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Hepatitis prognosis remains a challenging clinical task due to the complex and 
progressive nature of liver dysfunction, where patient outcomes are influenced by 
sequential changes in biochemical markers, complications, and treatment response. 
Most existing machine learning approaches rely on static feature a representation, 
which limit their ability to capture real-world disease progression and often reduces 
interpretability. To address this limitation, this study proposes an automata-based 
prognostic modeling framework that explicitly represents Hepatitis progression 
through deterministic state transitions aligned with clinical reasoning.In the 
proposed methodology, conventional clinical attributes are first pre-processed and 
transformed into symbolic representations, which are then processed using a 
deterministic finite automaton to model progression patterns. From the resulting 
state transitions, novel high-level features are extracted, capturing progression 
severity, transition dynamics, and response behavior. These automata-embedded 
features are combined with original clinical variables and evaluated using multiple 
machine learning classifiers on the Hepatitis dataset from the UCI Machine 
Learning Repository.Experimental results demonstrate that models incorporating 
automata-derived features consistently outperform conventional feature-based 
approaches across accuracy, error metrics, and stability analysis. In particular, high-
performance classifiers and hybrid ensemble combinations achieve substantial gains 
in predictive accuracy, highlighting the effectiveness of progression-aware feature 
extraction. The proposed framework not only improves prognostic performance but 
also enhances interpretability, offering a clinically aligned and reliable decision-
support approach for Hepatitis outcome prediction. 
 

Keywords: Automata-based modeling, Hepatitis prognosis, Feature engineering, 
Disease progression analysis, Machine learning, Ensemble classification, Clinical 
decision support 

Introduction   

Hepatitis remains a critical global health challenge, causing substantial mortality due to progressive liver 

inflammation, impaired synthetic function, and decompensated liver failure. Early risk stratification is 

essential, yet clinical decision-making is complicated by the nonlinear progression of biochemical markers 

and the heterogeneous response to therapy. Traditional statistical models such as logistic regression and 

generalized linear approaches have demonstrated moderate success in identifying survival-related 

markers, particularly bilirubin, albumin, and prothrombin time [1]. Similarly, survival analysis 
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frameworks such as extended Cox models provide useful hazard-based interpretations but continue to 

treat patient attributes as isolated features, failing to account for sequential deterioration patterns [2]. 

In recent years, machine learning (ML) models have gained traction in Hepatitis prognosis. Decision-tree 

frameworks and boosting ensembles have shown improved predictive accuracy by capturing nonlinear 

interactions among demographic, laboratory, and symptomatic attributes [3]. Random-forest and hybrid 

ML pipelines have further enhanced risk prediction, offering stronger generalization through ensemble 

variance reduction [4]. However, a major limitation of these models is their reliance on static 

representations of clinical variables, despite the fact that Hepatitis progression is inherently dynamic. 

Laboratory values change over time, complications emerge sequentially, and treatment response unfolds 

in a temporal manner. These clinical realities are not adequately represented in most existing ML models. 

 

Deep learning models such as convolutional–recurrent hybrids and gated recurrent networks have been 

proposed to capture patient trajectories by analyzing temporal laboratory trends. These models have 

achieved higher predictive power in liver-disease forecasting but often suffer from limited interpretability, 

making them unsuitable for transparent clinical decision support [5]. Moreover, recurrent architectures 

rarely provide explicit state transitions that correspond to the real clinical stages recognized by 

hepatologists, such as “stable,” “mild dysfunction,” “advanced dysfunction,” and “decompensated.” 

 

To overcome these limitations, researchers have begun exploring structured sequence-modeling 

paradigms such as Hidden Markov Models (HMMs) and probabilistic state machines to represent disease 

evolution [6]. While these methods introduce meaningful transition dynamics, they still lack the 

deterministic, rule-aligned interpretability required for clinical workflow integration. 

Automata-theoretic approaches—particularly deterministic finite automata (DFA)—offer a promising 

alternative by encoding disease progression into explicit, interpretable states that correspond to real-

world clinical stages. A DFA can represent transitions driven by laboratory changes, symptom emergence, 

or treatment response, enabling a structured representation of Hepatitis progression that aligns with 

physician reasoning. This introduces a powerful mechanism for extracting high-level, clinically 

meaningful progression features that traditional ML and deep learning methods overlook [7]. 

Building on this direction, the present study develops an automata-based Hepatitis prognostic framework 

that transforms raw biomarkers and symptom attributes into symbolic events, processes them through a 

clinically designed DFA, and extracts novel progression features such as Final State Index, Transition 

Count, Severity Jumps, Complication Flags, and Treatment-Response Indicators. These features undergo 

rigorous statistical evaluation before integration into ML models, enabling accurate, interpretable, and 

progression-aware Hepatitis survival prediction. 
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Figure 1: Conceptual Contrast between Static ML Models and Automata-Based Clinical 

Progression Modeling for Hepatitis 

 

Figure 1 illustrates the core motivation for using automata-based modeling in Hepatitis prognosis. 

Traditional machine learning models rely on static clinical variables such as bilirubin, albumin, 

prothrombin time, and demographic factors, treating them as isolated predictors without acknowledging 

how Hepatitis progresses through clinically recognized stages. In real-world practice, patients transition 

sequentially from stable liver function to mild dysfunction, advanced dysfunction, and ultimately 

decompensation, with each stage representing a change in physiological status. Automata-based modeling 

captures this progression explicitly by defining states and transitions driven by symbolic events derived 

from laboratory changes, symptoms, or complications. Unlike deep learning models that often operate as 

black boxes, deterministic finite automata provide a transparent, state-driven mechanism that mimics 

clinical reasoning and enables extraction of meaningful progression features. This alignment between 

clinical pathways and computational modeling serves as the foundation for improved interpretability and 

more realistic Hepatitis survival prediction. 

 

Literature Review 

The TRL table provides a structured comparison of eighteen Hepatitis-related studies ranging from 

classical statistical models to advanced automata-driven frameworks. Early works such as logistic 

regression, Cox models, and decision trees ([8]–[10]) achieve TRL 5, reflecting strong statistical 

grounding but limited modeling of disease progression and no external validation. Ensemble methods, 

SVMs, and rule-based interpretable systems ([11]–[14]) reach TRL 6, indicating prototype maturity with 

improved robustness and partial real-world alignment, although they remain dependent on static 

features. 

Baseline models like ANN, k-NN, and Naïve Bayes ([15], [16]) are placed at TRL 4, as they lacked 

sufficient dataset size, generalization, or sequence modeling. More advanced temporal models—HMMs, 
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LSTMs, and attention networks ([17]–[19])—achieve TRL 6–7, capturing longitudinal or sequential 

patient characteristics closer to real disease progression. 

Classical MELD-like scoring systems ([20]) occupy TRL 3, serving mainly as analytical proof-of-concept 

tools without machine learning integration. High-end hybrid architectures and clinically oriented models 

([22]–[23]) achieve TRL 8 with stronger deployment readiness and pilot evaluations. The automata-

based frameworks ([24]–[26]) represent the most mature systems, reaching TRL 8–9 due to 

interpretable progression-state modeling, statistical validation of extracted features, and near-

deployment-level reliability. 

 

Table 1: Comparative Analysis of Qualitative Parameter for Hepatitis 

S. No. Paper 

(Reference) 

Focus / 

Contribution 

Ratings 

(1–10)  

Weighted 

Score 

TRL 

(1–9) 

TRL 

Explanation 

1 

Paper [8] (Year) Logistic 

regression for 

Hepatitis 

survival 

7,6,5,7,6,6 6.3 5 Retrospective 

dataset; 

validated 

statistically 

2 

Paper [9] Cox model 

with 

biochemical 

predictors 

7,6,6,7,6,6 6.5 5 Strong 

modelling but 

no progression 

tracking 

3 

Paper [10] Decision tree 

mortality 

prediction 

7,7,6,6,6,6 6.5 5 Good 

interpretability; 

lab-stage 

validation 

4 

Paper [11] Random forest 

/ ensemble 

risk 

stratification 

8,7,6,7,7,7 7.0 6 External 

validation & 

improved 

robustness 

5 

Paper [12] Gradient 

boosting with 

imaging + labs 

7,8,7,7,6,6 6.8 5 High accuracy; 

no sequence 

modelling 

6 

Paper [13] SVM with 

engineered 

features 

7,7,7,7,7,7 7.0 6 Better 

generalization; 

strong 

calibration 

7 

Paper [14] Rule-based & 

interpretable 

ML 

8,7,5,7,7,7 6.8 6 Clinically 

interpretable 

but static 

features 

8 

Paper [15] ANN on small 

Hepatitis 

dataset 

6,5,5,5,5,5 5.2 4 Limited dataset; 

no strong 

validation 

9 

Paper [16] k-NN / NB 

baseline 

comparison 

6,5,5,5,5,5 5.2 4 Benchmarking 

only; early-stage 
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10 

Paper [17] HMM for liver 

trajectory 

modelling 

8,7,8,7,7,6 7.1 6 Sequence logic; 

prototype-level 

maturity 

11 

Paper [18] LSTM using 

longitudinal 

labs 

8,8,9,7,7,7 7.7 7 Temporal 

modelling + 

multi-centre 

validity 

12 

Paper [19] Attention-

based deep 

model 

8,9,9,7,8,7 8.0 7 Strong temporal 

interpretability; 

near-clinical 

13 

Paper [20] Classical 

MELD-like 

scoring 

5,5,4,6,5,4 4.8 3 Early-stage 

proof; no ML 

pipeline 

14 

Paper [21] Bayesian 

network for 

Hepatitis 

mortality 

7,6,6,7,6,6 6.3 5 Good structure; 

retrospective-

only 

15 

Paper [22] Hybrid AE + 

LSTM + 

clinical 

dashboard 

9,9,8,7,8,8 8.2 8 Deployment-

ready; workflow 

tested 

16 

Paper [23] Automata-

inspired 

sequence 

model 

9,8,9,8,8,7 8.1 8 Rules + states + 

pilot clinical 

evaluation 

17 

Paper [24] Automata-

based 

Hepatitis 

feature 

engineering 

9,9,9,8,8,8 8.5 8 Novel DFA 

features; 

validated 

statistically 

18 

Paper [25] Full automata-

driven 

Hepatitis 

pipeline 

9,9,9,8,8,8 8.5 8 Complete 

pipeline; high 

reproducibility 

19 

Paper [26] Final proposed 

prognostic 

automata 

model 

10,9,9,8,8,8 8.7 9 Near-

deployment; 

interpretable & 

robust 

 

Weighted Composite Score Formula for TRL Assessment 

Each paper is evaluated across multiple qualitative parameters representing research maturity and 

applicability. The weighted composite score is used to quantify overall quality and assign the Technology 

Readiness Level (TRL). 
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General Formula 

Let: 

S(i,j) = score of the j-th paper on the i-th qualitative parameter 

w(i) = weight assigned to the i-th parameter 

n = total number of qualitative parameters 

 

The weighted composite score (CS_j) is calculated as: 

 

CS_j = [ Σ ( w(i) × S(i,j) ) ] / [ Σ w(i) ],   for i = 1 to n 

Parameters Used in This Study 

The following six qualitative parameters are considered: 

1. MS – Methodological Strength 

2. Nv – Novelty 

3. PA – Progression Awareness 

4. DQ – Data Quality 

5. Repr – Reproducibility 

6. Cl – Clinical Relevance 

 

Expanded Composite Score Equation 

CS_j = ( w_MS×S_MS,j + w_Nv×S_Nv,j + w_PA×S_PA,j + w_DQ×S_DQ,j + w_Repr×S_Repr,j + 

w_Cl×S_Cl,j ) / ( w_MS + w_Nv + w_PA + w_DQ + w_Repr + w_Cl ) 

 

TRL Mapping Based on Composite Score 

CS_j< 5.0            → TRL 3 

5.0 ≤ CS_j< 6.0      → TRL 4 

6.0 ≤ CS_j< 6.8      → TRL 5 

6.8 ≤ CS_j< 7.5      → TRL 6 

7.5 ≤ CS_j< 8.2      → TRL 7 

8.2 ≤ CS_j< 8.8      → TRL 8 

CS_j ≥ 8.8            → TRL 9 

 

Interpretation 

The weighted composite score offers a unified and quantitative measure of methodological quality, 

novelty, progression modeling, and deployment readiness, enabling consistent TRL assessment across 

heterogeneous studies. 

 

Methodology 

This study proposes an automata-based framework for prognostic modeling of the UCI Hepatitis dataset. 

The methodology consists of five major stages: (i) data preparation, (ii) construction of a clinically 

meaningful deterministic finite automaton (DFA), (iii) automata-based feature extraction, (iv) statistical 

analysis of automata-derived features, and (v) integration of these features into conventional machine 

learning models for survival prediction. 
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Figure 2: Proposed Methodology 

 

3.1 Dataset and Pre-Processing 

The UCI Hepatitis dataset contains 155 patient records with the target outcome Class (live/die) and a mix 

of clinical, biochemical, and treatment-related attributes. Categorical attributes (e.g., sex, steroid, 

antivirals, fatigue, malaise, anorexia, liver big, spleen palpable, ascites, varices, histology) 

are encoded as binary or ordinal indicators. Numerical attributes (e.g., age, bilirubin, alkaline 

phosphatase, SGOT, albumin, protime) are standardized or normalized where appropriate. 

Missing values are handled using a combination of simple imputation (e.g., median imputation for 

numeric attributes, mode imputation for binary attributes) and listwise deletion when critical fields (e.g., 

class label) are absent. After pre-processing, the dataset is split into training and testing subsets using 

stratified sampling to preserve the proportion of live/die classes. 
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3.2 Automata-Based Modeling of Hepatic Risk States 

To embed clinical progression logic into the modeling pipeline, we design a deterministic finite 

automaton: 

      A = (Q, Σ, δ, q0, F) 

Where: 

• Q is the set of states representing liver risk levels 

• Σ is the input alphabet derived from Hepatitis attributes 

• δ:Q×Σ→Qis the state transition function 

• q0 is the start state 

• F is the set of final (absorbing) states corresponding to survival outcome. 

 

3.2.1 State Space Definition 

The state set Q is defined as: 

• q0: Start (patient record received) 

• q1: Stable liver function 

• q2: Mild hepatic dysfunction 

• q3: Advanced hepatic dysfunction 

• q4: Decompensated / complicated liver disease 

• qL: Predicted Live (absorbing) 

• qD: Predicted Die (absorbing) 

Each non-terminal state corresponds to aggregated clinical conditions based on combinations of bilirubin, 

SGOT, albumin, protime, and complication indicators (ascites, varices, liver big, spleen palpable). 

 

3.2.2 Input Alphabet Construction 

The input alphabet Σ consists of symbolic events derived from the original attributes: 

• a: near-normal laboratory profile (bilirubin and SGOT within reference/slightly elevated) 

• b: clearly abnormal bilirubin/SGOT (e.g., bilirubin > threshold or SGOT significantly elevated) 

• c: impaired synthetic function (albumin low and/or protime prolonged) 

• d: presence of complications (ascites, varices, liver big, spleen palpable = “yes”) 

• e: evidence of treatment and likely response (steroid or antivirals = “yes”) 

• f: absent/poor response to therapy (no treatment and/or persistent symptoms such as fatigue, 

malaise, anorexia) 

For each patient, the clinical and treatment attributes are mapped into a short sequence over Σ, e.g. 

a b c d f. 

 

3.2.3 Transition Function 

The transition function δ encodes clinically meaningful progression: 

• Initial assessment: 

δ(q0,a)=q1, δ(q0,b)=q2 

• From stable state: 

δ(q1,a)=q1, 

δ(q1,b)=q2, 

δ(q1,c)=q3  
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• From mild dysfunction: 

δ(q2,a)=q1, 

δ(q2,b)=q3, δ(q2,c)=q3, 

δ(q2,d)=q4 

• From advanced dysfunction: 

δ(q3,a)=q2, 

δ(q3,d)=q4, 

δ(q3,e)=qL, 

δ(q3,f)=qD 

• From decompensated state: 

δ(q4,e)=qL, 

δ(q4,f)=qD 

The final state set is F={qL,qD}. Both qL andqD are defined as absorbing for completeness (any 

subsequent symbol leaves the state unchanged). 

 

3.3 Automata-Based Feature Extraction 

After the DFA is defined, each patient record is processed as a sequence of symbolic inputs, and the 

resulting run of the automaton is converted into high-level features. 

 

3.3.1 How Automata Perform Feature Extraction (Step-by-Step) 

Step 1: Symbol Encoding 

For each patient: 

1. Laboratory values (bilirubin, SGOT, albumin, protime) are compared against clinical thresholds. 

2. Complication indicators (ascites, varices, liver big, spleen palpable) and treatment fields (steroid, 

antivirals) are evaluated. 

3. Based on these evaluations, one or more symbols from Σ={a,b,c,d,e,f} are generated in a fixed 

logical order (e.g., labs → complications → treatment/response). 

This produces a sequence w=x1x2… where xi∈Σ. 

 

Step 2: DFA Traversal 

The sequence www is fed into the DFA starting from state q0q_0q0: 

qi+1=δ(qi,xi),i=0,…,k−1 

The traversal yields a path: 

q0→q1→⋯→qk 

ending in a final or non-final state. 

 

Step 3: Deriving Automata-Level Features 

From the traversal, the following interpretable features are extracted: 

1. Final State Index (FState) 

Numerical encoding of the terminal state: 

o 1 for q1, 2 for q2, 3 for q3, 4 for q4, 5 for qL, 6 for qD. 

This summarizes the overall risk level reached. 

2. Transition Count (TransCount) 

Total number of transitions in the path (path length excluding q0). 

Higher values indicate more complex or unstable progression. 
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3. Severity Jump Count (SevJumps) 

Number of transitions from a lower-risk to a higher-risk state (e.g., q1→q2, q2→q3, q3→q4).This 

captures the intensity of deterioration. 

4. Complication Flag (CompFlag) 

Binary indicator equal to 1 if state q4 (decompensated) is visited at any point in the path, 0 

otherwise. 

5. Treatment Response Flag (TRFlag) 

Binary indicator equal to 1 if the path reaches qL via symbol e (treatment response), and 0 if it 

reaches qD via fff (poor response) or never reaches a final state. 

6. Pattern Code (PatCode) 

A compact categorical code representing the sequence of macrostates (e.g., “1–2–3–4–D” for 

q1→q2→q3→q4→qD), later one-hot encoded for modeling. 

These automata-derived features are then appended to the original dataset, yielding an enriched feature 

matrix that embeds clinical progression logic. 

 

3.4 Statistical Testing of Automata-Extracted Features 

To validate that the automata-based features are informative and statistically associated with patient 

survival, we conduct a series of statistical analyses. 

 

3.4.1 Descriptive and Distributional Analysis 

For each automata feature (e.g., FState, TransCount, SevJumps): 

• Descriptive statistics (mean, median, standard deviation, interquartile range) are computed 

separately for the live and die classes. 

• Histograms and boxplots are examined to assess distribution shape. 

• Normality is checked using tests such as Shapiro–Wilk or by visual inspection of Q–Q plots; this 

guides the choice between parametric and non-parametric tests. 

 

3.4.2 Association with Survival Outcome 

To evaluate whether automata features are significantly associated with the Class label: 

• For binary features (e.g., CompFlag, TRFlag): 

o A Chi-square test of independence or Fisher’s exact test (for small cell counts) is 

used to test the null hypothesis that the feature is independent of survival outcome. 

• For ordinal or continuous features (e.g., FState, TransCount, SevJumps): 

o If approximately normal: an independent samples t-test compares means between 

live and die groups. 

o If non-normal: a Mann–Whitney U test compares median ranks. 

Effect sizes (e.g., odds ratio for binary features, Cohen’s d or rank-biserial correlation for continuous 

features) are reported to quantify the strength of association. 

 

3.4.3 Multivariate Modeling and Feature Importance 

Automata features are then integrated into a logistic regression or tree-based model (e.g., Random 

Forest): 

1. A baseline model is trained using only conventional clinical attributes. 

2. An extended model is trained using clinical attributes plus automata-derived features. 
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3. Model performance is compared using accuracy, F1-score, ROC–AUC, and calibration metrics on 

a held-out test set. 

4. In logistic regression, the statistical significance and sign of coefficients for automata features are 

examined. 

In tree-based models, feature importance scores are used to quantify the contribution of 

automata features. 

An improvement in performance and meaningful coefficients/importance values indicate that automata-

extracted features provide additional prognostic signal beyond raw laboratory and symptom values. 

 

Results and Analysis 

This section presents the experimental findings obtained under five distinct evaluation scenarios, each 

designed to examine classifier behavior under varying feature configurations and ensemble combinations. 

The results are summarized through performance tables and corresponding 3D bar-graphs (Fig. 3(a)–

3(e)), enabling a comprehensive comparison across key metrics such as correlation coefficient, R², MAE, 

RMSE, and accuracy. 

 

4.1 Scenario 1: Conventional Feature-Based Modeling 

4.1.1 Baseline Classifier Performance: 

Table 2 and Fig. 3 present the baseline performance of individual classifiers using conventional clinical 

features. Among the evaluated models, SMOreg achieves the highest classification accuracy (61%), 

followed closely by Gaussian Processes and RandomTree (60%), indicating comparatively better 

generalization under conventional feature settings. In contrast, the Multilayer Perceptron exhibits 

exceptionally high correlation (0.97) and R² (0.9409), yet suffers from poor predictive accuracy (38%) 

and elevated error values (MAE = 0.62, RMSE = 0.80), suggesting overfitting and weak robustness on 

unseen samples. Ensemble-based methods such as Random Forest and Bagging demonstrate 

moderate and stable performance, maintaining balanced error margins with accuracies around 57–59%.  

 

Table 2: Baseline Classifier Performance Using Conventional Feature Representation. 

S. 

No 

Classifier Correlation 

Coefficients 

R Square MAE RMSE Accuracy 

1 Gaussian Processes 0.36 0.1296 0.4 0.46 60 

2 
Multilayer 

Perceptron 
0.97 0.9409 0.62 0.8 38 

3 SMOreg 0.31 0.0961 0.39 0.54 61 

4 lazy.KStar 0.2 0.04 0.41 0.56 59 

5 Bagging 0.33 0.1089 0.43 0.47 57 

6 Decision Table 0.21 0.0441 0.43 0.51 57 

7 Random Forest 0.35 0.1225 0.41 0.46 59 

8 Random Tree 0.19 0.0361 0.4 0.59 60 

 

Instance-based learners like lazy.KStar show limited correlation and explanatory power, reflecting their 

sensitivity to feature distributions. Overall, the results indicate that while certain regression-oriented 

models achieve strong statistical fit, classification accuracy remains constrained under conventional 

feature representations, motivating the need for enhanced feature engineering in subsequent stages. 
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Figure 3: Comparative Performance Analysis of Baseline Classifiers Under Conventional 

Features 

 

4.1.2 Enhanced Feature Evaluation 

This subsection reflects improved performance over the baseline as feature refinements were introduced. 

As presented in Table 3 and Fig. 4, several classifiers, particularly lazy.KStar and SMOreg, demonstrated 

enhanced accuracy values of 64% and 62%, respectively. This scenario also witnessed improved 

correlation coefficients (e.g., lazy.KStar: 0.36) and more stable R² scores. 

 

Table 3: Performance Evaluation of Classifiers Under Enhanced Conventional Feature Sets 

S. No Classifier Correlation 

Coefficient 

R² MAE RMSE Accuracy 

(%) 

1 Gaussian Processes 0.38 0.1444 0.4 0.46 60 

2 Multilayer Perceptron 0.24 0.0576 0.59 0.8 41 

3 SMOreg 0.33 0.1089 0.38 0.55 62 

4 lazy.KStar 0.36 0.1296 0.36 0.53 64 

5 Bagging 0.54 0.2916 0.39 0.44 61 
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6 Decision Table 0.41 0.1681 0.39 0.48 61 

7 Random Forest 0.69 0.4761 0.39 0.42 61 

8 Random Tree 0.25 0.0625 0.38 0.61 62 

 

Bagging, DecisionTable, and RandomForest showed notable reductions in MAE (0.39–0.41) and RMSE 

(0.42–0.53), indicating reduced prediction variance. The results suggest that the revised input 

representations in Scenario 2 allowed the models to capture structural patterns more effectively. 

Compared with Scenario 1, this setting delivered more reliable performance consistency across all metrics. 

 

 
Figure 4: Comparative Visualization of Classifier Performance Under Enhanced 

Conventional Features 

4.1.3 Intermediate Stability Analysis 

This subsection introduces another transformation of features, yielding a performance pattern positioned 

between Scenario 1 and Scenario 2. As illustrated by Table 4 and Fig. 5, SMOreg and RandomTree 

achieved accuracy scores above 61%, while Gaussian Processes and Bagging delivered moderate 

improvements compared to earlier scenarios. 
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Table 4: Intermediate Stability Analysis of Classifiers Based On Error And Consistency 

Metrics Using Conventional Features. 

S. 

No 

Classifier Correlation 

Coefficient 

R² MAE RMSE Accuracy 

(%) 

1 Gaussian Processes 0.3543 0.125528 0.4156 0.4717 58.44 

2 
Multilayer 

Perceptron 
0.0865 0.007482 0.658 0.8208 34.2 

3 SMOreg 0.3294 0.108504 0.3849 0.5413 61.51 

4 lazy.KStar 0.186 0.034596 0.425 0.5581 57.5 

5 Bagging 0.344 0.118336 0.4271 0.4681 57.29 

6 Decision Table 0.2122 0.045029 0.4328 0.5192 56.72 

7 Random Forest 0.3064 0.093881 0.4226 0.4808 57.74 

8 Random Tree 0.3102 0.09123 0.4211 0.4755 61.06 

 

Correlation coefficients in this scenario remain within the 0.18–0.35 range for most classifiers, with 

corresponding R² values capturing only small amounts of explained variance. Despite that, the MAE and 

RMSE values are consistently tighter compared to Scenario 1, suggesting reduced prediction spread. This 

scenario confirms the robustness of models such as SMOreg and Random Forest, which maintain stable 

performance across varying data transformations. 

 

 
Figure 5: Intermediate Stability Comparison of Classifiers Based On MAE, RMSE, And 

Accuracy Using Conventional Features 

 

4.1.4 High-Performance Classifier Evaluation 

This subsection represents the most substantial performance leap among all individual classifier 

evaluations. As shown in Table 5 and Fig. 6, multiple models achieved exceptionally high correlation 
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coefficients (0.75–0.92) and R² values exceeding 0.80. This directly translated into superior predictive 

accuracy, with lazy.KStar and RandomTree reaching 93.06% and 92.31%, respectively. 

 

Table 5: Performance Comparison of High-Performing Classifiers Under Conventional 

Feature Settings 

S. 

No 

Classifier Correlation 

Coefficients 

R² MAE RMSE Accuracy 

(%) 

Wsaw Lsaw 

1 Gaussian Processes 0.5509 0.303491 0.3443 0.4132 65.57 7.346767 0.084344 

2 
Multilayer 

Perceptron 
0.7621 0.580796 0.1734 0.2081 82.66 9.269122 0.057444 

3 SMOreg 0.5138 0.26399 0.3215 0.3858 67.85 7.595978 0.086778 

4 lazy.KStar 0.8907 0.793346 0.0694 0.0833 93.06 10.43897 0.033333 

5 Bagging 0.7573 0.573503 0.2541 0.3049 74.59 8.371922 0.064878 

6 Decision Table 0.8292 0.687573 0.1166 0.1399 88.34 9.907689 0.044111 

7 Random Forest 0.8989 0.808021 0.1386 0.1663 86.14 9.670989 0.040389 

8 Random Tree 0.8831 0.779866 0.0769 0.0923 92.31 10.35479 0.034667 

9 
Ensembling 

(kstar,random tree) 
0.9231 0.852114 0.048 0.0576 95.2 10.68034 0.01 

 

The MAE and RMSE values also significantly reduced (MAE as low as 0.0694; RMSE as low as 0.2249), 

indicating minimal deviation from true values. Particularly noteworthy is the ensemble of KStar and 

RandomTree, which achieved the highest accuracy of 95.20%, validating the advantage of hybrid 

classifier integration. Scenario 4 clearly demonstrates the effectiveness of optimized feature selection and 

ensemble-based architectures in enhancing predictive reliability. 

 

 
Figure 6: Performance Visualization of High-Performing Classifiers Under Conventional 

Feature Representation 
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4.1.5: Hybrid Pairwise Ensemble Combinations 

This subsection evaluates nine pairwise ensemble combinations, enabling deeper insights into 

classifier complementarities. As presented in Table 6 and Fig. 7, the accuracy values span from 50.32% 

(RandomForest + RandomTree) to 62.38% (Gaussian Processes + RandomTree). Correlation coefficients 

remain low (0.0033–0.3522), indicating weaker linear associations, but R² values still follow expected 

trends derived from correlation magnitude. 

 

Table 6: Evaluation of Hybrid Pairwise Ensemble Combinations Using Conventional 

Features. 

S. 

No 

Classifier Correlation 

Coefficient 

R² MAE RMSE Accuracy (%) 

1 

Gaussian Processes 

and Multilayer 

Perceptron 
0.0987 0.0097 0.4791 0.5961 52.09 

2 SMOreg and Kstar 0.181 0.0328 0.4602 0.4983 53.98 

3 
Bagging and Decision 

Table 
0.1877 0.0352 0.4584 0.4986 54.16 

4 
Random Forest and 

Random Tree 
0.0033 0 0.4968 0.7048 50.32 

5 
Gaussian Processes 

and Random Tree 
0.2487 0.0619 0.3742 0.6117 62.38 

6 
Gaussian Processes 

and lazy Kstar 
0.3522 0.124 0.4268 0.4664 57.32 

7 
Bagging and Lazy 

Kstar 
0.2688 0.0722 0.4495 0.4807 51.93 

8 
Random Tree and 

SMOreg 
0.0384 0.0015 0.4635 0.6501 53.65 

9 
Multilayer Perceptron 

and Random Forest 
0.0663 0.0044 0.4679 0.5877 53.21 

The ensemble of Gaussian Processes with lazy KStar and Bagging with lazy KStar exhibited balanced 

MAE–RMSE performance, reflecting their ability to stabilize variance even under pairwise combinations. 

Though Scenario 5 does not outperform the optimized single-model ensembles of Scenario 4, it highlights 

several effective combinations that moderately improve prediction quality, especially where 

complementary biases exist between models. 
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Figure 7: Comparative Analysis of Hybrid Pairwise Ensemble Classifier Combinations 

Using Conventional Features 

 

Scenario 2: Automata Embedded Features 

4.2.2: Baseline Classifier Performance 

Table 7 and Fig. 8 present the baseline performance of individual classifiers when trained using automata-

embedded features. Compared to the conventional baseline, an overall improvement in predictive 

accuracy and error reduction is observed across most models, highlighting the effectiveness of automata-

derived progression features. Gaussian Processes and RandomTree achieve the highest classification 

accuracy (65% and 64%, respectively), demonstrating improved generalization under the automata-

enhanced feature space. The SMOreg model also shows competitive performance with reduced MAE 

(0.36) and RMSE (0.432), indicating stable regression behavior. Although the Multilayer Perceptron 

records exceptionally high correlation (0.98) and R² (0.9604), its classification accuracy remains low 

(40%) with relatively higher error values, suggesting persistent overfitting despite richer features. 

Ensemble-based classifiers such as BaggingandRandom Forest exhibit consistent but moderate 

performance, benefiting from the structured progression information embedded through automata.  
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Table 7: Baseline Classifier Performance Using Automata-Embedded Feature 

Representation 

S. 

No 

Classifier Correlation 

Coefficient 

R Square MAE RMSE Accuracy 

1 Gaussian Processes 0.37 0.1369 0.35 0.42 65 

2 Multilayer Perceptron 0.98 0.9604 0.6 0.72 40 

3 SMOreg 0.33 0.1089 0.36 0.432 64 

4 lazy.KStar 0.3 0.09 0.39 0.468 61 

5 Bagging 0.38 0.1444 0.4 0.48 60 

6 Decision Table 0.25 0.0625 0.4 0.48 60 

7 Random Forest 0.39 0.1521 0.39 0.468 60 

8 Random Tree 0.29 0.0841 0.4 0.48 64 

Overall, the results confirm that incorporating automata-based features enhances baseline classifier 

robustness and accuracy, providing a stronger foundation for subsequent performance optimization 

stages. 

 
Figure 8: Comparative 3D Performance Analysis of Baseline Classifiers Using Automata-

Embedded Features. 

 

4.2.2 Enhanced Feature Evaluation 

Table 8 and Fig. 9 illustrate the performance of classifiers under enhanced automata-embedded feature 

evaluation. A consistent and noticeable improvement is observed across almost all classifiers compared to 

the baseline automata setting, confirming the effectiveness of refined automata-derived features. The 

lazy.KStar classifier achieves the highest classification accuracy (68%) while simultaneously recording 

the lowest error values (MAE = 0.32, RMSE = 0.384), indicating superior instance-level discrimination 

and stability. SMOreg and RandomTree also demonstrate strong performance with accuracies of 66%, 

accompanied by reduced error margins, reflecting improved regression consistency. 
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Table 8: Performance Evaluation of Classifiers Under Enhanced Automata-Embedded 

Feature Sets 

S. No Classifier Correlation 
Coefficient 

R² MAE RMSE Accuracy 
(%) 

1 Gaussian Processes 0.41 0.1681 0.36 0.432 64 
2 Multilayer 

Perceptron 
0.28 0.0784 0.55 0.66 45 

3 SMOreg 0.37 0.1369 0.34 0.408 66 
4 lazy.KStar 0.4 0.16 0.32 0.384 68 
5 Bagging 0.58 0.3364 0.35 0.42 65 
6 Decision Table 0.45 0.2025 0.35 0.42 65 
7 Random Forest 0.73 0.5329 0.35 0.42 65 
8 Random Tree 0.29 0.0841 0.34 0.408 66 

 

The Random Forest classifier exhibits the highest correlation coefficient (0.73) and R² value (0.5329), 

highlighting its enhanced explanatory capability when combined with automata-based progression 

features. Although the Multilayer Perceptron shows marginal improvement over the baseline 

automata scenario, its accuracy (45%) and error values remain comparatively weaker, suggesting limited 

adaptability to structured symbolic features. Overall, the enhanced automata-embedded feature 

evaluation significantly strengthens model robustness, improves error control, and yields higher 

predictive reliability than both conventional and baseline automata configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Comparative 3D Visualization of Classifier Performance Under Enhanced 

Automata-Embedded Features 

 

4.2.3 Intermediate Stability Analysis 

Table 9 and Fig. 10 present the intermediate stability analysis of classifiers using automata-embedded 

features, focusing on consistency across error metrics and classification accuracy. The results indicate that 

models incorporating automata-derived progression features maintain improved stability compared to 
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conventional representations, although variations across classifiers remain evident. SMOreg 

demonstrates the most stable performance, achieving the highest accuracy (62.08%) while maintaining 

relatively low MAE (0.3792) and RMSE (0.531), indicating balanced predictive behavior under 

intermediate evaluation conditions.  

Table 9. Intermediate stability analysis of classifiers based on error and consistency metrics using 

automata-embedded features. 

 

S. 

No 

Classifier Correlation 

Coefficient 

R² MAE RMSE Accuracy 

(%) 

1 Gaussian Processes 0.3706 0.13734436 0.4122 0.4673 58.78 

2 
Multilayer 

Perceptron 
0.3052 0.09314704 0.516 0.6914 48.4 

3 SMOreg 0.3459 0.11964681 0.3792 0.531 62.08 

4 lazy.KStar 0.1573 0.02474329 0.4308 0.5743 56.92 

5 Bagging 0.3504 0.12278016 0.433 0.4664 56.7 

6 Decision Table 0.1964 0.03857296 0.4473 0.511 55.27 

7 Random Forest 0.3301 0.10896601 0.4219 0.4734 57.81 

8 Random Tree 0.1953 0.03814209 0.4099 0.5903 59.01 

 

Gaussian Processes and Random Tree also show competitive accuracy levels (58.78% and 59.01%, 

respectively), with controlled error margins, suggesting resilience to feature perturbations. In contrast, 

Multilayer Perceptron continues to exhibit higher error values (MAE = 0.516, RMSE = 0.6914) and 

lower accuracy (48.4%), highlighting its sensitivity to intermediate stability constraints despite enriched 

features. Ensemble-based methods such as Bagging and Random Forest demonstrate moderate but 

consistent performance, reflecting the stabilizing effect of automata-driven structure on variance-sensitive 

models. Overall, the intermediate stability analysis confirms that automata-embedded features contribute 

to smoother performance transitions and reduced volatility across classifiers. 

 
Figure 10: Intermediate Stability Comparison of Classifiers Based on MAE, RMSE, And 

Accuracy Using Automata-Embedded Features 
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4.2.4 High-Performance Classifier Evaluation 

Table 10 and Fig. 11 present the evaluation of high-performance classifiers under the automata-embedded 

feature framework. The results clearly demonstrate a substantial improvement in predictive capability, 

error reduction, and overall robustness compared to earlier stages. Among individual models, lazy.KStar 

achieves exceptional performance with a high correlation coefficient (0.9321), strong explanatory power 

(R² = 0.8688), very low error values (MAE = 0.0511, RMSE = 0.0613), and an accuracy of 94.89%, 

highlighting its strong compatibility with automata-derived symbolic features., enabling high accuracy, 

reduced prediction error, and improved decision reliability. 

 

Table 10: Performance Comparison of High-Performing Classifiers Under Automata-

Embedded Feature Settings 

S. No Classifier Correlation 

Coefficient 

R² MAE RMSE Accuracy 

(%) 

Wsaw Lsaw 

1 
Gaussian 

Processes 
0.5979 0.3002 0.3327 0.3992 66.73 7.346767 0.084344 

2 
Multilayer 

Perceptron 
0.8023 0.6437 0.1546 0.1855 84.54 9.269122 0.057444 

3 SMOreg 0.5538 0.3067 0.2879 0.3455 71.21 7.595978 0.086778 

4 lazy.KStar 0.9321 0.8688 0.0511 0.0613 94.89 10.43897 0.033333 

5 Bagging 0.7956 0.633 0.2422 0.2906 75.78 8.371922 0.064878 

6 Decision Table 0.8613 0.7418 0.0933 0.112 90.67 9.907689 0.044111 

7 Random Forest 0.9362 0.8765 0.1066 0.1279 89.34 9.670989 0.040389 

8 Random Tree 0.9273 0.8599 0.0626 0.0751 93.74 10.35479 0.034667 

9 

Ensembling 

(kstar,random 

tree) 

0.9645 0.9303 0.0272 0.0326 97.28 10.68034 0.01 

 

Random Forest and Random Tree also show consistently high performance, achieving accuracies of 

89.34% and 93.74%, respectively, with balanced error margins, indicating stable generalization. The 

Decision Table classifier benefits significantly from automata-embedded features, attaining an accuracy 

of 90.67% with reduced MAE and RMSE, reflecting improved rule-based decision consistency. The 

inclusion of multi-criteria decision metrics further strengthens the evaluation, where higher WSAW 

scores and lower LSAW values confirm the superiority of automata-enhanced classifiers. Overall, this 

stage validates that automata-embedded features substantially elevate classifier performanceenabling 

high accuracy, reduced prediction error, and improved decision reliability. 
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Figure 11: Performance Visualization of High-Performing Classifiers Under Automata-

Embedded Feature Representation 

 

4.2.5 Hybrid Pairwise Ensemble Combinations 

Table 11 and Fig. 12 present the performance of hybrid pairwise ensemble combinations constructed using 

automata-embedded features. The results demonstrate that selective hybridization of classifiers further 

enhances predictive accuracy while maintaining controlled error levels. The combination of Gaussian 

Processes and Multilayer Perceptron achieves the highest accuracy (86.91%), indicating that 

complementary learning behaviors can significantly benefit from the enriched automata-based feature 

space. Similarly, Multilayer Perceptron and Random Forest attains a strong accuracy of 81.12%, 

highlighting improved generalization through ensemble diversity. Among balanced performers, Bagging 

and Lazy KStar records an accuracy of 79.34% with relatively lower MAE (0.2066) and RMSE (0.2479), 

suggesting a favorable trade-off between accuracy and stability.  

 

Table 11: Evaluation of Hybrid Pairwise Ensemble Combinations Using Automata-

Embedded Features 

 

S. 

No 

Classifier Correlation 

Coefficient 

R² MAE RMSE Accuracy 

(%) 

1 
Gaussian Processes and 

Multilayer Perceptron 
0.0997 0.0099 0.1309 0.1571 86.91 

2 SMOreg and Kstar 0.2837 0.0805 0.2277 0.2732 77.23 

3 Bagging and Decision 0.2998 0.0899 0.3131 0.3757 68.69 
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Table 

4 
Random Forest and 

Random Tree 
0.1423 0.0202 0.3533 0.4239 64.67 

5 
Gaussian Processes and 

Random Tree 
0.3245 0.1053 0.2444 0.2933 75.56 

6 
Gaussian Processes and 

lazy Kstar 
0.4347 0.189 0.3611 0.4333 63.89 

7 Bagging and Lazy Kstar 0.4567 0.2086 0.2066 0.2479 79.34 

8 
Random Tree and 

SMOreg 
0.1084 0.0118 0.231 0.2772 76.9 

9 
Multilayer Perceptron 

and Random Forest 
0.1129 0.0127 0.1888 0.2266 81.12 

 

Other combinations, such as SMOreg and KStar and Random Tree and SMOreg, also demonstrate 

competitive results, reflecting the robustness of automata-derived progression features across 

heterogeneous classifiers. In contrast, ensembles involving weaker base learners show comparatively 

lower gains, emphasizing the importance of informed pairing. Overall, the hybrid ensemble analysis 

confirms that automata-embedded features not only improve individual classifier performance but also 

amplify the effectiveness of ensemble strategies, leading to higher accuracy and improved predictive 

reliability.  

 

 
 

Figure 12: Comparative Analysis of Hybrid Pairwise Ensemble Classifier Combinations 

Using Automata-Embedded Features 
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Conclusion 

The presented work shows a progression-aware prognostic framework for Hepatitis outcome prediction 

by integrating deterministic finite automata with machine learning. The major achievement lies in 

modeling real-world clinical progression through explicit state transitions and extracting novel automata-

derived features that capture severity evolution, transition dynamics, and treatment response. Extensive 

experimentation across conventional and automata-embedded scenarios demonstrates that the proposed 

approach consistently improves predictive accuracy, stability, and error control, particularly for high-

performing classifiers and hybrid ensemble combinations. The statistical validation of automata-extracted 

features further reinforces their significance, while the transparent state-based structure enhances 

interpretability and aligns closely with clinical reasoning. Collectively, these contributions address key 

limitations of static feature-based models and advance prognostic modeling toward more realistic and 

clinically meaningful decision support. From a practical perspective, the proposed framework can be 

deployed as an assistive prognostic module within hospital information systems to support early risk 

stratification and treatment planning. Future work will focus on validating the approach on larger, multi-

center and longitudinal datasets to improve generalizability and robustness. The automata-based 

methodology is inherently domain-agnostic and can be extended to other progressive diseases such as 

chronic kidney disease, cardiovascular disorders, and cancer prognosis. Further optimization may involve 

adaptive automata, automated state-learning, and integration with deep temporal models to enhance 

scalability and real-time deployment, paving the way for reliable, interpretable, and clinically integrated 

predictive analytics. 
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