networks and 



659  
 

J INFORM SYSTEMS ENG, 10(10s) 

Learning Systems 33, no. 6 (2021): 2454-2465. 


