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Internet of Things (IoT) networks based on the Routing Protocol for Low-Power and Lossy 

Networks (RPL) are highly susceptible to malicious node attacks, which can significantly degrade 

network performance and reliability. This paper proposes an Adaptive Fuzzy Trust–Based RPL 

mechanism that dynamically evaluates node behavior using a multi-dimensional fuzzified trust 

assessment model incorporating packet forwarding ratio, energy consumption patterns, control 

message behavior, and cooperative trust feedback. By leveraging fuzzy logic, the proposed 

approach effectively handles uncertainty and imprecision in trust evaluation under dynamic 

network conditions. An adaptive fuzzy thresholding mechanism analyzes global fuzzy trust 

distributions to accurately detect and classify malicious nodes. Extensive simulations conducted 

in the Cooja simulator on Contiki OS demonstrate substantial improvements in Packet Delivery 

Ratio, End-to-End delay, Throughput, and Power Efficiency compared to existing trust-based 

RPL schemes. Results show significant gains in Packet Delivery Ratio (PDR), End-to-End Delay, 

Throughput, and Power Efficiency compared to existing RPL-based trust models. Specifically, 

the fuzzy trust framework achieves up to 25% improvement in PDR, 18% reduction in End-to-

End Delay, 20% improvement in Throughput, and 15% improvement in Power Efficiency. 
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INTRODUCTION 

The Internet of Things (IoT) is transforming various industries, including smart cities, healthcare, and industrial 

automation. However, IoT networks face significant security challenges due to their low-power nature and 

susceptibility to malicious node attacks [1]. The Routing Protocol for Low-Power and Lossy Networks (RPL), a widely 

used IoT routing standard, is vulnerable to packet dropping, excessive control message injection, and energy 

depletion attacks, leading to decreased Packet Delivery Ratio (PDR), increased end-to-end (E2E) delay, poor 

throughput, and high energy consumption [2]. 

To mitigate these threats, we propose an Adaptive Fuzzy Trust–Based RPL protocol that dynamically detects and 

isolates malicious nodes using a multi-dimensional fuzzified trust assessment model [3]. The proposed model 

evaluates Behavioral Trust, Energy Trust, Control Message Trust, and Cooperative Trust, which are converted into 

linguistic variables and processed through a fuzzy inference system to accurately assess node trustworthiness under 

uncertain and dynamic network conditions [4]. A fuzzy-guided adaptive thresholding mechanism classifies nodes 

into trusted, suspicious, and malicious categories and effectively isolates malicious nodes from RPL routing 

operations. Simulation results demonstrate significant improvements compared to existing RPL protocol [5]. 

In addition, the proposed fuzzy trust management framework enhances network adaptability and robustness by 

continuously updating trust values based on real-time node behavior and historical interactions. By incorporating 

cooperative trust feedback and adaptive fuzzy rules, the framework minimizes false positives and false negatives in 

malicious node detection while maintaining low computational and communication overhead [6]. This lightweight 

yet intelligent trust management approach improves routing stability and strengthens IoT network resilience against 

insider and dynamic routing attacks, making it suitable for real-world and resource-constrained IoT applications [6]. 

Moreover, its scalable and decentralized design enables seamless deployment in large-scale IoT networks without 

relying on centralized control or extensive parameter tuning. 
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RELATED WORK 

Azzedin, F., et al. (2023), In IoT environments where devices have limited energy and resources, attacks that 
drain battery power can be very dangerous. Flooding attacks and version number manipulation attacks are major 
security issues in the RPL routing protocol. One study introduces a trust-based technique to protect RPL networks 
from these attacks. The results show that version number attacks spread quickly and cause serious damage, while 
hello-message flooding attacks mostly affect the nearby area only. Their simulation proved that the trust-based 
method is effective in stopping both types of attacks and improving network resilience [1]. 

Alfriehat, N., et al. (2024), RPL plays an important role in IoT and sensor-based systems. However, if attackers 
target RPL, they can stop data from being delivered and waste network resources. Another research paper explains 
different RPL-related attacks, highlights their impact, and discusses possible protection strategies. It also compares 
earlier security studies to identify the most dangerous threats and give direction for future research. This work shows 
the importance of studying RPL-based attacks more deeply so that stronger security solutions can be developed [2]. 

Ioulianou, P. P., et al. (2019), Even though IoT devices are widely used today, they are still vulnerable to large-
scale attacks such as Mirai and Chalubo botnet attacks. To protect RPL networks from denial-of-service (DoS) 
attacks, one study presents an Intrusion Detection System (IDS). The IDS uses a threshold-based method and 
includes both centralized and distributed components. Experiments performed using ContikiOS and the Cooja 
simulator demonstrate that the IDS works well and produces very few false alarms, even in large IoT networks [3]. 

Paganraj, D., et al. (2024), In many cases, attackers focus on draining a node’s memory and energy, which 
eventually causes the entire IoT system to stop working. Most traditional RPL security techniques waste energy and 
reduce device lifetime. A new protocol called DE2RA-RPL introduces a lightweight and efficient solution to defend 
against DAO flooding, rank manipulation, and version attacks. Simulation results prove that this method improves 
packet delivery, increases throughput, saves energy, and reduces delay when compared to the standard RPL protocol. 
This makes it suitable for critical communication systems, including emergency and automated applications [4]. 

Albinali, H., et al. (2024), RPL is widely used in low-power networks, but it still has several security weaknesses. 
A comprehensive survey of 175 research papers reviews different RPL attacks and defenses. It groups attacks into 
categories such as packet generation, packet dropping, and packet modification. It also discusses countermeasures 
like authentication, encryption, and isolating malicious nodes. The study recommends developing new and advanced 
techniques to protect RPL networks against routing-based attacks and stresses the need for efficient evaluation 
standards [5]. 

Adarbah et al. (2022), The IoT enables global connectivity for monitoring, processing, and analyzing device-
generated data, but the large volume of data and open communication environment introduce significant security 
challenges. This paper reviews RPL security issues, particularly selective forwarding attacks, and introduces a secure 
ECDH-based authentication and key-agreement scheme. The proposed method ensures strong mutual 
authentication, secure session key distribution, and resistance to known attacks, while maintaining low 
computational and communication overhead—making it practical for resource-constrained IoT environments [6]. 

Alsukayti, I. S., et al. (2023), The internal structure of RPL makes it especially vulnerable to routing attacks 
during network topology formation. Experimental research shows that these attacks greatly affect quality of service 
(QoS), network stability, and energy efficiency, especially when networks become large or attackers are sophisticated. 
In extreme scenarios, the RPL network performance can drop by more than 90%, and energy and resource usage may 
increase by up to 200% [7]. 

Mosa, H., et al. (2024), IoT networks are used everywhere, and this widespread use makes them attractive targets 
for cyber-attackers. Machine learning techniques are increasingly being used to detect and prevent RPL-specific 
attacks such as Hello flooding, rank attacks, blackhole attacks, and version number attacks. One study tested Random 
Forest and KNN classifiers on more than 160 million data records. The Random Forest model achieved 99% accuracy, 
while KNN reached 98% accuracy in identifying malicious network behavior. This proves that machine learning 
algorithms can effectively detect IoT routing attacks and support reliable security monitoring [8]. However, the high 
computational and data requirements of such models motivate the exploration of lightweight alternatives, such as 
fuzzy trust–based mechanisms, for resource-constrained IoT environments. 
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Gonen, S., et al. (2024), The Internet of Things also includes the Internet of Medical Things (IoMT), where 
medical devices share sensitive health data. While IoMT brings huge benefits, it also creates cybersecurity challenges. 
To protect these systems, encryption and strong authentication are essential. In one study, researchers analyzed 
flood-based attacks under single-attacker and multiple-attacker cases. They used artificial intelligence and forensic 
techniques to detect threats in real time. Their AI model achieved 99.9% accuracy, showing its very high reliability 
for security monitoring in IoT systems. This demonstrates the importance of AI in strengthening IoT networks [9]. 

Wakili et al. (2024), address the performance and security challenges faced by RPL in IoT systems. They present 
an AI-powered solution called NANTAR, designed to improve both routing efficiency and security. Compared to 
standard RPL, NANTAR increases network throughput by 20%, reduces delay by 20-30%, and lowers false detection 
rates by 15-20%. It also performs well in large-scale IoT deployments while maintaining low energy usage, making it 
a reliable method for strengthening IoT routing security [10]. 

Rajasekar, V. R., et al. (2024), Several types of isolation attacks target the RPL protocol, such as Blackhole 
Attacks, Selective Forwarding Attacks, and Destination Advertisement Object Inconsistency Attacks (DAO-IA). These 
attacks interrupt normal data transmission in IoT networks, causing nodes to be cut off from the network. One study 
examined different techniques used to defend against such attacks and found that most research focuses on reducing 
power consumption. However, performance factors like delay and control-packet overhead are less studied [11]. 

Rouissat, M., et al. (2023), As IoT devices grow in number, their limited processing power and battery life make 
them vulnerable to cyber-attacks, especially flooding attacks. Since standard RPL lacks built-in security features, 
attackers can easily exploit it. A malicious node can send a large amount of fake control information, known as a DIO 
Flooding (DIOF) attack, which overwhelms the network. Results show that such attacks cause network control traffic 
to increase by 500%, power consumption by 210%, packet delivery ratio (PDR) drops by 32%, and delay increases by 
192%. To solve this, researchers propose DIOF-Secure RPL (DSRPL), a lightweight method that can identify and 
control the attack in a few seconds. Their solution reduced energy use and network overhead by 80% [12]. 

Alamiedy, T. A., et al. (2021), RPL is widely used in IoT, but it struggles with energy efficiency and is exposed to 
Distributed Denial of Service (DDoS) attacks. To address this, another study introduced an ensemble feature-
selection technique to detect DDoS attacks in RPL networks. It uses three bio-inspired optimization algorithms to 
pick the best features for attack detection, and then applies Support Vector Machine (SVM) for classification. This 
method improves DDoS detection accuracy and makes IoT routing more secure. However, the approach introduces 
additional computational overhead and relies on centralized learning, which may limit its applicability in highly 
resource-constrained IoT environments [13]. 

Bang, A. O., et al. (2022), Routing-based attacks make protecting RPL networks a difficult task. A comprehensive 
review studied different RPL security threats and defense solutions. It created a new classification system for RPL 
attacks based on control-message manipulation and mapped each attack type to possible defense techniques. The 
review also compared tools, methods, and evaluation techniques used in previous studies. It highlights remaining 
research challenges and encourages further security improvements for RPL networks [14].  

Kannan, A., et al. (2024), IoT networks also require intelligent security solutions, as traditional rule-based 
intrusion systems cannot fully protect them. To address this, one study introduced an Intelligent Intrusion Detection 
System (IDS) called NGCA (Neuro-Genetic Classification Algorithm), which combines neural networks with genetic 
algorithms for optimal attack detection. When tested on the NSL-KDD dataset, NGCA performed better than Decision 
Trees, Logistic Regression, and SVM models. It achieved high accuracy with low false alarms, proving its reliability 
for securing IoT networks [15]. 

Sridhar, K., et al. (2024), In addition, routing in IoT networks is difficult to secure due to device limitations such 
as low memory and battery power. RPL structures the network efficiently, but attackers can manipulate routing 
metrics through Routing Disruption Attacks (RDAs). To combat this, another research introduced RDAD, a method 
that uses Packet Delivery Ratio (PDR) analysis to find reliable routes and detect abnormal behavior. RDAD 
significantly improves packet delivery performance, reduces data loss, and achieved a 96.5% attack detection rate, 
making IoT routing safer [16]. However, its reliance on a single performance metric highlights the need for multi-
dimensional and adaptive trust mechanisms, such as fuzzy-based trust evaluation, to handle complex and dynamic 
attack behaviors in IoT networks. 
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Wang, X., et al. (2024), Although RPL is useful for IoT networking, its design makes it vulnerable to sophisticated 
security attacks. Because of this, attackers can easily target and control network communication. One major challenge 
in improving RPL security is the shortage of high-quality datasets that specifically contain RPL-related attack 
scenarios. To address this, researchers developed a dedicated IoT dataset that includes common RPL attacks such as 
Blackhole, Hello Flooding, and Version Number attacks. After testing various machine learning models on this 
dataset, Random Forest gave the best results in detecting and reducing the impact of these attacks [17]. 

Ahmadi, K., et al. (2024), RPL is highly vulnerable to blackhole attacks, selective forwarding attacks, and rank 
manipulation attacks, which can severely disrupt network communication. Many IoT devices lack the processing 
power to run traditional cryptographic techniques. To overcome this limitation, researchers proposed a trust-based 
intrusion detection system using Recurrent Neural Networks (RNN). The system predicts routing behavior and 
detects unusual activity in real-time simulations. Results showed high accuracy and precision, enabling early 
detection and prevention of malicious nodes [18]. 

Gonen, S., et al. (2023), As IoT grows globally, cybersecurity becomes more critical because connected devices 
are often targeted by attackers. One study investigated the impact of flooding-based attacks on IoT systems by 
analyzing network traffic during attacks. The researchers used Texecom Cloud with packet mirroring to support real-
time forensic analysis and avoid network overload. Artificial intelligence was used to identify attackers automatically, 
enabling continuous monitoring and improving the resilience of IoT systems [19]. 

OBJECTIVES 

The primary objective of this article is to design and implement an Adaptive Fuzzy Trust–Based RPL routing protocol 

that effectively detects and mitigates malicious node behavior in low-power and lossy IoT networks. By integrating a 

multi-dimensional fuzzy trust assessment model, the proposed approach aims to accurately evaluate node 

trustworthiness using behavioral, energy, control message, and cooperative trust metrics under uncertain and 

dynamic network conditions. The objective is to overcome the limitations of traditional RPL security mechanisms by 

providing adaptive, lightweight, and intelligent trust-based routing decisions that enhance network security without 

imposing excessive computational or energy overhead on resource-constrained IoT devices. 

Another key objective of this work is to evaluate the performance and effectiveness of the proposed fuzzy trust 

management framework through extensive simulations and comparative analysis. The study aims to demonstrate 

measurable improvements in critical network performance metrics, including Packet Delivery Ratio, End-to-End 

Delay, Throughput, and Power Efficiency, when compared with existing RPL and trust-based routing models. 

Furthermore, this article seeks to validate the robustness and scalability of the proposed solution in realistic IoT 

scenarios, ensuring its suitability for real-world, large-scale, and energy-constrained IoT applications while 

maintaining resilience against insider and dynamic routing attacks. 

 

METHODS 

Figure 1 presents the proposed Fuzzy Trust Management Architecture designed to secure RPL-based IoT networks 

by enabling adaptive and intelligent trust evaluation under uncertain and dynamic network conditions. The 

architecture is structured around three tightly coupled modules: Fuzzy Trust Score Calculation, Adaptive Fuzzy Trust 

Thresholding, and Malicious Node Detection and Mitigation. Together, these modules form a comprehensive trust 

management framework that continuously assesses node behavior, establishes trust classification, and identifies 

security threats in low-power and lossy network environments. 

In the Figure 1, core of the architecture is the Fuzzy Trust Score Calculation module, which employs a multi-

dimensional fuzzified trust assessment model. Behavioral Trust, Energy Trust, Control Message Trust, and 

Cooperative Trust metrics are transformed into linguistic variables (Low, Medium, High) and processed through a 

fuzzy inference system to capture uncertainty, imprecision, and dynamic variations in node behavior. The output of 

this module is a Global Fuzzy Trust Score, which provides a reliable and context-aware representation of node 

trustworthiness and serves as the foundation for subsequent trust decisions. By enabling smooth trust adaptation 

under fluctuating network conditions, this module significantly improves the accuracy and robustness. 



 

 3587 

Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376  

https://www.jisem-journal.com/                 Research Article 

Journal of Information Systems Engineering and Management 

 
20--, Vol(Iss) 

e-ISSN: 2468-4376 
  Research Article 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

 

Figure 1. The architecture is the Fuzzy Trust Score Calculation module 

 

Building upon the computed fuzzy trust scores, the Adaptive Fuzzy Trust Thresholding module dynamically 

determines an appropriate trust threshold based on the overall fuzzy trust distribution and current network 

conditions. This adaptive threshold enables accurate Malicious Node Detection, where nodes are classified as trusted, 

suspicious, or malicious. Nodes identified as malicious are isolated from RPL routing operations, including parent 

selection and control message propagation, thereby preventing routing disruption and energy depletion attacks. 

Through continuous fuzzy trust evaluation and adaptive mitigation, the proposed architecture enhances network 

resilience, routing stability, and energy efficiency, making it well suited for real-world and resource-constrained IoT 

deployments. 

Furthermore, the integration of cooperative trust feedback and real-time monitoring in the fuzzy trust framework 

ensures that trust evaluations are continuously updated based on both historical and current node behavior. This 

enables the system to adapt to dynamic network changes, such as fluctuating traffic patterns or intermittent node 

failures, while minimizing false positives and false negatives in malicious node detection. By leveraging the inherent 

flexibility of fuzzy logic, the proposed mechanism can handle uncertainties and imprecise measurements in low-

power and lossy networks, ensuring reliable routing decisions, reducing unnecessary energy consumption, and 

sustaining overall network performance even under adversarial conditions. 

In addition, the proposed fuzzy trust–based architecture supports scalable and distributed trust management by 

allowing each node to locally compute and update trust values with minimal communication overhead. This 

decentralized operation aligns well with the constrained nature of IoT environments, as it avoids reliance on 

centralized authorities and reduces control message overhead. As a result, the framework maintains efficient routing 

performance while preserving node autonomy and network scalability in large-scale IoT deployments. The 

lightweight fuzzy inference process ensures low computational complexity, making it suitable for resource-limited 

sensor nodes. Moreover, localized trust computation enhances fault tolerance and enables faster response to 

malicious activities without introducing significant latency or energy overhead. Moreover, the adaptive nature of the 

fuzzy trust mechanism enables long-term network sustainability by continuously learning from evolving attack 

patterns and normal behavioral changes. This continuous adaptation strengthens overall network robustness and 

ensures consistent security enforcement throughout the operational lifetime of the IoT system. 
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Algorithm 1 continuously evaluates each RPL node using four trust metrics in [0,1]. It computes Behavioral Trust as 
forwarded/received packets, Energy Trust as residual/initial energy, Control Message Trust as one minus excess 
control messages over a maximum, and Cooperative Trust as the average neighbor feedback. These values are 
normalized, fuzzified into Low/Medium/High, processed through fuzzy IF–THEN rules, aggregated, and defuzzified 
via the centroid method to output an updated Global Trust Score (GTSᵢ) for routing and attacker isolation. 

In addition, the algorithm operates in a periodic and event-driven manner, allowing trust values to adapt dynamically 
to network conditions such as mobility, congestion, and energy depletion. At each evaluation interval, historical trust 
values are combined with the newly computed GTSi using a weighted update factor to smooth abrupt fluctuations 
and prevent transient errors from unfairly penalizing nodes. Nodes whose GTSii falls below a predefined adaptive 
threshold are gradually isolated by reducing their routing preference and limiting their participation in DIO/DAO 
dissemination, rather than being immediately removed, which minimizes false positives. This continuous learning 
and gradual mitigation strategy ensures stable RPL topology formation, improves resilience against insider attacks, 
and maintains energy-efficient routing while preserving overall network connectivity. Consequently, the network can 
respond intelligently to evolving attack patterns while maintaining reliable data delivery and low control overhead in 
highly dynamic IoT environments. Moreover, this adaptive and incremental isolation process supports long-term 
network stability by balancing security enforcement with routing flexibility and fairness. 

Algorithm 1: Fuzzy Logic–Based Trust Score Calculation 

 

Input: 

Packet forwarding statistics, residual energy, control message count, neighbor trust feedback 

Output: 

Global Trust Score (GTSᵢ) for node nᵢ 

 

Step 1: Initialize trust parameters 

BTᵢ, ETᵢ, CMTᵢ, CTᵢ ∈ [0, 1] 

Step 2: Monitor node nᵢ continuously during RPL operation. 

Step 3: Compute Behavioral Trust (BTᵢ) 

BTᵢ ← Pᵢ_forwarded / Pᵢ_received 

Step 4: Compute Energy Trust (ETᵢ) 

ETᵢ ← Eᵢ_residual / Eᵢ_initial 

Step 5: Compute Control Message Trust (CMTᵢ) 

CMTᵢ ← 1 − (Cᵢ_excess / C_max) 

Step 6: Compute Cooperative Trust (CTᵢ) 

CTᵢ ← (1 / Nᵢ) × Σⱼ₌₁ᴺᵢ Tⱼ→ᵢ 

Step 7: Normalize {BTᵢ, ETᵢ, CMTᵢ, CTᵢ} to the range [0, 1]. 

Step 8: Fuzzify the normalized trust values into linguistic variables 

{Low, Medium, High}. 

Step 9: Apply fuzzy IF–THEN inference rules to evaluate node trust. 

Step 10: Aggregate fuzzy rule outputs. 

Step 11: Defuzzify the aggregated output using the centroid method. 

Step 12: Output the resulting Global Trust Score 𝐺𝑇𝑆𝑖 for node 𝑛𝑖, representing its overall trustworthiness derived 

from fuzzy inference and multi-dimensional trust evaluation.  
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The Algorithm 2 dynamically determines a trust threshold for RPL networks using fuzzy logic. It collects and 
normalizes all nodes’ Global Trust Scores, analyzes network conditions, and fuzzifies trust levels into linguistic terms. 
Fuzzy inference rules evaluate overall network trust, which is aggregated and defuzzified to produce an adaptive 
threshold for secure routing and malicious node detection. 

Furthermore, the adaptive threshold computation is periodically refined to reflect temporal variations in node 
behavior, traffic load, and topology changes inherent to RPL-based IoT networks. By incorporating statistical 
dispersion of Global Trust Scores—such as mean and variance—the algorithm prevents overly strict or lenient 
threshold selection in heterogeneous environments. The resulting threshold is broadcast to all nodes and used 
consistently during parent selection and route maintenance, ensuring network-wide coherence in trust decisions. 
This adaptive mechanism reduces false positives in malicious node detection, enhances robustness against 
coordinated attacks, and maintains a balance between security enforcement and routing stability. 

Algorithm 2: Adaptive Fuzzy Trust Threshold Calculation 

Input: 
Global Trust Scores (GTS) of all nodes, fuzzy trust distribution, current network conditions 

Output: 
Adaptive Trust Threshold  

 

Step 1: Collect the Global Trust Scores (GTS) of all participating nodes in the RPL network. 

Step 2: Monitor and analyze current network conditions, including node density, traffic load, and variations in trust 
behavior. 

Step 3: Normalize the collected Global Trust Scores to ensure all values lie within the range [0,1]. 

Step 4: Fuzzify the normalized trust scores into linguistic variables such as Low, Medium, and High using predefined 
membership functions. 

Step 5: Apply fuzzy IF–THEN inference rules to evaluate the overall network trust condition based on the fuzzified 
trust inputs. 

Step 6: Aggregate the outputs of all activated fuzzy rules to obtain a combined fuzzy threshold representation. 

Step 7: Defuzzify the aggregated fuzzy threshold using the centroid method to compute a crisp threshold value. 

Step 8: Adaptively update the trust threshold by incorporating historical trust trends along with current fuzzy 
inference results. 

Step 9: Output the final Adaptive Trust Threshold 𝑇_𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒  for malicious node classification and trust-based 
routing decisions. 

The Algorithm 3 detects and mitigates malicious nodes using trust scores and an adaptive threshold. For each node, 
it compares GTSᵢ with T_adaptive and a minimum margin T_min. Nodes with GTSᵢ ≥ T_adaptive are trusted; those 
with T_adaptive > GTSᵢ ≥ T_min is marked suspicious and monitored. If GTSᵢ < T_min, the node is classified 
malicious and isolated by removing it from parent selection, forwarding paths, and control message exchange. 
Additionally, the mitigation process follows a graded response strategy to balance security and network performance. 
Instead of immediate and permanent exclusion, isolated nodes may undergo a probation phase during which their 
behavior is closely observed under restricted participation. This adaptive and progressive mitigation approach 
preserves overall routing stability in dynamic RPL-based IoT networks. 
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Algorithm 3: Malicious Node Detection and Trust-Based Mitigation 

Input: 
Global Trust Scores (GTS) of all nodes, Adaptive Trust Threshold  𝑇_𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 

Output: 
Detection, classification, and isolation of malicious nodes 

 

Step 1: Collect the Global Trust Score 𝐺𝑇𝑆𝑖 of each node 𝑛𝑖obtained from the fuzzy trust evaluation process. 

Step 2: Retrieve the Adaptive Trust Threshold 𝑇_𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒  computed using the adaptive fuzzy trust thresholding 
mechanism. 

Step 3: Compare the Global Trust Score of each node with the Adaptive Trust Threshold to assess its trustworthiness. 

Step 4: Classify a node as trusted if 𝐺𝑇𝑆𝑖 ≥ 𝑇𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒, allowing it to participate fully in RPL routing and parent 
selection. 

Step 5: Classify a node as suspicious if 𝑇𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 > 𝐺𝑇𝑆𝑖 ≥ 𝑇𝑚𝑖𝑛 where 𝑇𝑚𝑖𝑛 represents a predefined minimum 
trust margin; such nodes are closely monitored for behavioral changes. 

Step 6: Classify a node as malicious if 𝐺𝑇𝑆𝑖 < 𝑇𝑚𝑖𝑛 indicating persistent abnormal or harmful behavior. 

Step 7: Isolate malicious nodes by excluding them from RPL parent selection, data forwarding paths, and control 
message propagation. 

Step 8: Update routing tables and trust records of neighboring nodes to prevent future interactions with isolated 
malicious nodes. 

Step 9: Continuously re-evaluate node trust scores to allow recovery of falsely isolated nodes and ensure adaptability 
to dynamic network conditions. 

Fuzzy Trust Assessment and Adaptation Model 

To address uncertainty, dynamic behavior, and imprecise observations in IoT environments, we introduce a multi-

dimensional Fuzzy Trust Adaptation Model for secure RPL-based routing. The proposed model evaluates node 

trustworthiness using multiple trust components that collectively capture routing behavior, energy usage patterns, 

control message activity, and cooperative feedback. Instead of relying solely on crisp values, each trust metric is 

fuzzified and processed through a fuzzy inference mechanism to improve robustness and accuracy in malicious node 

detection. 

The fuzzy inference system applies a set of well-defined IF–THEN rules to combine the fuzzified trust inputs and 

derive a comprehensive trust evaluation that reflects both individual node behavior and overall network conditions. 

By leveraging linguistic variables and membership functions, the model effectively handles noise, incomplete 

information, and transient fluctuations commonly observed in low-power and lossy networks. The resulting 

defuzzified trust score is continuously updated and integrated into RPL routing decisions, enabling adaptive parent 

selection and timely mitigation of malicious or energy-draining nodes while maintaining routing stability and energy 

efficiency. Furthermore, the adaptive nature of the fuzzy trust model allows it to respond promptly to evolving attack 

patterns and changing traffic dynamics without requiring manual reconfiguration. This flexibility makes the 

proposed approach robust and scalable, ensuring consistent security and performance even as network size, topology, 

and threat intensity change over time. 
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Trust Components 

• Behavioral Trust (BT): 

Measures historical routing behavior using the Packet Forwarding Ratio (PFR) to detect packet dropping and 

selective forwarding attacks. The observed PFR values are fuzzified into linguistic levels (Low, Medium, 

High) to accommodate fluctuations in traffic conditions. 

• Energy Trust (ET): 

Evaluates residual energy patterns to detect abnormal power consumption indicative of energy depletion or 

denial-of-service attacks. Energy values are mapped to fuzzy sets to tolerate normal energy variations in 

resource-constrained IoT nodes. This fuzzy energy trust assessment enables early detection of energy-based 

attacks while preventing false alarms caused by legitimate workload fluctuations, thereby extending overall 

network lifetime. 

• Control Message Trust (CMT): 

Monitors the frequency of RPL control messages (DIS/DIO/DAO) to identify excessive or abnormal control 

traffic. Fuzzification enables the detection of subtle control flooding behavior that may not be captured by 

fixed thresholds. By correlating control message patterns with other trust metrics, the mechanism accurately 

distinguishes malicious signaling activity from legitimate topology maintenance operations. 

• Cooperative Trust (CT): 

Aggregates trust recommendations from neighboring nodes to validate local trust assessments and enhance 

reputation accuracy. Neighbor feedback is incorporated as fuzzy inputs to reduce the impact of isolated false 

observations. This collaborative trust evaluation strengthens resilience against insider and on–off attacks, 

where malicious nodes attempt to alternate between normal and abnormal behavior.  

 

Fuzzy Trust Score Computation 

Each node computes a Global Fuzzy Trust Score (FTS) using a weighted aggregation of the fuzzified trust 

components: 

FTS(i) = α · BT(i) + β · ET(i) + γ · CMT(i) + δ · CT(i) 

where α, β, γ, δ are adaptive fuzzy weights that dynamically adjust according to network conditions and trust 

distribution. 

 

Fuzzy Trust Levels and Interpretation 

Based on the defuzzified trust score, nodes are classified into adaptive trust levels: 

• High Trust (FTS ≥ 0.85): 

The node is highly reliable and fully eligible for RPL routing operations. 

• Moderate Trust (0.70 ≤ FTS < 0.85): 

The node is stable but subjected to continuous fuzzy trust monitoring. 

• Low Trust (0.50 ≤ FTS < 0.70): 

The node exhibits suspicious behavior and is restricted from critical routing roles. 

• Critical Trust (FTS < 0.50): 

The node is considered malicious and is isolated from RPL routing activities. 



 

 3592 

Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376  

https://www.jisem-journal.com/                 Research Article 

Journal of Information Systems Engineering and Management 

 
20--, Vol(Iss) 

e-ISSN: 2468-4376 
  Research Article 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

Adaptive Fuzzy Trust Thresholding Mechanism 

Instead of relying on static or fixed trust thresholds, the proposed security framework employs an Adaptive Fuzzy 

Trust Thresholding Mechanism that dynamically adjusts trust boundaries based on real-time network behavior and 

trust distribution. This mechanism continuously analyzes the global trust status of the network and incorporates 

uncertainty, variability, and dynamic node behavior through fuzzy logic. By avoiding rigid threshold values, the 

proposed approach enables more accurate and flexible identification of malicious nodes in highly dynamic and 

resource-constrained IoT environments. 

The adaptive threshold TadaptiveT_{adaptive}Tadaptive is derived using a fuzzy statistical model based on the global 

trust score distribution, expressed as: 

𝑇_{𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒}  =  𝜇(𝑇𝑆_𝑔𝑙𝑜𝑏𝑎𝑙) +  𝑘 × 𝜎(𝑇𝑆_𝑔𝑙𝑜𝑏𝑎𝑙) 

where TSglobal represents the average fuzzy trust score across the network, k is a sensitivity factor controlling 

anomaly detection aggressiveness, and 𝜇 and σ denote the mean and standard deviation of trust scores, respectively. 

These statistical parameters are further processed through fuzzy membership functions to generate a context-aware 

threshold that adapts to changing network conditions. As a result, the fuzzy thresholding mechanism reduces false 

positives and false negatives, enhances malicious node detection accuracy, and improves overall network stability 

and resilience. 

Fuzzy Trust Threshold Interpretation 

The proposed Fuzzy Trust Threshold Interpretation classifies network nodes based on their defuzzified trust scores 

and adaptive fuzzy thresholds, enabling accurate and flexible decision-making under uncertain network conditions. 

Instead of rigid binary classification, fuzzy trust levels allow gradual differentiation between trusted, suspicious, and 

malicious nodes, thereby improving detection accuracy and reducing false alarms. 

• Trusted State: 

If the fuzzy trust score 𝑇𝑆 ≥ 𝑇_𝑎 𝑑𝑎𝑝𝑡𝑖𝑣𝑒, the node is classified as trusted and safe. Such nodes are fully 

permitted to participate in RPL routing operations, including parent selection and control message 

forwarding. 

• Suspicious State: 

If 𝑇_𝑎 𝑑𝑎𝑝𝑡𝑖𝑣𝑒 > 𝑇𝑆 ≥ 0.50, the node is classified as at risk. These nodes exhibit uncertain or fluctuating 

behavior and are subjected to continuous fuzzy trust monitoring and restricted routing roles until their trust 

level stabilizes. 

• Malicious State: 

If 𝑇𝑆 < 0.50, the node is classified as malicious and is immediately isolated from the network. Fuzzy trust-

based isolation prevents such nodes from participating in data forwarding and control message exchange, 

thereby mitigating routing and energy-based attacks. 

Mitigation via Fuzzy Trust–Based Routing 

The proposed security framework integrates Fuzzy Trust–Based Routing to effectively mitigate malicious node 
behavior in RPL-based IoT networks. Instead of relying solely on traditional RPL rank metrics, routing decisions are 
guided by defuzzified trust scores, enabling more reliable and attack-resilient parent selection under uncertain 
network conditions. By prioritizing nodes with higher fuzzy trust levels, the framework ensures stable routing paths, 
reduces packet loss, and prevents traffic redirection through compromised or unstable nodes. Additionally, the 
dynamic update of fuzzy trust scores allows routing decisions to adapt in real time to changes in node behavior and 
network conditions. This trust-aware routing strategy improves overall network resilience, maintains quality of 
service, and enhances energy efficiency in the presence of both insider and external attacks. As a result, the proposed 
approach supports scalable, secure, and sustainable routing operations suitable for long-term and large-scale IoT 
deployments. 
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Furthermore, the fuzzy trust–based routing mechanism incorporates a trust decay and recovery strategy, allowing 
trust values to dynamically adapt to changes in node behavior over time. Nodes exhibiting intermittent or improving 
behavior can gradually regain trust, while persistently malicious nodes experience rapid trust degradation and 
isolation. This adaptive mitigation approach not only minimizes false isolation but also enhances routing stability, 
energy efficiency, and overall network resilience, making the protocol well suited for dynamic and resource-
constrained IoT environments. 

• Fuzzy Trust–Based Parent Selection: 

Each node prioritizes neighboring nodes with high fuzzy trust levels during parent selection, rather than 

selecting parents solely based on RPL rank. By incorporating trust as a primary routing metric, the network 

avoids malicious or unstable nodes, thereby improving routing reliability and data delivery performance. 

• Fuzzy Trust Decay Mechanism: 

A fuzzy trust decay mechanism is employed to gradually reduce a node’s trust score when its behavior 

becomes inconsistent or fluctuates over time. This adaptive decay prevents abrupt trust drops due to 

transient network conditions while ensuring that persistently misbehaving nodes are progressively restricted 

from routing participation. 

• Distributed Fuzzy Attack Mitigation: 

When a node’s fuzzy trust score falls below the adaptive fuzzy threshold TadaptiveT_{adaptive}Tadaptive, 

neighboring nodes collaboratively initiate isolation actions. This distributed fuzzy mitigation approach 

ensures rapid and scalable attack handling without centralized control, effectively preventing the 

propagation of routing attacks and maintaining overall network stability. 

 

RESULTS 

Simulation Setups 
 
In this study, we evaluate the performance of the proposed Fuzzy Trust–Based RPL security framework using a 

simulated IoT network consisting of 50 static sensor nodes. All simulations were conducted using the Cooja network 

simulator, a widely used and accurate Java-based simulation platform, operating within the Contiki OS environment 

designed for resource-constrained IoT devices. Cooja enables precise modeling of low-power wireless networks and 

supports detailed analysis of routing behavior, trust dynamics, and attack scenarios in RPL-based IoT networks. 

The simulations were implemented using the Zolertia Z1 IoT platform, which is equipped with an MSP430 

microcontroller unit (MCU) and a CC2420 IEEE 802.15.4-compliant transceiver. The platform operates within a 

voltage range of 1.8 V to 3.6 V, with a maximum clock frequency of 16 MHz, ensuring realistic energy consumption 

and communication behavior. The proposed fuzzy trust assessment, adaptive thresholding, and trust-based routing 

mechanisms were integrated into the RPL protocol stack within Contiki OS. This setup enabled comprehensive 

evaluation of fuzzy trust dynamics, malicious node mitigation effectiveness, and network performance metrics under 

realistic IoT operating conditions. 

Network Configuration with Fuzzy Trust–Based RPL 

The network configuration for evaluating the proposed Fuzzy Trust–Based RPL security mechanism is summarized 

in Table X. The simulation environment consists of 50 static IoT sensor nodes deployed over a 400 m² area, with a 

fixed transmission range of 10 m. This dense deployment enables effective evaluation of fuzzy trust interactions, 

cooperative trust aggregation, and malicious node influence within multi-hop RPL topologies. 

Communication between nodes is established using the UDP transport protocol, while the IEEE 802.15.4 standard 

is employed for both the PHY and MAC layers, ensuring low-power and lossy network characteristics. Data packets 

are transmitted at regular intervals of 60 seconds, allowing the fuzzy trust system to continuously monitor node 

behavior, update trust values, and adapt routing decisions over time. 
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To assess the robustness of the proposed fuzzy trust mechanism, five attacker nodes are introduced into the network 

to perform malicious activities such as packet dropping, excessive control message injection, and energy depletion 

attacks. The Unit Disk Graph Medium (UDGM) radio model is used to simulate realistic wireless communication. 

This configuration enables comprehensive evaluation of the fuzzy trust score calculation, adaptive fuzzy thresholding, 

and trust-based mitigation strategies under realistic IoT network conditions. 

Table I: Network Configuration and Fuzzy Trust Parameters 

Parameter Value 
Transmission Range 10 m 
Number of Sensor Nodes 50 
Deployment Area 400 m² 
Transport Layer Protocol UDP 
PHY & MAC Layer Standard IEEE 802.15.4 
Data Packet Sending Interval 60 s 
Number of Attacker Nodes 5 
Radio Medium Model Unit Disk Graph Medium (UDGM) 
Trust Evaluation Interval 60 s 
Trust Dimensions BT, ET, CMT, CT 
Fuzzy Input Variables Low, Medium, High 
Fuzzy Inference Method Mamdani FIS 
Defuzzification Technique Centroid Method 
Adaptive Fuzzy Threshold Type Dynamic (Mean–Variance Based) 
Trust Decay Factor Adaptive (behavior-dependent) 
Trust-Based Routing Metric Fuzzy Trust Score (FTS) 
Malicious Node Isolation Criterion FTS < Adaptive Fuzzy Threshold 

 

Performance Metrics 

Average Power Consumption 

Average power consumption represents the mean energy utilized by IoT nodes over a defined simulation period and 

is measured in milliwatts (mW). In the proposed fuzzy trust–based RPL framework, power efficiency is evaluated by 

monitoring node behaviour across active, idle, and sleep states. Additionally, nodes exhibiting abnormal or excessive 

energy usage patterns are assigned lower trust values, indicating potential malicious or misbehaving behaviour. By 

incorporating energy-aware fuzzy trust evaluation into routing decisions, the framework effectively reduces 

unnecessary energy expenditure while prolonging network lifetime and ensuring sustainable IoT operation. This 

adaptive energy-centric trust mechanism also helps balance load among nodes, preventing premature battery 

depletion of critical routing devices. 

Throughput 

Throughput denotes the rate at which data packets are successfully delivered from source nodes to destination nodes 

and is measured in kilobits per second (Kbps). By prioritizing high fuzzy trust nodes during routing and isolating 

low-trust or malicious nodes, the proposed approach ensures stable data forwarding paths, resulting in improved 

throughput even under adversarial network conditions. Furthermore, the adaptive fuzzy trust threshold dynamically 

adjusts routing preferences to mitigate congestion and packet loss caused by misbehaving nodes. This leads to more 

efficient bandwidth utilization and consistent data transmission performance across varying network loads. 

End-to-End Delay 

End-to-end delay refers to the total time taken by a data packet to traverse from the source to the destination and is 

measured in milliseconds (ms). This metric includes processing, transmission, propagation, and queuing delays. The 

adaptive fuzzy trust mechanism minimizes delay by preventing packet drops and reducing route recalculations 

caused by malicious behaviour, leading to faster and more reliable packet delivery. By prioritizing high-trust nodes 

in route selection, the framework ensures stable forwarding paths. 
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Packet Delivery Ratio (PDR) 

Packet Delivery Ratio (PDR) is defined as the ratio of the number of packets successfully received at the destination 

to the number of packets transmitted by the source, expressed as a percentage. In the proposed fuzzy trust–based 

RPL model, PDR is significantly enhanced due to accurate malicious node detection, adaptive trust thresholding, and 

trust-based routing decisions that ensure only reliable nodes participate in data forwarding. 

 

6. DISCUSSION 

Experimental Setup and Attack Scenario 

Figure 2 illustrates the simulated IoT network topology used to evaluate the proposed Adaptive Fuzzy Trust–Based 

RPL security mechanism. The network consists of multiple static sensor nodes deployed within a defined 

communication range, with Node 1 configured as the sink node responsible for collecting data from all participating 

nodes. The green shaded region represents the wireless communication coverage area, while blue directional arrows 

indicate active data transmission paths established by the RPL routing protocol. Under normal operation, data 

packets are forwarded through multi-hop routes toward the sink node based on routing metrics and trust-aware 

parent selection. 

 

Figure 2. The simulated IoT network topology 

To rigorously assess the effectiveness of the fuzzy trust mechanism, the network is subjected to multiple coordinated 

routing attacks that exploit RPL vulnerabilities. A Flooding Attack is launched by Nodes 51 and 52, which generate 

excessive control and data packets to congest the network, increase energy consumption, and degrade throughput. A 

Version Number Attack is performed by Nodes 53 and 54, where manipulated routing updates are disseminated to 

mislead neighbouring nodes and trigger unnecessary topology reconstructions. Additionally, a Sinkhole Attack is 

initiated by Node 55, which falsely advertises optimal routing metrics to attract network traffic, thereby disrupting 

legitimate data forwarding and enabling selective packet dropping. 

The proposed fuzzy trust management framework continuously monitors node behaviour during these attack 

scenarios by evaluating behavioural, energy, control message, and cooperative trust parameters. These trust values 

are fuzzified and processed through a fuzzy inference system to dynamically assess node trustworthiness under 

uncertain and adversarial conditions. Red-circled nodes in Figure 2 highlight the malicious and suspicious nodes 

identified by the fuzzy trust mechanism. Once a node’s defuzzified trust score falls below the adaptive fuzzy threshold, 

it is isolated from routing operations through fuzzy trust–based mitigation and parent re-selection, ensuring secure 

and stable data delivery. This experimental setup enables comprehensive evaluation of attack detection accuracy, 

routing resilience, and performance improvements achieved through adaptive fuzzy trust–based RPL security. 
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Packet Delivery Ratio (PDR) 

Figure 3 presents a comparative analysis of the Packet Delivery Ratio (PDR) under three network conditions: RPL 

with Attack, Existing Trust-Based RPL with Attack, and the Proposed Adaptive Fuzzy Trust–Based RPL with Attack. 

The results demonstrate that the proposed fuzzy trust–based RPL scheme consistently achieves the highest PDR 

across all evaluated categories. This improvement is attributed to the fuzzy trust evaluation mechanism, which 

accurately identifies malicious and unstable nodes by processing multiple trust dimensions under uncertain network 

conditions and dynamically isolates them from routing operations. 

In contrast, the existing trust-based RPL approach exhibits moderate PDR performance, as it relies on rigid trust 

thresholds and limited adaptability to fluctuating node behaviour, leading to delayed or imprecise malicious node 

detection. The standard RPL with attack scenario performs the worst due to its lack of trust awareness, resulting in 

frequent packet drops, route disruptions, and malicious traffic forwarding. Overall, the superior PDR achieved by the 

proposed method highlights the effectiveness of fuzzy inference–driven trust assessment and adaptive fuzzy 

thresholding, which enable resilient routing decisions and significantly enhance data delivery reliability in adversarial 

IoT environments. 

 

 

Figure 3. Compare Packet Delivery Ratio (PDR) 

End-to-End Delay 

Figure 4 illustrates the comparative End-to-End Delay (in milliseconds) for three network scenarios: RPL with 

Attack, Existing Trust-Based RPL with Attack, and the Proposed Adaptive Fuzzy Trust–Based RPL with Attack. The 

results show that the proposed fuzzy trust–based RPL consistently achieves the lowest end-to-end delay among all 

schemes. This improvement is primarily due to the fuzzy trust mechanism, which continuously evaluates node 

behaviour using behavioural, energy, control message, and cooperative trust parameters. Malicious and unstable 

nodes are identified and isolated through adaptive fuzzy thresholding, preventing them from participating in routing 

paths and reducing retransmissions and route recalculations. Additionally, prioritizing high-trust nodes during 

parent selection ensures stable multi-hop routes, thereby minimizing congestion and latency variations under 

adversarial conditions. 
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In contrast, the existing trust-based RPL exhibits a moderate delay reduction because it relies on static trust 

thresholds and lacks the flexibility to adapt to dynamic node behaviour, resulting in occasional routing through 

suspicious nodes. The standard RPL under attack experiences the highest delay due to frequent packet drops, 

misrouting, and congestion caused by malicious nodes. Overall, the results demonstrate that the fuzzy inference–

driven trust assessment and adaptive fuzzy routing decisions of the proposed framework significantly enhance 

network responsiveness, improve routing stability, and reduce latency in IoT networks under adversarial conditions. 

 

 

Figure 4. Compare End-to-End Delay (ms)  

Throughput 

Figure 5 compares the network throughput (in Kbps) across three scenarios: RPL with Attack, Existing Trust-Based 

RPL with Attack, and the Proposed Adaptive Fuzzy Trust–Based RPL with Attack. The results clearly demonstrate 

that the proposed fuzzy trust–based RPL consistently achieves the highest throughput among all evaluated schemes. 

This improvement is attributed to the fuzzy trust evaluation mechanism, which continuously monitors node 

behaviour across multiple dimensions—including behavioural, energy, control message, and cooperative trust—and 

dynamically isolates malicious or unstable nodes from the routing process. By ensuring that data packets are 

forwarded only through high-trust nodes, the proposed framework reduces packet loss, avoids network congestion, 

and maintains stable multi-hop routes, resulting in significantly higher data delivery rates. 

In contrast, the existing trust-based RPL shows moderate throughput improvement because it relies on static trust 

thresholds and limited adaptability to dynamic node behaviour, causing occasional routing through suspicious nodes 

and resulting in packet drops. The standard RPL under attack performs the worst, as malicious nodes disrupt routing 

paths, drop packets, and introduce retransmissions, leading to severe degradation in throughput. Overall, the results 

demonstrate that adaptive fuzzy trust-based routing not only mitigates the impact of insider and external attacks but 

also maintains reliable data flow and network efficiency, highlighting the robustness and effectiveness of the 

proposed framework for IoT networks under adversarial conditions. Moreover, the continuous trust updates and 

adaptive parent selection reduce route instability and frequent reconfigurations, further contributing to sustained 

throughput performance. These findings confirm that the proposed approach achieves a favorable balance between 

security enforcement and communication efficiency in dynamic IoT environments. 
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Figure 5. Compare Throughput (Kbps) 

Power Consumption 

Figure 6 illustrates the comparative power consumption (in milliwatts) for three network scenarios: RPL with Attack, 

Existing Trust-Based RPL with Attack, and the Proposed Adaptive Fuzzy Trust–Based RPL with Attack. The results 

demonstrate that the proposed fuzzy trust–based RPL consumes the least power among all schemes. This 

improvement is primarily due to the fuzzy trust mechanism, which continuously evaluates node behaviour across 

multiple trust dimensions—behavioural, energy, control message, and cooperative trust—and dynamically isolates 

malicious or unstable nodes from routing operations. By preventing compromised nodes from participating in packet 

forwarding, the framework reduces unnecessary retransmissions, excessive control message propagation, and energy 

wastage, thereby improving overall network energy efficiency. 

In contrast, the existing trust-based RPL exhibits moderate energy savings, as static trust thresholds provide limited 

adaptability to dynamic node behaviour, causing occasional routing through nodes with fluctuating or suspicious 

activity. The standard RPL under attack consumes the highest power, as malicious nodes introduce congestion, 

repeated retransmissions, and unnecessary control traffic, leading to inefficient energy utilization. Overall, these 

results highlight that the adaptive fuzzy trust–based routing and thresholding mechanisms not only enhance security 

and reliability but also optimize energy consumption, making the proposed approach highly suitable for resource-

constrained IoT networks. 

Moreover, the observed reduction in power consumption directly contributes to prolonged network lifetime and 

improved sustainability of IoT deployments, particularly in battery-operated and unattended environments. By 

intelligently balancing security enforcement with energy-aware routing decisions, the proposed adaptive fuzzy trust–

based RPL avoids excessive isolation of benign nodes while ensuring efficient utilization of network resources. This 

energy-efficient behaviour is critical for large-scale and long-term IoT applications, where minimizing maintenance 

costs and extending node operational lifetime are key performance objectives. Additionally, the adaptive fuzzy trust 

mechanism enables the network to dynamically respond to energy fluctuations and attack-induced overhead, 

ensuring consistent performance without compromising security or scalability. 
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Figure 6. Compare Power Consumption (mW)  

 

CONCLUSION 

This research presented an Adaptive Fuzzy Trust–Based RPL security framework to enhance the resilience of IoT 

networks against malicious node attacks. By incorporating a multi-dimensional fuzzified trust assessment model that 

evaluates behavioural, energy, control message, and cooperative trust factors, the proposed approach effectively 

addresses the inherent security limitations of traditional RPL protocols. The use of fuzzy inference and adaptive trust 

thresholding enables accurate malicious node detection under uncertain and dynamic network conditions, resulting 

in more reliable and secure routing decisions. 

Extensive simulations conducted in the Contiki–Cooja environment demonstrate that the proposed fuzzy trust 

mechanism significantly improves Packet Delivery Ratio, reduces end-to-end delay, enhances throughput, and lowers 

power consumption when compared to existing RPL security schemes. The adaptive fuzzy thresholding and trust-

based routing strategies effectively isolate malicious nodes while minimizing false detections and maintaining low 

overhead. Future work will focus on extending the proposed framework to handle more sophisticated and combined 

attack scenarios, as well as integrating lightweight cryptographic primitives with fuzzy trust management to further 

strengthen the security and scalability of RPL-based IoT networks in real-world deployments. 

In addition, the proposed approach lays a foundation for intelligent and autonomous trust management in large-

scale IoT systems by enabling nodes to make context-aware security decisions with minimal human intervention. The 

flexibility of fuzzy logic allows seamless adaptation to heterogeneous device capabilities and dynamic network 

conditions, making the framework suitable for diverse IoT applications such as smart cities, healthcare monitoring, 

and industrial automation. By supporting distributed trust computation and localized decision-making, the 

framework reduces dependency on centralized control and improves fault tolerance. This adaptability and scalability 

ensure reliable and secure operation even as network size, traffic intensity, and threat complexity continue to grow. 
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