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The rising incidence of skin cancer necessitates the development of accurate and efficient 

diagnostic methods. This study introduces a novel approach for detecting skin cancer using an 

encoding-decoding technique with convolutional neural networks (CNNs) to enhance feature 

extraction from skin lesion images. Advanced CNN architectures, including DenseNet201, 

VGG16, and Xception, are utilized to classify skin lesions into seven categories. A thorough 

evaluation on a large dataset confirms the effectiveness of the proposed method in accurately 

identifying various types of skin cancer. Furthermore, a comparative study of multiple CNN 

models provides key insights into their relative strengths and limitations for diagnostic purposes. 

This research contributes to improving computer-aided skin cancer detection, paving the way for 

more reliable and accessible screening solutions. 
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Introduction 

Skin cancer is a growing global public health concern, with its incidence steadily rising over the past decades. 

According to the World Health Organization (WHO), it accounts for nearly one-third of all cancer diagnoses, making 

it the most common form of cancer in humans. Various factors, including genetic susceptibility and prolonged 

exposure to ultraviolet (UV) radiation, contribute to its development. However, early detection remains crucial for 

effective treatment and improved patient outcomes. In this context, advancements in artificial intelligence (AI) and 

machine learning (ML) offer significant potential to enhance the accuracy and efficiency of skin cancer detection. 

Identifying and categorizing skin lesions provide distinct challenges owing to the variety of lesion types and their 

nuanced visual attributes. Conventional skin cancer diagnostic techniques predominantly depend on dermatologists' 

visual assessments, which may be subjective and susceptible to inaccuracies, especially when lesions display confusing 

characteristics. Computer-aided diagnostic (CAD) systems utilizing machine learning algorithms have become 

essential instruments for dermatologists to detect and classify skin cancer. These systems evaluate digital images of 

skin lesions to identify pertinent aspects and categorize them as benign or malignant, assisting doctors in making 

educated diagnosis choices. 

In recent years, deep learning techniques, especially convolutional neural networks (CNNs), have exhibited 

significant success in numerous picture identification tasks, including medical image analysis. Convolutional Neural 

Networks (CNNs) are well designed for skin cancer detection as they can autonomously learn distinguishing 

characteristics from unprocessed image data, eliminating the necessity for manual feature extraction. Extensively 

annotated datasets, such as the International Skin Imaging Collaboration (ISIC) dataset, facilitate the development 

and evaluation of CNN-based computer-aided diagnostic systems for skin cancer detection. 

Notwithstanding advancements in automated skin cancer detection, some obstacles remain, such as categorizing 

skin lesions into various subtypes and elucidating model predictions in clinical environments [8]. Researchers have 

investigated innovative methods integrating feature extraction techniques with CNN architectures to enhance 
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classification performance. We propose a comprehensive approach for detecting skin cancer that integrates an 

encoding-decoding algorithm with the latest CNN architectures, including DenseNet201, VGG16, and Xception. 

The encoding-decoding approach is a feature extraction tool, capturing hierarchical representations of skin lesion 

images that CNNs utilize for classification. This hybrid methodology utilizes the synergistic advantages of feature-

based and data-driven techniques, thereby augmenting the discriminative capability of the CAD system. We broaden 

the classification job beyond determining if a lesion is benign or malignant to encompass seven distinct forms of skin 

cancer, facilitating a more precise diagnosis.  

Literature Reviews 

Dorj et al. utilized an online dataset of 3,753 images across four categories. [1] Utilizing AlexNet for feature 

extraction and an ECOC SVM for classification, they attained an astounding accuracy of 94.2 percent. They collected 

the internet dataset according to the standard benchmark protocols. Rezvantalab et al. [2] utilized a different 

methodology, including 120 images from eight categories within the HAM10000 dataset. The authors employed 

multiple pre-trained models to present their findings, including DenseNet 201, ResNet 152, InceptionV3, and 

InceptionResNetV2. The most precise model, DenseNet 201, attained an accuracy of 86.59%. We computed and 

documented AUC values for each model and class to convey the findings. Each class comprised several test specimens. 

The AUC values for the three courses in the PH2 dataset varied from 93.80% to 99.30%. Hosny et al. [3] achieved an 

impressive accuracy of 98.61 percent via a customized variant of AlexNet. They implemented this customized model 

to enhance the original dataset and obtained 4,400 photos. Dascalu and David's [4] analysis of the ISIC 2017 dataset, 

which categorized 5161 photos into two classes, attained an AUC of 81.40 percent. Their distinctive methodology 

employs sonification and K-means clustering to evaluate the impact of image quality on diagnostic precision.  

In another study, Pham et al. [5] utilized the ISIC 2016 dataset (172 photographs) and the HAM10000 dataset (1113 

images), both derived from a singular class. Their approach achieved an accuracy of 74.75 percent utilizing LBP 

balanced random forest, HSV, and linear normalization. The primary objective of this work was to compare the color, 

texture, and morphology of melanoma skin cancer cells. Hekler and his co-authors [6] achieved an accuracy of 82.95% 

by integrating physician assessments with predictions generated by a Convolutional Neural Network (CNN) utilizing 

the HAM10000 and ISIC datasets, including a total of 11,444 images categorized into five groups. This study yielded 

results for binary and multi-class classifications with the XGBoost algorithm. 

Several groups have studied the HAM10000 dataset, with Emara et al. [7] using a modified InceptionV4 model 

yielding the best accuracy results. Their approach yielded a performance of approximately 94.7% accuracy. The 

primary purpose of the InceptionV4 modifications was to address the imbalanced class ratios present in that dataset. 

The study by Chaturvedi et al. could have been more successful, with a result of 83.1% for the same dataset. It used a 

pre-trained MobileNet architecture (and could use some transfer learning techniques because the original melanoma 

dataset was large, containing 38,569 photographs). 

The study by Mohapatra et al. [8] utilized the seven classes within the HAM10000 dataset. They attained an 

accuracy of 80% using an unmodified, pre-trained MobileNet model. Conversely, Chen et al.'s 10 N/A dataset had nine 

skin lesions. Chen et al. attained an accuracy of 83.74% by employing a pre-trained ResNet50 model on the N/A 

dataset. Furthermore, they demonstrated the effective classification of nine separate categories of skin lesions with the 

ResNet50 model. 

The National Cancer Center in Tokyo supplied Jinnai et al. [9] with a dataset including 5,846 pictures categorized 

into six distinct groups. The precision of their FRCNN, BCD, and TRN methodologies was 86.2 percent, 79.5 percent, 

and 75.1 percent, respectively. They utilized a custom dataset of the two primary categories, benign and malignant, to 

evaluate classifiers. Using ResNetXt101, Chaturvedi et al. [10] achieved an astonishing accuracy of 92.83% by 

analyzing the seven-class HAM10000 dataset. An in-depth analysis by Chaturvedi and colleagues revealed the best 

hyperparameter settings for identifying histopathology images, and their results showed that the ResNetXt101 model 

was the top-performing model for this task. 

Mehwish Dildar et al. [11] present the approaches to assess the appearance of lesions, compare two characteristics 

(such as symmetry), or evaluate the contrast of color, size, or shape against the standard. Certain specialists predict 

with certainty the outcome of a boxing match between benign and malignant skin cancers. Nevertheless, these efforts 
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seldom result in effective software for early skin cancer detection; most programs rely on skilled individuals to analyze 

histological sections' septal (sandwich) imaging. 

Nourelhoda M. Mahmoud et al.histological sections' septal (sandwich) imaging [12] develops and delineates an 

automated diagnosis system for early skin cancer. Artificial intelligence enables interaction with dermoscopic images 

of cutaneous lesions. The segmentation part of the system utilizes snake and region-expanding algorithms tailored to 

prevailing conditions. The findings indicate that adaptive snakes surpass expanding regions in accuracy and efficiency. 

Support vector machines and artificial neural networks are the primary techniques employed in the categorization 

phase, with the conclusion that artificial neural networks outperform support vector machines. The method using 

artificial neural networks (ANNs) achieves 94% accuracy, 96% precision, 95.83% specificity, 92.30% sensitivity, and 

an F1 score of 0.94. The device is intuitive, time-efficient, and effectively delivers a prompt determination of "skin 

cancer or not" for patients. 

Umesh Kumar Lilhore et al. [13] substituted the model's excitation and squeezing components with the 

pragmatically beneficial channel attention component to decrease the parameter count. They proposed the 

implementation of cross-layer connections among mobile modules to optimize the utilization of synthetic features. 

They utilized dilated convolutions to enhance the receptive field. They concentrated on improving the model's 

performance by fine-tuning hyperparameters, an essential aspect of optimization efforts. They use sophisticated 

optimization methods, such as Bayesian optimization, to identify the optimal hyperparameters for the pre-trained 

MobileNet-V3. We evaluated our enhanced MobileNet-V3 compared to ResNet-152v2, VGG-19, MobileNet, VGG-16, 

and MobileNet-V2 (utilizing the HAM-10000 dataset for training and testing) for the detection and differentiation of 

melanoma. The metrics employed to evaluate the efficacy of these techniques in identifying and accurately diagnosing 

melanomas, compared to human pathologists' findings, are precision, sensitivity, accuracy, and specificity. This 

research indicates that the MobileNet-V3 model achieves 97.84% precision, 96.35% sensitivity, 98.86% accuracy, and 

97.32% specificity with optimal hyperparameters. This research not only produced results but also proved beneficial. 

Patients who stood to benefit the most received enhanced medical care that was potentially lifesaving and economical. 

Balaha, H. M. et al. [14] advocate for an autonomous, threshold-oriented methodology for segmenting, classifying, 

and detecting skin malignancies. This method utilizes a meta-heuristic optimizer called the Sparrow search algorithm 

(SpaSA). The procedure employs five distinct configurations of the U-Net model (U-Net, U-Net++, Attention U-Net, 

V-net, and Swin U-Net) for the segmentation phase. The pre-trained models utilized by the authors in this work 

comprise VGG16, VGG19, MobileNet, MobileNetV2, MobileNetV3Large, MobileNetV3Small, NASNetMobile, and 

NASNetLarge. The authors employed the meta-heuristic SpaSA to optimize the hyperparameters of eight CNN models. 

The dataset was sourced from five public entities. They generated two datasets from the segmented images: one with 

two classes and the other with ten classes. U-Net++, utilizing DenseNet201 as its backbone architecture, attained the 

highest results documented for the "skin cancer segmentation and classification" dataset. It employed an alternative 

variant of the cosine loss function, resulting in a loss of 0.104 on the test set. It performed exceptionally on various 

metrics, achieving 94.16% accuracy, 91.39% F1-score, 99.03% AUC, 96.08% and 96.41% IoU for the two classes 

specified in the dataset. The authors indicated that U-Net++ attained 77.19% and 75.47% on two weakly supervised 

training dataset instances. The Attention U-Net utilizing DenseNet201 achieved the highest performance in the "PH2" 

dataset. It experienced a loss of 0.137, with precision, accuracy, AUC, and other metrics varying from 92.74% to 

68.04%, while the "squared hinge" and "hinge" loss configurations ranked lowest. Our convolutional neural network 

(CNN) experiments attained a maximum accuracy of 98.27% when applied to the "ISIC 2019 and 2020 Melanoma" 

dataset. Our optimal model was derived from a pre-trained MobileNet architecture. The pre-trained MobileNet model, 

with an alternative dataset, attained a second-place accuracy of 98.83% in our skin cancer classification models. The 

lowest accuracy recorded (85.87%) was achieved using a MobileNetV2 pre-trained model on an alternative skin cancer 

dataset. Our accuracy rates for each dataset were competitive when juxtaposed with the results of 13 analogous 

research. 

Tabrizchi H. et al. [15] developed a novel technique for diagnosing early skin cancer. The processing of dermoscopic 

images constitutes the foundation. The model's design is founded on the VGG-16 network, a well-established 

convolutional neural network (CNN) framework. Instead of employing the conventional configuration of the VGG-16 

network, we opted for an enhanced version of the architecture as the primary framework in our model. Most nearly 

skin cancer diagnosis cements are influenced by modifications to the model's image data processing pipeline. Our 

objective is to improve the accuracy of skin cancer diagnosis to a level deemed operationally viable in real-world 
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scenarios. The results indicate that our proposed model exhibits greater accuracy than the alternative methods 

evaluated. 

Adla, D. et al. [16] present a strategy for enhancing skin cancer categorization and lesion segmentation. A dynamic 

graph cut algorithm was employed to achieve this. This methodology rectifies the prevalent issues of over-

segmentation and under-segmentation in cut algorithms by precisely segmenting skin lesions, including minuscule 

ones. We additionally illustrate the efficacy of data augmentation. In a recent skin cancer competition, our model 

attained an exceptional performance metric of 97.986% across six categories, primarily due to a substantial reduction 

in false positives relative to the nearest competitor. The outcomes of two separate transfer models indicate that the 

accuracy of this model is primarily due to the faults it circumvented rather than its utilization of novel training images. 

Skin Cancer Detection Using Deep Learning Algorithm 

Fig. 1 depicts the system's block diagram of skin cancer detection using  SegNet. 

 

Fig. 1. Block diagram of the Skin lesion segmentation using SegNet

A. Skin lesion Image Database 

The IPH2 dermoscopic collection comprises 200 images and their respective label masks. Each image possesses 

fixed dimensions of 572 by 765 pixels and is formatted in RGB. [14] The dataset is accessible to the public for research 

and experimental purposes. Each image was initially resized to 192 × 256 for training purposes before being input into 

the network. It diminishes the network's training parameters, time, and complexity without substantially affecting the 

results. 

B. SegNet 

SegNet is a convolutional neural network (CNN) architecture designed explicitly for pixel-wise picture 

segmentation tasks. It delineates medical image characteristics, such as cell nuclei in dermatological images from the 

PH2 collection. 

SegNet is an advanced framework for deep semantic pixel-wise segmentation. The computer vision and robotics 

group at Cambridge University proposes it. SegNet comprises a pixel-wise classification layer, a corresponding decoder 

network, and an encoder network. Before the non-overlapping max pooling and subsampling layers in each encoder 

network, batch normalization, a ReLU activation, and one or more non-linear convolutional layers are used. Decoders 

are fundamentally akin to encoders; the primary distinction is in their linearity. The decoders utilize max-pooling for 

non-linear upsampling. These preserve high-frequency values and diminish the quantity of trainable parameters in 

segmented images. The softmax layer accepts the output from the final decoder and generates the ultimate result [9]. 

This is a summary of the essential elements and procedures: 

• Keras implements the SegNet architecture. It consists of an encoding and a decoding stage. 

• The encoding stage includes convolutional layers with batch normalization and activation functions, followed 

by max-pooling layers for down-sampling. 
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• Upsampling and transposed convolutional layers with batch normalization and activation functions are used 

in the decoding stage. 

• Skip connections combine low-level and high-level features, allowing for precise object localization. 

• The final layer outputs a binary segmentation mask. 

We employ the binary cross-entropy as the loss function here. The cross-entropy function calculates the deviation 

of each class's prediction from the true value. We calculate the ultimate loss by averaging the classwise errors. 

Depending on the mask, this problem has two classes: black or white (0 or 1). Therefore, we employ binary cross-

entropy as the loss function rather than the initially proposed categorical cross-entropy. The binary cross-entropy takes 

the following form: 

𝐿(𝑦, 𝑦̅) =  −
1

𝑁
∑ (𝑦 ∗ log(𝑦̅1) + (1 − 𝑦) ∗ (1 − 𝑦̅1))𝑁

𝑖=0   (1)  

The network's SGD (Stochastic Gradient Descent) is the optimizer. One of the numerous values commonly used for 

the learning rate parameter, the learning rate, is set to 0.001, making it a crucial hyperparameter in the optimization. 

Momentum also provides an updated rule inspired by physical optimization. The benefits of utilizing momentum 

with SGD include significantly accelerating the learning process from tiny changes. Similarly, the update process saves 

and uses the velocities of all parameters. For optimization, a momentum value of 0.9 is used. 

C. Performance Evaluation 

Metrics such as Intersection over Union (IoU), Dice Coefficient (DI), Precision, Recall (Sensitivity), and Accuracy 

were used to assess the performance of the proposed system. 

• Intersection over Union (IoU): This metric, which gauges the overlap between expected and ground truth 

segmentation, is also called the Jaccard Index. The computation involves dividing the union of the anticipated 

and ground truth regions by the intersection of these regions. 

   𝐼𝑜𝑈 =  
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝐺𝑇

𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝐺𝑇
                (2) 

IoU values range from 0 to 1, with higher values indicating better overlap. 

• Dice Coefficient (DI): The similarity between the predicted and ground truth segmentations is also measured 

by the Dice Coefficient. It is derived by dividing the total of the areas of the anticipated and ground truth 

regions' intersections twice. 

   𝐷𝐼 =  
2∗𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

Area of Predicted + Area of Ground Truth
         (3) 

 

Similar to IoU, the Dice Coefficient has a range of values from 0 to 1, where larger values correspond to more 

accurate segmentation. 

II. SKIN CANCER RECOGNITION USING DEEP LEARNING ALGORITHM 

This approach was created to categorize various forms of skin cancer. Fig. 2 displays the proposed system's block 

diagram. 
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Fig. 2. FigFigBlock diagram of Skin cancer recognition 

A. Dataset Preparation 

The dataset for segmentation and classification of Skin lesions is HAM1000, and it is available at 

https://www.kaggle.com/datasets/surajghuwalewala. 

The comprehensive HAM10000 dataset substantially contributes to computer-aided skin cancer diagnosis 

research. It includes 10,000 excellent images of skin lesions. A dermatoscope was used to capture each image, with a 

3000 × 2000 pixels resolution. The dermatoscopes are calibrated to 100x, the same magnification as a light 

microscope. The dataset classifies the skin lesions into multiple categories, such as basal cell carcinoma (BCC), nevus, 

and melanoma. The examples include images of benign and malignant lesions, giving the dataset the depth and 

breadth necessary for accurate AI training. 

B. Dataset preprocessing 

The median filter is a popular method for image processing that reduces noise in skin lesion photos and improves 

the features' sharpness. To use it, first, choose a pixel to work on and then calculate the neighborhood's median pixel 

values. We select that neighborhood based on size and specific shape, typically square or circular. Once determined, 

we change the pixel value to the median value. The median filter only allows for the neighborhood's size and shape 

changes. Nonetheless, it works well on photos with edges and eliminates impulsive noise. 

Noise reduction using a median filter in skin lesion photos can help increase the precision of later image analysis 

activities, such as feature extraction or machine learning-based categorization. During the image capture, noise of 

various kinds, such as speckles or random fluctuations in pixel intensity, can appear in skin lesion images. 

Although median filtering is effective in some circumstances, the features of the picture noise and the objectives of 

the image processing must be considered when selecting a filtering method. Moreover, carefully applying any image 

processing method is crucial, as it can impact the interpretation of medical images.  

C. Dataset Splitting 

Splitting the dataset is a critical step in creating a machine-learning model. This method divides the dataset into 

two subsets: training (80%) and validation (20%). The training set is a collection of examples with known labels used 

to build a model. During training, the model uncovers patterns and connections among the labels in the training set. 

By evaluating the model on untested data, the validation set helps with hyperparameter adjustment and model 

evaluation during training, avoiding overfitting and guaranteeing optimal performance. Lastly, the testing set 

objectively gaits the model's performance in real-world situations by evaluating the model's generalization abilities on 

entirely new data. This thorough dataset separation technique makes it easier to build reliable machine-learning 

models to make precise predictions and perform well in generalization. 
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D. Classification of the skin lesion using a deep learning algorithm 

This method employed CNN, Densenet201, Xception, and hybrid CNN-SVM algorithms. This section presents the 

detailed architecture of all the algorithms. 

1) CNN: Image recognition and classification are the specialties of convolutional neural networks (CNNs). They 

are multi-layered feed-forward neural networks composed of filters and filter banks that extract image features. By 

adjusting filter weights, CNNs can detect specific features, such as edges or curves. A typical CNN architecture 

alternates between convolutional and pooling layers, followed by one or more fully connected layers. Fig. 3 depicts 

the architecture of CNN. 

 

Fig. 3. Architecture Diagram of CNN algorithm 

a) Convolutional Layer: The convolutional layer in a CNN is essential for feature extraction from images, 

identifying key features like edges and textures. It reduces the number of parameters using a sparse connection 

method, where filters with fixed weights move over the image to detect specific features. This process, known as 

"feature mapping," uses multiple filters (channels) to produce distinct outputs. Each filter learns different features, 

enhancing the network's image understanding. For grayscale images, the convolution layer's output is three-

dimensional, representing the number of channels and their outputs. 

b) ReLU Layer: ReLU (Rectified Linear Unit) is a non-linear activation function that operates element-wise on 

a feature map. It transforms values less than or equal to zero to zero, effectively highlighting only the positive values. 

This can be mathematically expressed as F(x) = max(0, x) ), where values below zero are replaced with zero, 

emphasizing the positive aspects of the feature map.  

c) Pooling Layer: Each activation map experiences a decrease in dimensionality. However, the pooling layer 

retains the most critical data. The images provided are intended to create several non-overlapping rectangles. 

Moreover, now, what is pooling? Like many others, pooling is a sliding window approach, but instead of using tunable 

weights, it applies some statistical function to the contents of its window. Max pooling is the most commonly used 

form of pooling; it uses the max() function on the contents of its window. We occasionally use other variations, such 

as mean pooling, which calculates the statistical mean of the contents. In this chapter, we will focus on max pooling. 

The following diagram illustrates the max pooling process. 

d) Flattening Layer: Convolutional neural networks (CNNs) effectively create object representations from high-

resolution data. However, to achieve a final classification, a traditional classifier needs to be added to interpret the 

network's rich output. This involves flattening the CNN output into a one-dimensional vector before applying the 

classifier. The pooled feature map, derived from pooling operations, is essential for understanding and processing 

the CNN output, providing more than just a human-readable summary. 

e) Fully Connected Layer: The fully connected layer (FCL) is used to classify images based on features extracted 

from the CNN. A Softmax activation function classifier processes the signals from the FCL, producing a list of 

probabilities for each class label. These probabilities indicate the network's confidence in each class, essentially rating 

the class labels. Adding the FCL to a CNN can effectively classify images into various categories. 

2) Vgg16: Each year, ImageNet organizes the Large Scale Visual Recognition Challenge (ILSVRC), a significant 

computer vision competition with numerous participating teams. Competitors first tackle the challenge of localizing 

objects in images, then progress to the more complex task of categorizing elements within those images. One notable 
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entry came from researchers at the University of Oxford in the UK, which generated significant excitement in the 

field. The architecture of the Vgg16 model is presented in Fig. 4. 

 

Fig. 4. VGG-16 model architecture 

The ImageNet dataset, with 14 million images across 1,000 categories, enables the model to attain an impressive top-

5 test accuracy of 92.7%. The model analyzes input images measuring 224 × 224 × 3 pixels to achieve this precision. 

The initial two layers of the network have 64 channels and employ a 3 × 3 filter size with "SAME" padding in 

TensorFlow. This padding method preserves the spatial dimensions of the image throughout the layers. 

The model employs 256 filters, measuring 3 × 3, in the subsequent two convolutional layers. Subsequently, it 

comprises two groups of three convolutional layers, each succeeded by a max-pooling layer. Each set of 512 filters of 

dimensions 3 × 3, with padding values of (3, 3). Following the final max-pooling layer, the image undergoes processing 

through two convolutional layers utilizing 3 × 3 filters instead of the bigger 7 × 7, ZF-11 × 11, or AlexNet filters. 

The stack compresses a (7, 7, 512) feature map into a feature vector 25,088, incorporating a convolutional and max-

pooling layer. Three completely connected layers manipulate this vector: the first produces a vector of dimensions (1, 

4096), the second similarly produces a vector of dimensions (1, 4096), and the third generates a vector of size (1, 1000), 

corresponding to the 1,000 classes from the ILSVRC challenge. A softmax layer accepts the output from the third layer 

to normalize the classification vector. All concealed layers employ ReLU as their activation function. 

The objective of the ImageNet research project is to create a comprehensive library of photos accompanied by 

annotations, including labels. Prior computer vision tests have illustrated the efficacy of models including InceptionV1, 

InceptionV2, VGG-16, and VGG-19, all of which were trained on ImageNet. We developed them from inception and 

trained them on an extensive dataset comprising over 14 million images over about 20,000 categories. The models are 

vast and profound because of the substantial amount of image data, which renders them particularly effective in 

feature extraction from images. The pre-trained models of the image annotation project can refine computer vision 

tasks designated for diverse pictures across many categories. 

3) Xception: In 2016, François Chollet proposed the Xception architecture, an enhanced iteration of the Inception 

network designed to overcome the limits of conventional CNNs and improve their functionality. "Xception" denotes 

"Extreme Inception," signifying a more profound iteration of the Inception module. Xception substitutes conventional 

convolutional layers with depthwise separable convolutions. This method bifurcates convolution into two stages: 

depthwise convolution, which utilizes a singular filter for each input channel, and pointwise convolution, which 

executes a 1x1 convolution to amalgamate data across channels. Figure 5 illustrates the design of the Xception 

algorithm. 
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Fig. 5. The architecture of the Xception model 

The Xception module, seen in Figure 5.12, comprises three primary components: the entry flow, the middle flow, and 

the exit flow. The input flow commences with two layers of depthwise separable convolutions, succeeded by ReLU 

activations and residual connections. We incorporate max pooling layers and diverse forms of separable convolutions, 

specifying the precise strides for each layer. Utilize 'ADD' operations for skip connections instead of concatenating 

tensors. The input flow transforms an image from dimensions 299 × 299 × 3 to 19 × 19 × 728. The graphic delineates 

image dimensions, layer configurations, filter quantities and shapes, pooling procedures, and the optional fully linked 

layer in the intermediate and exit pathways. 

4) DenseNet201: Transfer learning is exceptionally efficient for classification problems with limited datasets, and 

Deep Transfer Learning (DTL) can further improve outcomes. This research presents a DTL model founded on 

DenseNet201, utilizing a convolutional neural network architecture with ImageNet weights for feature extraction. 

DenseNet interlinks each layer with all preceding layers in a feed-forward configuration, mitigating the vanishing 

gradient issue by guaranteeing each layer has input from all prior layers. This approach expands each layer's input and 

output space while preventing the model from becoming excessively huge by concatenating outputs from all preceding 

layers at each step. Figure 6 depicts the architecture of the Densenet method. 

 

 

Fig. 6. Architecture of Densenet201 

DenseNet201 is a convolutional neural network belonging to the DenseNet model family, recognized for its dense 

connectivity architecture. In DenseNet, every layer obtains inputs directly from all prior layers, alleviating the 

vanishing gradient issue, enhancing feature reuse, and promoting feature propagation. This design improves the 

network's efficiency and performance. A thorough examination of the DenseNet201 architecture is available for 

evaluation. 

• DenseNet201: This iteration of the DenseNet architecture comprises 201 layers, including activation, batch 

normalization, convolutional, and additional layers. The "201" denotes the network's complexity, rendering it 

appropriate for intricate jobs and extensive datasets. 
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• Pre-trained Weights: DenseNet201 is frequently pre-trained on massive datasets like ImageNet. This pre-

training allows the model to acquire hierarchical features that may be refined for individual tasks, improving 

its performance across diverse applications. 

• Architecture: DenseNet201 utilizes a deep convolutional network characterized by dense connectivity, 

bottleneck layers, and transition blocks. This design enables the recording of complicated data patterns, 

rendering it effective for picture categorization and many computer vision tasks. Employing pre-training and 

transfer learning enhances its functionalities across various applications. 

E. Performance Evaluation 

The proposed approach is evaluated using several performance metrics, including accuracy, recall, F1-score, and 

precision. These are conventional metrics employed to assess classifiers. Their merit is in providing divergent 

viewpoints on the efficacy of a classifier. Furthermore, they may be easily derived from the confusion matrix, an 

additional advantageous characteristic.  

• Accuracy: By computing the ratio of correct predictions to total predictions, accuracy assesses the overall 

correctness of the classifier's predictions. It has the following definition: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁) 

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
           (4) 

• where the numbers represent the number of accurate positive predictions (TP), true negative predictions (TN), 

false positive predictions (FP), and false negative predictions (FN). Although accuracy gives a broad picture of 

the classifier's performance, imbalanced datasets might not fit it well. 

• Precision: The percentage of accurately anticipated positive cases among all positively predicted instances is 

the subject of precision. It is computed as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃 

(𝑇𝑃 + 𝐹𝑃)
       (5) 

A classifier's precision tells us how well it avoids producing false positive results. A better precision shows a 

reduced rate of misclassifying negative cases as positive. 

• Recall, also known as True Positive Rate or Sensitivity, quantifies the percentage of accurately anticipated 

positive cases among all positive cases. It is computed as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃 

(𝑇𝑃 + 𝐹𝑁)
       (6) 

Recall highlights the classifier's ability to identify positive instances correctly, and it is advantageous when the 

goal is to minimize false negatives. 

• F1 score: The F1 score is a metric that balances recall and precision by combining both into one. It is computed 

as follows and is the harmonic mean of recall and precision: 

     𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
  (7)  

We equilibrate precision and recall by evaluating false positives and negatives in the F1 score. It is beneficial when 

class distribution is imbalanced or recall and precision are equivalent. 

These metrics are essential for binary classification problems due to the presence of positive and negative classes. 

These metrics can also be utilized for multi-class classification problems by calculating them independently for each 

class and subsequently averaging the results (e.g., micro-averaging, macro-averaging). 

Prioritizing a set of metrics necessitates meticulously evaluating your categorization task's specific requirements 

and characteristics. For example, memory may be vital in medical diagnosis to minimize false negatives, while 

precision may be more essential in spam email classification to avert false positives. 

Result 

This section presents the results of skin cancer detection and recognition. 
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F. Results of Skin cancer segmentation 

The training loss and accuracy obtained for the SegNet for 100 epochs are presented in Fig. 7. 

 

Fig. 7. Training progress graph of SegNet for skin cancer segmentation 

From Fig. 7, it is observed that the training loss of the algorithm decreases as the epoch increases while the accuracy 

of detection increases. The proposed system achieved good detection accuracy with lower losses. Table I tabulates the 

performance of the SegNet algorithm on various testing images. 

TABLE I.  PERFORMANCE OF THE SEGNET FOR SKIN CANCER SEGMENTATION 

Image 

Name 

IOU DI Precision Recall Accuracy 

IMD390 88.6487 93.6959 94.1563 93.3030 97.5891 

IMD392 91.3809 93.10577 91.7550 94.4533 97.9594 

IMD393 82.5091 91.7462 96.8662 87.0751 91.6137 

IMD394 81.4715 88.3025 99.0446 79.4143 95.4935 

IMD395 84.5796 93.0471 88.3356 98.1681 95.2107 

IMD396 78.6634 89.8264 88.3665 91.2851 95.7885 

IMD397 77.4382 90.6989 95.4223 86.3694 93.7947 

IMD398 73.4582 85.7910 97.364 76.6427 80.8492 

IMD399 83.2597 90.0542 83.1518 98.0891 95.8943 

IMD400 70.5491 88.2608 99.5692 79.2122 90.3401 

IMD402 86.0697 93.4688 96.6370 90.4492 96.8892 

IMD403 86.0531 93.5515 98.5809 88.9933 91.0624 

IMD404 72.8725 88.1839 80.7587 97.0557 87.9130 

IMD405 81.5398 88.6892 83.671 94.1985 96.0306 

IMD406 79.9282 91.7546 94.6498 88.9359 92.2932 

IMD407 79.8268 90.9848 96.39 86.0291 93.4773 

IMD408 92.1096 95.8868 97.3147 94.4909 92.8751 

IMD409 85.8480 92.1197 96.4400 88.1463 90.1570 



596  
 

J INFORM SYSTEMS ENG, 10(10s) 

IMD410 74.6085 86.7594 97.7357 77.9552 86.9954 

IMD411 96.4960 98.3061 99.3681 97.2624 96.7285 

IMD413 80.7056 89.5501 100.0 81.0572 82.0800 

IMD417 89.1924 94.4246 97.3593 91.6499 89.8010 

IMD418 86.7094 93.0006 92.5390 93.4416 92.0043 

IMD419 91.7258 96.3433 93.1384 99.7670 93.9066 

IMD420 79.8968 88.3287 88.1336 88.4920 82.8938 

IMD421 85.4635 92.8264 91.8733 93.7829 87.0442 

IMD423 74.4015 89.6570 82.1417 98.6506 85.0484 

IMD424 76.5431 86.9446 100.0 76.8805 77.2705 

IMD425 50.2752 67.0301 100.0 50.3504 57.9203 

IMD426 50.7592 70.3199 89.8994 57.6574 71.9563 

IMD427 89.4674 95.4487 92.1210 98.9965 96.8892 

IMD429 86.8115 91.9125 87.0902 97.2628 96.8404 

IMD430 90.1406 94.4177 91.0153 98.2227 97.6155 

IMD431 85.4778 94.7782 96.5293 93.0510 95.3369 

IMD432 84.3751 91.3896 91.7192 91.0015 96.3277 

IMD433 86.1530 84.3162 76.5241 93.6214 95.7946 

IMD434 84.3383 89.3746 86.8090 91.9834 95.6685 

IMD435 82.9337 91.1022 89.9630 92.2472 85.9456 

IMD436 88.5409 94.9120 95.7019 94.0830 94.3074 

IMD437 83.0516 94.5458 92.9558 96.1681 94.5271 

 

Table I presents the performance metrics of a SegNet model for skin cancer segmentation over multiple testing 

images. The metrics include intersection over union (IoU), dice coefficient (DI), precision, recall, and accuracy. Table 

I reveals a promising detection accuracy. 

Fig. 8 presents the qualitative analysis of the proposed system.  

     

     



597  
 

J INFORM SYSTEMS ENG, 10(10s) 

     

     

(a)                         (b)                           (c)  

Fig. 8. Qualitative analysis of the proposed system (a) Input image, (b) Groundtruth, and (c) Output of the 

proposed system 

We developed the proposed system using Python. The qualitative analysis of the developed system focuses on 

assessing the correctness of skin lesion segmentation, and the results indicate a notable achievement in minimizing 

false positives. Qualitative analysis involves a thorough visual examination of the segmentation outcomes, comparing 

them to ground truth or reference images to ensure accuracy. The emphasis on lower false positives is crucial in 

medical image analysis, as it signifies a reduced likelihood of incorrectly identifying non-lesion areas as lesions. 

G. Skin cancer Recognition 

The proposed system is developed to classify skin cancer into different types. The results of different deep-learning 

algorithms for classifying skin lesions into seven categories are presented in this section. 

1) Results of Skin Cancer Recognition Using Deep Learning Algorithm 

The proposed system is developed to classify skin cancer into different types.  

a)  CNN: The CNN algorithm's results for classifying skin cancer into seven distinct types are shown in Fig. 9 

below. 

    

  (a) 

  

  (b) 
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  (c) 

 

(d) 

Fig. 9. Training performance of CNN on HAM10000 Dataset (a) Accuracy (b) Loss (c) Confusion Matrix (d) 

Classification report 

b) Vgg16: The results of the Vgg16 algorithm for classifying skin cancer into 7 different types are presented below 

in Fig.10. 

   

  (a) 

   

  (b) 
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  (c) 

  

  (d) 

Fig. 10. Training performance of Vgg16 on HAM10000 Dataset (a) Accuracy (b) Loss (c) Confusion Matrix (d) 

Classification report 

c) Xception: The results of the Xception algorithm for classifying skin cancer into 7 different types are presented 

below in Fig.11. 

  

  (a) 

    

  (b) 
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  (c) 

    

 (d) 

Fig. 11. Fig. 6.5 Training performance of Xception on HAM10000 Dataset (a) Accuracy (b) Loss (c) Confusion 

Matrix (d) Classification report 

d) Densenet201: The results of the Densenet201 algorithm for classifying skin cancer into 7 different types are 

presented below in Fig.12. 

  

  (a) 

    

  (b) 
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  (c) 

 

  (d) 

Fig. 12. Training performance of Densenet201 on HAM10000 Dataset (a) Accuracy (b) Loss (c) Confusion Matrix 

(d) Classification report 

The comparative analysis of the three algorithms for the classification of skin cancer into seven different types is 

presented in Table II. 

TABLE II.  COMPARATIVE ANALYSIS OF DIFFERENT CLASSIFIERS ON THE HAM10000 DATASET 

Algorit

hm 

Precis

ion 
Recall 

F1-

Score 

Accura

cy 

CNN 0.65 0.66 0.66 0.66 

Vgg16 0.89 0.88 0.88 0.88 

Xceptio

n 
0.89 0.89 0.89 0.89 

Densen

et 
0.71 0.71 0.71 0.71 

 

Table 6.1 compares different classifiers applied to the HAM10000 dataset, measuring performance in terms of 

precision, recall, F1 score, and total accuracy. We evaluate three algorithms: Xception, DenseNet, and CNN. CNN's 

accuracy is 0.66, recall is 0.66, F1-score is 0.66, and precision is 0.65. Although CNN does quite well across various 

parameters, it could be more decisive in any area. Xception, on the other hand, performs better, with accuracy, recall, 

and F1-score all at 0.90 and precision at 0.90. This shows that Xception maintains a balanced performance in terms 

of precision and recall while achieving high levels of accuracy. Densenet201's precision, recall, F1-score, and accuracy 

are all 0.72, placing it in the middle of the other two classifiers. It suggests consistent performance across the assessed 

measures but falls below Xception. Concerning precision, recall, and F1-score metrics, Xception seems to be the most 

successful classifier for the HAM10000 dataset, according to this analysis, which also shows a high degree of accuracy. 

A comparative analysis of the proposed system, along with recent work, is presented in Table III. 
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TABLE III.  COMPARATIVE ANALYSIS OF THE PROPOSED SYSTEM WITH RECENT WORK 

Algorithm 
Accuracy 

(%) 

Shifted MobileNetV2 

[17] 
81.90 

Shifted GoogLeNet [17] 80.50 

9 layered CNN [18] 80.00 

Vgg16+googLeNet 

ensemble [19] 
81.50 

Our CNN 66 

Our Vgg16 88 

Our Xception 89 

Our Densenet 71 

The table presents a comparative analysis of a proposed system for skin lesion classification against recent work in 

the field, using accuracy as the evaluation metric. Various algorithms are listed alongside their respective accuracy 

percentages. The Shifted MobileNetV2 and GoogLeNet algorithms, referenced from a prior study [17], achieved an 

accuracy of 81.90% and 80.50%, respectively. Another recent model, a 9-layered CNN [18], reported 80.00% accuracy. 

Additionally, an ensemble method combining Vgg16 and GoogLeNet [19] resulted in 81.50% accuracy. 

In comparison, the proposed system includes several models with varying performance. The custom CNN 

developed in the system reached a lower accuracy of 66%, while Vgg16 and Xception achieved higher accuracy rates of 

88% and 89%, respectively, outperforming the previous models. The Densenet in the proposed system attained an 

accuracy of 71%, showing moderate performance. Overall, the highest accuracy in the proposed system was observed 

with the Xception model, demonstrating its superior performance for skin lesion classification in this analysis. 

Conclusion 

The proposed system effectively enhances skin cancer detection and recognition using the PH2 dataset, applying 

augmentation techniques like rotation and flipping for better generalization. The SegNet architecture carefully 

balances the extraction of features and spatial information. Stochastic gradient descent (SGD), batch normalization, 

and activation functions are optimization methods that make the model work better. Detailed explanations of the 

training process ensure transparency and reproducibility. The study demonstrates how CNNs improve skin cancer 

detection, particularly VGG16, Xception, and Densenet201. It highlights Xception's superior accuracy, precision, 

recall, and F1-score performance. Densenet201's connectivity and VGG16's simplicity are vital considerations, with a 

thorough evaluation suggesting areas for future improvement. The research advances diagnostic tools for skin cancer, 

emphasizing the importance of ongoing innovation in medical image processing to improve patient outcomes and 

public health. 

The study provides a strong foundation for advancing automated skin cancer detection and categorization. Future 

improvements could focus on developing customized models tailored to skin cancer classification, potentially 

surpassing the accuracy of existing architectures like Xception and Densenet201. Expanding datasets to include 

diverse populations and clinical scenarios could enhance the generalizability and robustness of these models. 

Additionally, integrating patient demographics, histopathology, and clinical data could significantly improve 

diagnostic accuracy beyond visual inspection, further advancing the field of dermatological image analysis. 
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