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ARTICLE INFO ABSTRACT

Internet of Things (IoT) networks based on the Routing Protocol for Low-Power and Lossy
Networks (RPL) are highly susceptible to malicious node attacks, which can significantly degrade
Revised: 20 Nov 2024 network performance and reliability. This paper proposes an Adaptive Fuzzy Trust—Based RPL
mechanism that dynamically evaluates node behavior using a multi-dimensional fuzzified trust
assessment model incorporating packet forwarding ratio, energy consumption patterns, control
message behavior, and cooperative trust feedback. By leveraging fuzzy logic, the proposed
approach effectively handles uncertainty and imprecision in trust evaluation under dynamic
network conditions. An adaptive fuzzy thresholding mechanism analyzes global fuzzy trust
distributions to accurately detect and classify malicious nodes. Extensive simulations conducted
in the Cooja simulator on Contiki OS demonstrate substantial improvements in Packet Delivery
Ratio, End-to-End delay, Throughput, and Power Efficiency compared to existing trust-based
RPL schemes. Results show significant gains in Packet Delivery Ratio (PDR), End-to-End Delay,
Throughput, and Power Efficiency compared to existing RPL-based trust models. Specifically,
the fuzzy trust framework achieves up to 25% improvement in PDR, 18% reduction in End-to-
End Delay, 20% improvement in Throughput, and 15% improvement in Power Efficiency.
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INTRODUCTION

The Internet of Things (IoT) is transforming various industries, including smart cities, healthcare, and industrial
automation. However, IoT networks face significant security challenges due to their low-power nature and
susceptibility to malicious node attacks [1]. The Routing Protocol for Low-Power and Lossy Networks (RPL), a widely
used IoT routing standard, is vulnerable to packet dropping, excessive control message injection, and energy
depletion attacks, leading to decreased Packet Delivery Ratio (PDR), increased end-to-end (E2E) delay, poor
throughput, and high energy consumption [2].

To mitigate these threats, we propose an Adaptive Fuzzy Trust—Based RPL protocol that dynamically detects and
isolates malicious nodes using a multi-dimensional fuzzified trust assessment model [3]. The proposed model
evaluates Behavioral Trust, Energy Trust, Control Message Trust, and Cooperative Trust, which are converted into
linguistic variables and processed through a fuzzy inference system to accurately assess node trustworthiness under
uncertain and dynamic network conditions [4]. A fuzzy-guided adaptive thresholding mechanism classifies nodes
into trusted, suspicious, and malicious categories and effectively isolates malicious nodes from RPL routing
operations. Simulation results demonstrate significant improvements compared to existing RPL protocol [5].

In addition, the proposed fuzzy trust management framework enhances network adaptability and robustness by
continuously updating trust values based on real-time node behavior and historical interactions. By incorporating
cooperative trust feedback and adaptive fuzzy rules, the framework minimizes false positives and false negatives in
malicious node detection while maintaining low computational and communication overhead [6]. This lightweight
yet intelligent trust management approach improves routing stability and strengthens IoT network resilience against
insider and dynamic routing attacks, making it suitable for real-world and resource-constrained IoT applications [6].
Moreover, its scalable and decentralized design enables seamless deployment in large-scale IoT networks without
relying on centralized control or extensive parameter tuning.
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RELATED WORK

Azzedin, F., et al. (2023), In IoT environments where devices have limited energy and resources, attacks that
drain battery power can be very dangerous. Flooding attacks and version number manipulation attacks are major
security issues in the RPL routing protocol. One study introduces a trust-based technique to protect RPL networks
from these attacks. The results show that version number attacks spread quickly and cause serious damage, while
hello-message flooding attacks mostly affect the nearby area only. Their simulation proved that the trust-based
method is effective in stopping both types of attacks and improving network resilience [1].

Alfriehat, N., et al. (2024), RPL plays an important role in IoT and sensor-based systems. However, if attackers
target RPL, they can stop data from being delivered and waste network resources. Another research paper explains
different RPL-related attacks, highlights their impact, and discusses possible protection strategies. It also compares
earlier security studies to identify the most dangerous threats and give direction for future research. This work shows
the importance of studying RPL-based attacks more deeply so that stronger security solutions can be developed [2].

Ioulianou, P. P., et al. (2019), Even though IoT devices are widely used today, they are still vulnerable to large-
scale attacks such as Mirai and Chalubo botnet attacks. To protect RPL networks from denial-of-service (DoS)
attacks, one study presents an Intrusion Detection System (IDS). The IDS uses a threshold-based method and
includes both centralized and distributed components. Experiments performed using ContikiOS and the Cooja
simulator demonstrate that the IDS works well and produces very few false alarms, even in large IoT networks [3].

Paganraj, D., et al. (2024), In many cases, attackers focus on draining a node’s memory and energy, which
eventually causes the entire IoT system to stop working. Most traditional RPL security techniques waste energy and
reduce device lifetime. A new protocol called DE2RA-RPL introduces a lightweight and efficient solution to defend
against DAO flooding, rank manipulation, and version attacks. Simulation results prove that this method improves
packet delivery, increases throughput, saves energy, and reduces delay when compared to the standard RPL protocol.
This makes it suitable for critical communication systems, including emergency and automated applications [4].

Albinali, H., et al. (2024), RPL is widely used in low-power networks, but it still has several security weaknesses.
A comprehensive survey of 175 research papers reviews different RPL attacks and defenses. It groups attacks into
categories such as packet generation, packet dropping, and packet modification. It also discusses countermeasures
like authentication, encryption, and isolating malicious nodes. The study recommends developing new and advanced
techniques to protect RPL networks against routing-based attacks and stresses the need for efficient evaluation
standards [5].

Adarbah et al. (2022), The IoT enables global connectivity for monitoring, processing, and analyzing device-
generated data, but the large volume of data and open communication environment introduce significant security
challenges. This paper reviews RPL security issues, particularly selective forwarding attacks, and introduces a secure
ECDH-based authentication and key-agreement scheme. The proposed method ensures strong mutual
authentication, secure session key distribution, and resistance to known attacks, while maintaining low
computational and communication overhead—making it practical for resource-constrained IoT environments [6].

Alsukayti, I. S., et al. (2023), The internal structure of RPL makes it especially vulnerable to routing attacks
during network topology formation. Experimental research shows that these attacks greatly affect quality of service
(QoS), network stability, and energy efficiency, especially when networks become large or attackers are sophisticated.
In extreme scenarios, the RPL network performance can drop by more than 90%, and energy and resource usage may
increase by up to 200% [7].

Mosa, H., et al. (2024), IoT networks are used everywhere, and this widespread use makes them attractive targets
for cyber-attackers. Machine learning techniques are increasingly being used to detect and prevent RPL-specific
attacks such as Hello flooding, rank attacks, blackhole attacks, and version number attacks. One study tested Random
Forest and KNN classifiers on more than 160 million data records. The Random Forest model achieved 99% accuracy,
while KNN reached 98% accuracy in identifying malicious network behavior. This proves that machine learning
algorithms can effectively detect IoT routing attacks and support reliable security monitoring [8]. However, the high
computational and data requirements of such models motivate the exploration of lightweight alternatives, such as
fuzzy trust—based mechanisms, for resource-constrained IoT environments.
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Gonen, S., et al. (2024), The Internet of Things also includes the Internet of Medical Things (IoMT), where
medical devices share sensitive health data. While IoMT brings huge benefits, it also creates cybersecurity challenges.
To protect these systems, encryption and strong authentication are essential. In one study, researchers analyzed
flood-based attacks under single-attacker and multiple-attacker cases. They used artificial intelligence and forensic
techniques to detect threats in real time. Their AT model achieved 99.9% accuracy, showing its very high reliability
for security monitoring in IoT systems. This demonstrates the importance of Al in strengthening IoT networks [9].

Wakili et al. (2024), address the performance and security challenges faced by RPL in IoT systems. They present
an Al-powered solution called NANTAR, designed to improve both routing efficiency and security. Compared to
standard RPL, NANTAR increases network throughput by 20%, reduces delay by 20-30%, and lowers false detection
rates by 15-20%. It also performs well in large-scale IoT deployments while maintaining low energy usage, making it
a reliable method for strengthening IoT routing security [10].

Rajasekar, V. R., et al. (2024), Several types of isolation attacks target the RPL protocol, such as Blackhole
Attacks, Selective Forwarding Attacks, and Destination Advertisement Object Inconsistency Attacks (DAO-IA). These
attacks interrupt normal data transmission in IoT networks, causing nodes to be cut off from the network. One study
examined different techniques used to defend against such attacks and found that most research focuses on reducing
power consumption. However, performance factors like delay and control-packet overhead are less studied [11].

Rouissat, M., et al. (2023), As IoT devices grow in number, their limited processing power and battery life make
them vulnerable to cyber-attacks, especially flooding attacks. Since standard RPL lacks built-in security features,
attackers can easily exploit it. A malicious node can send a large amount of fake control information, known as a DIO
Flooding (DIOF) attack, which overwhelms the network. Results show that such attacks cause network control traffic
to increase by 500%, power consumption by 210%, packet delivery ratio (PDR) drops by 32%, and delay increases by
192%. To solve this, researchers propose DIOF-Secure RPL (DSRPL), a lightweight method that can identify and
control the attack in a few seconds. Their solution reduced energy use and network overhead by 80% [12].

Alamiedy, T. A., et al. (2021), RPL is widely used in IoT, but it struggles with energy efficiency and is exposed to
Distributed Denial of Service (DDoS) attacks. To address this, another study introduced an ensemble feature-
selection technique to detect DDoS attacks in RPL networks. It uses three bio-inspired optimization algorithms to
pick the best features for attack detection, and then applies Support Vector Machine (SVM) for classification. This
method improves DDoS detection accuracy and makes IoT routing more secure. However, the approach introduces
additional computational overhead and relies on centralized learning, which may limit its applicability in highly
resource-constrained IoT environments [13].

Bang, A. O., et al. (2022), Routing-based attacks make protecting RPL networks a difficult task. A comprehensive
review studied different RPL security threats and defense solutions. It created a new classification system for RPL
attacks based on control-message manipulation and mapped each attack type to possible defense techniques. The
review also compared tools, methods, and evaluation techniques used in previous studies. It highlights remaining
research challenges and encourages further security improvements for RPL networks [14].

Kannan, A., et al. (2024), IoT networks also require intelligent security solutions, as traditional rule-based
intrusion systems cannot fully protect them. To address this, one study introduced an Intelligent Intrusion Detection
System (IDS) called NGCA (Neuro-Genetic Classification Algorithm), which combines neural networks with genetic
algorithms for optimal attack detection. When tested on the NSL-KDD dataset, NGCA performed better than Decision
Trees, Logistic Regression, and SVM models. It achieved high accuracy with low false alarms, proving its reliability
for securing IoT networks [15].

Sridhar, K., et al. (2024), In addition, routing in IoT networks is difficult to secure due to device limitations such
as low memory and battery power. RPL structures the network efficiently, but attackers can manipulate routing
metrics through Routing Disruption Attacks (RDAs). To combat this, another research introduced RDAD, a method
that uses Packet Delivery Ratio (PDR) analysis to find reliable routes and detect abnormal behavior. RDAD
significantly improves packet delivery performance, reduces data loss, and achieved a 96.5% attack detection rate,
making IoT routing safer [16]. However, its reliance on a single performance metric highlights the need for multi-
dimensional and adaptive trust mechanisms, such as fuzzy-based trust evaluation, to handle complex and dynamic
attack behaviors in IoT networks.
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Wang, X., et al. (2024), Although RPL is useful for IoT networking, its design makes it vulnerable to sophisticated
security attacks. Because of this, attackers can easily target and control network communication. One major challenge
in improving RPL security is the shortage of high-quality datasets that specifically contain RPL-related attack
scenarios. To address this, researchers developed a dedicated IoT dataset that includes common RPL attacks such as
Blackhole, Hello Flooding, and Version Number attacks. After testing various machine learning models on this
dataset, Random Forest gave the best results in detecting and reducing the impact of these attacks [17].

Ahmadi, K., et al. (2024), RPL is highly vulnerable to blackhole attacks, selective forwarding attacks, and rank
manipulation attacks, which can severely disrupt network communication. Many IoT devices lack the processing
power to run traditional cryptographic techniques. To overcome this limitation, researchers proposed a trust-based
intrusion detection system using Recurrent Neural Networks (RNN). The system predicts routing behavior and
detects unusual activity in real-time simulations. Results showed high accuracy and precision, enabling early
detection and prevention of malicious nodes [18].

Gonen, S., et al. (2023), As IoT grows globally, cybersecurity becomes more critical because connected devices
are often targeted by attackers. One study investigated the impact of flooding-based attacks on IoT systems by
analyzing network traffic during attacks. The researchers used Texecom Cloud with packet mirroring to support real-
time forensic analysis and avoid network overload. Artificial intelligence was used to identify attackers automatically,
enabling continuous monitoring and improving the resilience of IoT systems [19].

OBJECTIVES

The primary objective of this article is to design and implement an Adaptive Fuzzy Trust—Based RPL routing protocol
that effectively detects and mitigates malicious node behavior in low-power and lossy IoT networks. By integrating a
multi-dimensional fuzzy trust assessment model, the proposed approach aims to accurately evaluate node
trustworthiness using behavioral, energy, control message, and cooperative trust metrics under uncertain and
dynamic network conditions. The objective is to overcome the limitations of traditional RPL security mechanisms by
providing adaptive, lightweight, and intelligent trust-based routing decisions that enhance network security without
imposing excessive computational or energy overhead on resource-constrained IoT devices.

Another key objective of this work is to evaluate the performance and effectiveness of the proposed fuzzy trust
management framework through extensive simulations and comparative analysis. The study aims to demonstrate
measurable improvements in critical network performance metrics, including Packet Delivery Ratio, End-to-End
Delay, Throughput, and Power Efficiency, when compared with existing RPL and trust-based routing models.
Furthermore, this article seeks to validate the robustness and scalability of the proposed solution in realistic IoT
scenarios, ensuring its suitability for real-world, large-scale, and energy-constrained IoT applications while
maintaining resilience against insider and dynamic routing attacks.

METHODS

Figure 1 presents the proposed Fuzzy Trust Management Architecture designed to secure RPL-based IoT networks
by enabling adaptive and intelligent trust evaluation under uncertain and dynamic network conditions. The
architecture is structured around three tightly coupled modules: Fuzzy Trust Score Calculation, Adaptive Fuzzy Trust
Thresholding, and Malicious Node Detection and Mitigation. Together, these modules form a comprehensive trust
management framework that continuously assesses node behavior, establishes trust classification, and identifies
security threats in low-power and lossy network environments.

In the Figure 1, core of the architecture is the Fuzzy Trust Score Calculation module, which employs a multi-
dimensional fuzzified trust assessment model. Behavioral Trust, Energy Trust, Control Message Trust, and
Cooperative Trust metrics are transformed into linguistic variables (Low, Medium, High) and processed through a
fuzzy inference system to capture uncertainty, imprecision, and dynamic variations in node behavior. The output of
this module is a Global Fuzzy Trust Score, which provides a reliable and context-aware representation of node
trustworthiness and serves as the foundation for subsequent trust decisions. By enabling smooth trust adaptation
under fluctuating network conditions, this module significantly improves the accuracy and robustness.
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Figure 1. The architecture is the Fuzzy Trust Score Calculation module

Building upon the computed fuzzy trust scores, the Adaptive Fuzzy Trust Thresholding module dynamically
determines an appropriate trust threshold based on the overall fuzzy trust distribution and current network
conditions. This adaptive threshold enables accurate Malicious Node Detection, where nodes are classified as trusted,
suspicious, or malicious. Nodes identified as malicious are isolated from RPL routing operations, including parent
selection and control message propagation, thereby preventing routing disruption and energy depletion attacks.
Through continuous fuzzy trust evaluation and adaptive mitigation, the proposed architecture enhances network
resilience, routing stability, and energy efficiency, making it well suited for real-world and resource-constrained IoT
deployments.

Furthermore, the integration of cooperative trust feedback and real-time monitoring in the fuzzy trust framework
ensures that trust evaluations are continuously updated based on both historical and current node behavior. This
enables the system to adapt to dynamic network changes, such as fluctuating traffic patterns or intermittent node
failures, while minimizing false positives and false negatives in malicious node detection. By leveraging the inherent
flexibility of fuzzy logic, the proposed mechanism can handle uncertainties and imprecise measurements in low-
power and lossy networks, ensuring reliable routing decisions, reducing unnecessary energy consumption, and
sustaining overall network performance even under adversarial conditions.

In addition, the proposed fuzzy trust—based architecture supports scalable and distributed trust management by
allowing each node to locally compute and update trust values with minimal communication overhead. This
decentralized operation aligns well with the constrained nature of IoT environments, as it avoids reliance on
centralized authorities and reduces control message overhead. As a result, the framework maintains efficient routing
performance while preserving node autonomy and network scalability in large-scale IoT deployments. The
lightweight fuzzy inference process ensures low computational complexity, making it suitable for resource-limited
sensor nodes. Moreover, localized trust computation enhances fault tolerance and enables faster response to
malicious activities without introducing significant latency or energy overhead. Moreover, the adaptive nature of the
fuzzy trust mechanism enables long-term network sustainability by continuously learning from evolving attack
patterns and normal behavioral changes. This continuous adaptation strengthens overall network robustness and
ensures consistent security enforcement throughout the operational lifetime of the IoT system.
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Algorithm 1 continuously evaluates each RPL node using four trust metrics in [0,1]. It computes Behavioral Trust as
forwarded/received packets, Energy Trust as residual/initial energy, Control Message Trust as one minus excess
control messages over a maximum, and Cooperative Trust as the average neighbor feedback. These values are
normalized, fuzzified into Low/Medium/High, processed through fuzzy IF-THEN rules, aggregated, and defuzzified
via the centroid method to output an updated Global Trust Score (GTS;) for routing and attacker isolation.

In addition, the algorithm operates in a periodic and event-driven manner, allowing trust values to adapt dynamically
to network conditions such as mobility, congestion, and energy depletion. At each evaluation interval, historical trust
values are combined with the newly computed GTSi using a weighted update factor to smooth abrupt fluctuations
and prevent transient errors from unfairly penalizing nodes. Nodes whose GTSii falls below a predefined adaptive
threshold are gradually isolated by reducing their routing preference and limiting their participation in DIO/DAO
dissemination, rather than being immediately removed, which minimizes false positives. This continuous learning
and gradual mitigation strategy ensures stable RPL topology formation, improves resilience against insider attacks,
and maintains energy-efficient routing while preserving overall network connectivity. Consequently, the network can
respond intelligently to evolving attack patterns while maintaining reliable data delivery and low control overhead in
highly dynamic IoT environments. Moreover, this adaptive and incremental isolation process supports long-term
network stability by balancing security enforcement with routing flexibility and fairness.

Algorithm 1: Fuzzy Logic—Based Trust Score Calculation

Input:
Packet forwarding statistics, residual energy, control message count, neighbor trust feedback

Output:
Global Trust Score (GTS:;) for node n;

Step 1: Initialize trust parameters
BT;, ET;, CMT;, CT; € [O, 1]

Step 2: Monitor node n; continuously during RPL operation.

Step 3: Compute Behavioral Trust (BT;)
BT; < P;_forwarded / P;_received

Step 4: Compute Energy Trust (ET;)
ET: < E_residual / E,_initial

Step 5: Compute Control Message Trust (CMT;)
CMT; « 1 — (C;_excess / C_max)

Step 6: Compute Cooperative Trust (CT;)
CTi (1 / Ni) x Z=1N; Ty

Step 7: Normalize {BT;, ET;, CMT;, CT;} to the range [0, 1].

Step 8: Fuzzify the normalized trust values into linguistic variables
{Low, Medium, High}.

Step 9: Apply fuzzy IF-THEN inference rules to evaluate node trust.

Step 10: Aggregate fuzzy rule outputs.

Step 11: Defuzzify the aggregated output using the centroid method.

Step 12: Output the resulting Global Trust Score GTSi for node ni, representing its overall trustworthiness derived

from fuzzy inference and multi-dimensional trust evaluation.
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The Algorithm 2 dynamically determines a trust threshold for RPL networks using fuzzy logic. It collects and
normalizes all nodes’ Global Trust Scores, analyzes network conditions, and fuzzifies trust levels into linguistic terms.
Fuzzy inference rules evaluate overall network trust, which is aggregated and defuzzified to produce an adaptive
threshold for secure routing and malicious node detection.

Furthermore, the adaptive threshold computation is periodically refined to reflect temporal variations in node
behavior, traffic load, and topology changes inherent to RPL-based IoT networks. By incorporating statistical
dispersion of Global Trust Scores—such as mean and variance—the algorithm prevents overly strict or lenient
threshold selection in heterogeneous environments. The resulting threshold is broadcast to all nodes and used
consistently during parent selection and route maintenance, ensuring network-wide coherence in trust decisions.
This adaptive mechanism reduces false positives in malicious node detection, enhances robustness against
coordinated attacks, and maintains a balance between security enforcement and routing stability.

Algorithm 2: Adaptive Fuzzy Trust Threshold Calculation

Input:
Global Trust Scores (GTS) of all nodes, fuzzy trust distribution, current network conditions

Output:
Adaptive Trust Threshold

Step 1: Collect the Global Trust Scores (GTS) of all participating nodes in the RPL network.

Step 2: Monitor and analyze current network conditions, including node density, traffic load, and variations in trust
behavior.

Step 3: Normalize the collected Global Trust Scores to ensure all values lie within the range [0,1].

Step 4: Fuzzify the normalized trust scores into linguistic variables such as Low, Medium, and High using predefined
membership functions.

Step 5: Apply fuzzy IF-THEN inference rules to evaluate the overall network trust condition based on the fuzzified
trust inputs.

Step 6: Aggregate the outputs of all activated fuzzy rules to obtain a combined fuzzy threshold representation.
Step 7: Defuzzify the aggregated fuzzy threshold using the centroid method to compute a crisp threshold value.

Step 8: Adaptively update the trust threshold by incorporating historical trust trends along with current fuzzy
inference results.

Step 9: Output the final Adaptive Trust Threshold T_adaptive for malicious node classification and trust-based
routing decisions.

The Algorithm 3 detects and mitigates malicious nodes using trust scores and an adaptive threshold. For each node,
it compares GTS; with T_adaptive and a minimum margin T _min. Nodes with GTS; > T_adaptive are trusted; those
with T_adaptive > GTS; = T_min is marked suspicious and monitored. If GTS; < T_min, the node is classified
malicious and isolated by removing it from parent selection, forwarding paths, and control message exchange.
Additionally, the mitigation process follows a graded response strategy to balance security and network performance.
Instead of immediate and permanent exclusion, isolated nodes may undergo a probation phase during which their
behavior is closely observed under restricted participation. This adaptive and progressive mitigation approach
preserves overall routing stability in dynamic RPL-based IoT networks.
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Algorithm 3: Malicious Node Detection and Trust-Based Mitigation

Input:
Global Trust Scores (GTS) of all nodes, Adaptive Trust Threshold T_adaptive

Output:
Detection, classification, and isolation of malicious nodes

Step 1: Collect the Global Trust Score GTSi of each node niobtained from the fuzzy trust evaluation process.

Step 2: Retrieve the Adaptive Trust Threshold T_adaptive computed using the adaptive fuzzy trust thresholding
mechanism.

Step 3: Compare the Global Trust Score of each node with the Adaptive Trust Threshold to assess its trustworthiness.

Step 4: Classify a node as trusted if GTSi = Tadaptive, allowing it to participate fully in RPL routing and parent
selection.

Step 5: Classify a node as suspicious if Tadaptive > GTSi = Tmin where Tmin represents a predefined minimum
trust margin; such nodes are closely monitored for behavioral changes.

Step 6: Classify a node as malicious if GTSi < Tmin indicating persistent abnormal or harmful behavior.

Step 7: Isolate malicious nodes by excluding them from RPL parent selection, data forwarding paths, and control
message propagation.

Step 8: Update routing tables and trust records of neighboring nodes to prevent future interactions with isolated
malicious nodes.

Step 9: Continuously re-evaluate node trust scores to allow recovery of falsely isolated nodes and ensure adaptability
to dynamic network conditions.

Fuzzy Trust Assessment and Adaptation Model

To address uncertainty, dynamic behavior, and imprecise observations in IoT environments, we introduce a multi-
dimensional Fuzzy Trust Adaptation Model for secure RPL-based routing. The proposed model evaluates node
trustworthiness using multiple trust components that collectively capture routing behavior, energy usage patterns,
control message activity, and cooperative feedback. Instead of relying solely on crisp values, each trust metric is
fuzzified and processed through a fuzzy inference mechanism to improve robustness and accuracy in malicious node
detection.

The fuzzy inference system applies a set of well-defined IF-THEN rules to combine the fuzzified trust inputs and
derive a comprehensive trust evaluation that reflects both individual node behavior and overall network conditions.
By leveraging linguistic variables and membership functions, the model effectively handles noise, incomplete
information, and transient fluctuations commonly observed in low-power and lossy networks. The resulting
defuzzified trust score is continuously updated and integrated into RPL routing decisions, enabling adaptive parent
selection and timely mitigation of malicious or energy-draining nodes while maintaining routing stability and energy
efficiency. Furthermore, the adaptive nature of the fuzzy trust model allows it to respond promptly to evolving attack
patterns and changing traffic dynamics without requiring manual reconfiguration. This flexibility makes the
proposed approach robust and scalable, ensuring consistent security and performance even as network size, topology,
and threat intensity change over time.
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Trust Components

Behavioral Trust (BT):

Measures historical routing behavior using the Packet Forwarding Ratio (PFR) to detect packet dropping and
selective forwarding attacks. The observed PFR values are fuzzified into linguistic levels (Low, Medium,
High) to accommodate fluctuations in traffic conditions.

Energy Trust (ET):

Evaluates residual energy patterns to detect abnormal power consumption indicative of energy depletion or
denial-of-service attacks. Energy values are mapped to fuzzy sets to tolerate normal energy variations in
resource-constrained IoT nodes. This fuzzy energy trust assessment enables early detection of energy-based
attacks while preventing false alarms caused by legitimate workload fluctuations, thereby extending overall
network lifetime.

Control Message Trust (CMT):

Monitors the frequency of RPL control messages (DIS/DIO/DAO) to identify excessive or abnormal control
traffic. Fuzzification enables the detection of subtle control flooding behavior that may not be captured by
fixed thresholds. By correlating control message patterns with other trust metrics, the mechanism accurately
distinguishes malicious signaling activity from legitimate topology maintenance operations.

Cooperative Trust (CT):

Aggregates trust recommendations from neighboring nodes to validate local trust assessments and enhance
reputation accuracy. Neighbor feedback is incorporated as fuzzy inputs to reduce the impact of isolated false
observations. This collaborative trust evaluation strengthens resilience against insider and on—off attacks,
where malicious nodes attempt to alternate between normal and abnormal behavior.

Fuzzy Trust Score Computation

Each node computes a Global Fuzzy Trust Score (FTS) using a weighted aggregation of the fuzzified trust
components:

FTS(@) = a - BT() + B - ET() +y - CMT(@) + & - CT(i)

where a, B, y, 6 are adaptive fuzzy weights that dynamically adjust according to network conditions and trust
distribution.

Fuzzy Trust Levels and Interpretation

Based on the defuzzified trust score, nodes are classified into adaptive trust levels:

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

High Trust (FTS = 0.85):

The node is highly reliable and fully eligible for RPL routing operations.
Moderate Trust (0.70 < FTS < 0.85):

The node is stable but subjected to continuous fuzzy trust monitoring.

Low Trust (0.50 < FTS < 0.70):

The node exhibits suspicious behavior and is restricted from critical routing roles.
Critical Trust (FTS < 0.50):

The node is considered malicious and is isolated from RPL routing activities.
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Adaptive Fuzzy Trust Thresholding Mechanism

Instead of relying on static or fixed trust thresholds, the proposed security framework employs an Adaptive Fuzzy
Trust Thresholding Mechanism that dynamically adjusts trust boundaries based on real-time network behavior and
trust distribution. This mechanism continuously analyzes the global trust status of the network and incorporates
uncertainty, variability, and dynamic node behavior through fuzzy logic. By avoiding rigid threshold values, the
proposed approach enables more accurate and flexible identification of malicious nodes in highly dynamic and
resource-constrained IoT environments.

The adaptive threshold TadaptiveT_{adaptive}Tadaptive is derived using a fuzzy statistical model based on the global
trust score distribution, expressed as:

T _{adaptive} = u(TS_global) + k X o(TS_global)

where TSglobal represents the average fuzzy trust score across the network, k is a sensitivity factor controlling
anomaly detection aggressiveness, and u and o denote the mean and standard deviation of trust scores, respectively.
These statistical parameters are further processed through fuzzy membership functions to generate a context-aware
threshold that adapts to changing network conditions. As a result, the fuzzy thresholding mechanism reduces false
positives and false negatives, enhances malicious node detection accuracy, and improves overall network stability
and resilience.

Fuzzy Trust Threshold Interpretation

The proposed Fuzzy Trust Threshold Interpretation classifies network nodes based on their defuzzified trust scores
and adaptive fuzzy thresholds, enabling accurate and flexible decision-making under uncertain network conditions.
Instead of rigid binary classification, fuzzy trust levels allow gradual differentiation between trusted, suspicious, and
malicious nodes, thereby improving detection accuracy and reducing false alarms.

e Trusted State:

If the fuzzy trust score TS > T_a daptive, the node is classified as trusted and safe. Such nodes are fully
permitted to participate in RPL routing operations, including parent selection and control message
forwarding.

e Suspicious State:

If T_a daptive > TS = 0.50, the node is classified as at risk. These nodes exhibit uncertain or fluctuating
behavior and are subjected to continuous fuzzy trust monitoring and restricted routing roles until their trust
level stabilizes.

e Malicious State:

If TS < 0.50, the node is classified as malicious and is immediately isolated from the network. Fuzzy trust-
based isolation prevents such nodes from participating in data forwarding and control message exchange,
thereby mitigating routing and energy-based attacks.

Mitigation via Fuzzy Trust—Based Routing

The proposed security framework integrates Fuzzy Trust—Based Routing to effectively mitigate malicious node
behavior in RPL-based IoT networks. Instead of relying solely on traditional RPL rank metrics, routing decisions are
guided by defuzzified trust scores, enabling more reliable and attack-resilient parent selection under uncertain
network conditions. By prioritizing nodes with higher fuzzy trust levels, the framework ensures stable routing paths,
reduces packet loss, and prevents traffic redirection through compromised or unstable nodes. Additionally, the
dynamic update of fuzzy trust scores allows routing decisions to adapt in real time to changes in node behavior and
network conditions. This trust-aware routing strategy improves overall network resilience, maintains quality of
service, and enhances energy efficiency in the presence of both insider and external attacks. As a result, the proposed
approach supports scalable, secure, and sustainable routing operations suitable for long-term and large-scale IoT
deployments.
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Furthermore, the fuzzy trust—based routing mechanism incorporates a trust decay and recovery strategy, allowing
trust values to dynamically adapt to changes in node behavior over time. Nodes exhibiting intermittent or improving
behavior can gradually regain trust, while persistently malicious nodes experience rapid trust degradation and
isolation. This adaptive mitigation approach not only minimizes false isolation but also enhances routing stability,
energy efficiency, and overall network resilience, making the protocol well suited for dynamic and resource-
constrained IoT environments.

e Fuzzy Trust—Based Parent Selection:

Each node prioritizes neighboring nodes with high fuzzy trust levels during parent selection, rather than
selecting parents solely based on RPL rank. By incorporating trust as a primary routing metric, the network
avoids malicious or unstable nodes, thereby improving routing reliability and data delivery performance.

¢ Fuzzy Trust Decay Mechanism:

A fuzzy trust decay mechanism is employed to gradually reduce a node’s trust score when its behavior
becomes inconsistent or fluctuates over time. This adaptive decay prevents abrupt trust drops due to
transient network conditions while ensuring that persistently misbehaving nodes are progressively restricted
from routing participation.

¢ Distributed Fuzzy Attack Mitigation:

When a node’s fuzzy trust score falls below the adaptive fuzzy threshold TadaptiveT_{adaptive}Tadaptive,
neighboring nodes collaboratively initiate isolation actions. This distributed fuzzy mitigation approach
ensures rapid and scalable attack handling without centralized control, effectively preventing the
propagation of routing attacks and maintaining overall network stability.

RESULTS

Simulation Setups

In this study, we evaluate the performance of the proposed Fuzzy Trust—Based RPL security framework using a
simulated IoT network consisting of 50 static sensor nodes. All simulations were conducted using the Cooja network
simulator, a widely used and accurate Java-based simulation platform, operating within the Contiki OS environment
designed for resource-constrained IoT devices. Cooja enables precise modeling of low-power wireless networks and
supports detailed analysis of routing behavior, trust dynamics, and attack scenarios in RPL-based IoT networks.

The simulations were implemented using the Zolertia Z1 IoT platform, which is equipped with an MSP430
microcontroller unit (MCU) and a CC2420 IEEE 802.15.4-compliant transceiver. The platform operates within a
voltage range of 1.8 V to 3.6 V, with a maximum clock frequency of 16 MHz, ensuring realistic energy consumption
and communication behavior. The proposed fuzzy trust assessment, adaptive thresholding, and trust-based routing
mechanisms were integrated into the RPL protocol stack within Contiki OS. This setup enabled comprehensive
evaluation of fuzzy trust dynamics, malicious node mitigation effectiveness, and network performance metrics under
realistic IoT operating conditions.

Network Configuration with Fuzzy Trust—Based RPL

The network configuration for evaluating the proposed Fuzzy Trust—Based RPL security mechanism is summarized
in Table X. The simulation environment consists of 50 static IoT sensor nodes deployed over a 400 m2 area, with a
fixed transmission range of 10 m. This dense deployment enables effective evaluation of fuzzy trust interactions,
cooperative trust aggregation, and malicious node influence within multi-hop RPL topologies.

Communication between nodes is established using the UDP transport protocol, while the IEEE 802.15.4 standard
is employed for both the PHY and MAC layers, ensuring low-power and lossy network characteristics. Data packets
are transmitted at regular intervals of 60 seconds, allowing the fuzzy trust system to continuously monitor node
behavior, update trust values, and adapt routing decisions over time.
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To assess the robustness of the proposed fuzzy trust mechanism, five attacker nodes are introduced into the network
to perform malicious activities such as packet dropping, excessive control message injection, and energy depletion
attacks. The Unit Disk Graph Medium (UDGM) radio model is used to simulate realistic wireless communication.
This configuration enables comprehensive evaluation of the fuzzy trust score calculation, adaptive fuzzy thresholding,
and trust-based mitigation strategies under realistic IoT network conditions.

Table I: Network Configuration and Fuzzy Trust Parameters

Parameter Value

Transmission Range 10 m

Number of Sensor Nodes 50

Deployment Area 400 m?

Transport Layer Protocol UDP

PHY & MAC Layer Standard IEEE 802.15.4

Data Packet Sending Interval 60s

Number of Attacker Nodes 5

Radio Medium Model Unit Disk Graph Medium (UDGM)
Trust Evaluation Interval 60 s

Trust Dimensions BT, ET, CMT, CT

Fuzzy Input Variables Low, Medium, High

Fuzzy Inference Method Mamdani FIS

Defuzzification Technique Centroid Method

Adaptive Fuzzy Threshold Type Dynamic (Mean—Variance Based)
Trust Decay Factor Adaptive (behavior-dependent)
Trust-Based Routing Metric Fuzzy Trust Score (FTS)
Malicious Node Isolation Criterion | FTS < Adaptive Fuzzy Threshold

Performance Metrics
Average Power Consumption

Average power consumption represents the mean energy utilized by IoT nodes over a defined simulation period and
is measured in milliwatts (mW). In the proposed fuzzy trust—based RPL framework, power efficiency is evaluated by
monitoring node behaviour across active, idle, and sleep states. Additionally, nodes exhibiting abnormal or excessive
energy usage patterns are assigned lower trust values, indicating potential malicious or misbehaving behaviour. By
incorporating energy-aware fuzzy trust evaluation into routing decisions, the framework effectively reduces
unnecessary energy expenditure while prolonging network lifetime and ensuring sustainable IoT operation. This
adaptive energy-centric trust mechanism also helps balance load among nodes, preventing premature battery
depletion of critical routing devices.

Throughput

Throughput denotes the rate at which data packets are successfully delivered from source nodes to destination nodes
and is measured in kilobits per second (Kbps). By prioritizing high fuzzy trust nodes during routing and isolating
low-trust or malicious nodes, the proposed approach ensures stable data forwarding paths, resulting in improved
throughput even under adversarial network conditions. Furthermore, the adaptive fuzzy trust threshold dynamically
adjusts routing preferences to mitigate congestion and packet loss caused by misbehaving nodes. This leads to more
efficient bandwidth utilization and consistent data transmission performance across varying network loads.

End-to-End Delay

End-to-end delay refers to the total time taken by a data packet to traverse from the source to the destination and is
measured in milliseconds (ms). This metric includes processing, transmission, propagation, and queuing delays. The
adaptive fuzzy trust mechanism minimizes delay by preventing packet drops and reducing route recalculations
caused by malicious behaviour, leading to faster and more reliable packet delivery. By prioritizing high-trust nodes
in route selection, the framework ensures stable forwarding paths.
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Packet Delivery Ratio (PDR)

Packet Delivery Ratio (PDR) is defined as the ratio of the number of packets successfully received at the destination
to the number of packets transmitted by the source, expressed as a percentage. In the proposed fuzzy trust—based
RPL model, PDR is significantly enhanced due to accurate malicious node detection, adaptive trust thresholding, and
trust-based routing decisions that ensure only reliable nodes participate in data forwarding.

6. DISCUSSION
Experimental Setup and Attack Scenario

Figure 2 illustrates the simulated IoT network topology used to evaluate the proposed Adaptive Fuzzy Trust—Based
RPL security mechanism. The network consists of multiple static sensor nodes deployed within a defined
communication range, with Node 1 configured as the sink node responsible for collecting data from all participating
nodes. The green shaded region represents the wireless communication coverage area, while blue directional arrows
indicate active data transmission paths established by the RPL routing protocol. Under normal operation, data
packets are forwarded through multi-hop routes toward the sink node based on routing metrics and trust-aware
parent selection.
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Figure 2. The simulated IoT network topology

To rigorously assess the effectiveness of the fuzzy trust mechanism, the network is subjected to multiple coordinated
routing attacks that exploit RPL vulnerabilities. A Flooding Attack is launched by Nodes 51 and 52, which generate
excessive control and data packets to congest the network, increase energy consumption, and degrade throughput. A
Version Number Attack is performed by Nodes 53 and 54, where manipulated routing updates are disseminated to
mislead neighbouring nodes and trigger unnecessary topology reconstructions. Additionally, a Sinkhole Attack is
initiated by Node 55, which falsely advertises optimal routing metrics to attract network traffic, thereby disrupting
legitimate data forwarding and enabling selective packet dropping.

The proposed fuzzy trust management framework continuously monitors node behaviour during these attack
scenarios by evaluating behavioural, energy, control message, and cooperative trust parameters. These trust values
are fuzzified and processed through a fuzzy inference system to dynamically assess node trustworthiness under
uncertain and adversarial conditions. Red-circled nodes in Figure 2 highlight the malicious and suspicious nodes
identified by the fuzzy trust mechanism. Once a node’s defuzzified trust score falls below the adaptive fuzzy threshold,
it is isolated from routing operations through fuzzy trust—based mitigation and parent re-selection, ensuring secure
and stable data delivery. This experimental setup enables comprehensive evaluation of attack detection accuracy,
routing resilience, and performance improvements achieved through adaptive fuzzy trust—based RPL security.
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Packet Delivery Ratio (PDR)

Figure 3 presents a comparative analysis of the Packet Delivery Ratio (PDR) under three network conditions: RPL
with Attack, Existing Trust-Based RPL with Attack, and the Proposed Adaptive Fuzzy Trust—Based RPL with Attack.
The results demonstrate that the proposed fuzzy trust—based RPL scheme consistently achieves the highest PDR
across all evaluated categories. This improvement is attributed to the fuzzy trust evaluation mechanism, which
accurately identifies malicious and unstable nodes by processing multiple trust dimensions under uncertain network
conditions and dynamically isolates them from routing operations.

In contrast, the existing trust-based RPL approach exhibits moderate PDR performance, as it relies on rigid trust
thresholds and limited adaptability to fluctuating node behaviour, leading to delayed or imprecise malicious node
detection. The standard RPL with attack scenario performs the worst due to its lack of trust awareness, resulting in
frequent packet drops, route disruptions, and malicious traffic forwarding. Overall, the superior PDR achieved by the
proposed method highlights the effectiveness of fuzzy inference—driven trust assessment and adaptive fuzzy
thresholding, which enable resilient routing decisions and significantly enhance data delivery reliability in adversarial
IoT environments.
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Figure 3. Compare Packet Delivery Ratio (PDR)
End-to-End Delay

Figure 4 illustrates the comparative End-to-End Delay (in milliseconds) for three network scenarios: RPL with
Attack, Existing Trust-Based RPL with Attack, and the Proposed Adaptive Fuzzy Trust—Based RPL with Attack. The
results show that the proposed fuzzy trust—based RPL consistently achieves the lowest end-to-end delay among all
schemes. This improvement is primarily due to the fuzzy trust mechanism, which continuously evaluates node
behaviour using behavioural, energy, control message, and cooperative trust parameters. Malicious and unstable
nodes are identified and isolated through adaptive fuzzy thresholding, preventing them from participating in routing
paths and reducing retransmissions and route recalculations. Additionally, prioritizing high-trust nodes during
parent selection ensures stable multi-hop routes, thereby minimizing congestion and latency variations under
adversarial conditions.
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In contrast, the existing trust-based RPL exhibits a moderate delay reduction because it relies on static trust
thresholds and lacks the flexibility to adapt to dynamic node behaviour, resulting in occasional routing through
suspicious nodes. The standard RPL under attack experiences the highest delay due to frequent packet drops,
misrouting, and congestion caused by malicious nodes. Overall, the results demonstrate that the fuzzy inference—
driven trust assessment and adaptive fuzzy routing decisions of the proposed framework significantly enhance
network responsiveness, improve routing stability, and reduce latency in IoT networks under adversarial conditions.
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Throughput

Figure 5 compares the network throughput (in Kbps) across three scenarios: RPL with Attack, Existing Trust-Based
RPL with Attack, and the Proposed Adaptive Fuzzy Trust—Based RPL with Attack. The results clearly demonstrate
that the proposed fuzzy trust—based RPL consistently achieves the highest throughput among all evaluated schemes.
This improvement is attributed to the fuzzy trust evaluation mechanism, which continuously monitors node
behaviour across multiple dimensions—including behavioural, energy, control message, and cooperative trust—and
dynamically isolates malicious or unstable nodes from the routing process. By ensuring that data packets are
forwarded only through high-trust nodes, the proposed framework reduces packet loss, avoids network congestion,
and maintains stable multi-hop routes, resulting in significantly higher data delivery rates.

In contrast, the existing trust-based RPL shows moderate throughput improvement because it relies on static trust
thresholds and limited adaptability to dynamic node behaviour, causing occasional routing through suspicious nodes
and resulting in packet drops. The standard RPL under attack performs the worst, as malicious nodes disrupt routing
paths, drop packets, and introduce retransmissions, leading to severe degradation in throughput. Overall, the results
demonstrate that adaptive fuzzy trust-based routing not only mitigates the impact of insider and external attacks but
also maintains reliable data flow and network efficiency, highlighting the robustness and effectiveness of the
proposed framework for IoT networks under adversarial conditions. Moreover, the continuous trust updates and
adaptive parent selection reduce route instability and frequent reconfigurations, further contributing to sustained
throughput performance. These findings confirm that the proposed approach achieves a favorable balance between
security enforcement and communication efficiency in dynamic IoT environments.
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Power Consumption

Figure 6 illustrates the comparative power consumption (in milliwatts) for three network scenarios: RPL with Attack,
Existing Trust-Based RPL with Attack, and the Proposed Adaptive Fuzzy Trust—Based RPL with Attack. The results
demonstrate that the proposed fuzzy trust—based RPL consumes the least power among all schemes. This
improvement is primarily due to the fuzzy trust mechanism, which continuously evaluates node behaviour across
multiple trust dimensions—behavioural, energy, control message, and cooperative trust—and dynamically isolates
malicious or unstable nodes from routing operations. By preventing compromised nodes from participating in packet
forwarding, the framework reduces unnecessary retransmissions, excessive control message propagation, and energy
wastage, thereby improving overall network energy efficiency.

In contrast, the existing trust-based RPL exhibits moderate energy savings, as static trust thresholds provide limited
adaptability to dynamic node behaviour, causing occasional routing through nodes with fluctuating or suspicious
activity. The standard RPL under attack consumes the highest power, as malicious nodes introduce congestion,
repeated retransmissions, and unnecessary control traffic, leading to inefficient energy utilization. Overall, these
results highlight that the adaptive fuzzy trust—based routing and thresholding mechanisms not only enhance security
and reliability but also optimize energy consumption, making the proposed approach highly suitable for resource-
constrained IoT networks.

Moreover, the observed reduction in power consumption directly contributes to prolonged network lifetime and
improved sustainability of IoT deployments, particularly in battery-operated and unattended environments. By
intelligently balancing security enforcement with energy-aware routing decisions, the proposed adaptive fuzzy trust—
based RPL avoids excessive isolation of benign nodes while ensuring efficient utilization of network resources. This
energy-efficient behaviour is critical for large-scale and long-term IoT applications, where minimizing maintenance
costs and extending node operational lifetime are key performance objectives. Additionally, the adaptive fuzzy trust
mechanism enables the network to dynamically respond to energy fluctuations and attack-induced overhead,
ensuring consistent performance without compromising security or scalability.
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CONCLUSION

This research presented an Adaptive Fuzzy Trust—Based RPL security framework to enhance the resilience of IoT
networks against malicious node attacks. By incorporating a multi-dimensional fuzzified trust assessment model that
evaluates behavioural, energy, control message, and cooperative trust factors, the proposed approach effectively
addresses the inherent security limitations of traditional RPL protocols. The use of fuzzy inference and adaptive trust
thresholding enables accurate malicious node detection under uncertain and dynamic network conditions, resulting
in more reliable and secure routing decisions.

Extensive simulations conducted in the Contiki—Cooja environment demonstrate that the proposed fuzzy trust
mechanism significantly improves Packet Delivery Ratio, reduces end-to-end delay, enhances throughput, and lowers
power consumption when compared to existing RPL security schemes. The adaptive fuzzy thresholding and trust-
based routing strategies effectively isolate malicious nodes while minimizing false detections and maintaining low
overhead. Future work will focus on extending the proposed framework to handle more sophisticated and combined
attack scenarios, as well as integrating lightweight cryptographic primitives with fuzzy trust management to further
strengthen the security and scalability of RPL-based IoT networks in real-world deployments.

In addition, the proposed approach lays a foundation for intelligent and autonomous trust management in large-
scale IoT systems by enabling nodes to make context-aware security decisions with minimal human intervention. The
flexibility of fuzzy logic allows seamless adaptation to heterogeneous device capabilities and dynamic network
conditions, making the framework suitable for diverse IoT applications such as smart cities, healthcare monitoring,
and industrial automation. By supporting distributed trust computation and localized decision-making, the
framework reduces dependency on centralized control and improves fault tolerance. This adaptability and scalability
ensure reliable and secure operation even as network size, traffic intensity, and threat complexity continue to grow.
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