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ARTICLE INFO ABSTRACT

Received: 05 Oct 2024 Hepatitis prognosis remains a challenging clinical task due to the complex and

progressive nature of liver dysfunction, where patient outcomes are influenced by

sequential changes in biochemical markers, complications, and treatment response.

Accepted: 28 Nov 2024 Most existing machine learning approaches rely on static feature a representation,
which limit their ability to capture real-world disease progression and often reduces
interpretability. To address this limitation, this study proposes an automata-based
prognostic modeling framework that explicitly represents Hepatitis progression
through deterministic state transitions aligned with clinical reasoning.In the
proposed methodology, conventional clinical attributes are first pre-processed and
transformed into symbolic representations, which are then processed using a
deterministic finite automaton to model progression patterns. From the resulting
state transitions, novel high-level features are extracted, capturing progression
severity, transition dynamics, and response behavior. These automata-embedded
features are combined with original clinical variables and evaluated using multiple
machine learning classifiers on the Hepatitis dataset from the UCI Machine
Learning Repository.Experimental results demonstrate that models incorporating
automata-derived features consistently outperform conventional feature-based
approaches across accuracy, error metrics, and stability analysis. In particular, high-
performance classifiers and hybrid ensemble combinations achieve substantial gains
in predictive accuracy, highlighting the effectiveness of progression-aware feature
extraction. The proposed framework not only improves prognostic performance but
also enhances interpretability, offering a clinically aligned and reliable decision-
support approach for Hepatitis outcome prediction.
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Introduction

Hepatitis remains a critical global health challenge, causing substantial mortality due to progressive liver
inflammation, impaired synthetic function, and decompensated liver failure. Early risk stratification is
essential, yet clinical decision-making is complicated by the nonlinear progression of biochemical markers
and the heterogeneous response to therapy. Traditional statistical models such as logistic regression and
generalized linear approaches have demonstrated moderate success in identifying survival-related
markers, particularly bilirubin, albumin, and prothrombin time [1]. Similarly, survival analysis
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frameworks such as extended Cox models provide useful hazard-based interpretations but continue to
treat patient attributes as isolated features, failing to account for sequential deterioration patterns [2].

In recent years, machine learning (ML) models have gained traction in Hepatitis prognosis. Decision-tree
frameworks and boosting ensembles have shown improved predictive accuracy by capturing nonlinear
interactions among demographic, laboratory, and symptomatic attributes [3]. Random-forest and hybrid
ML pipelines have further enhanced risk prediction, offering stronger generalization through ensemble
variance reduction [4]. However, a major limitation of these models is their reliance on static
representations of clinical variables, despite the fact that Hepatitis progression is inherently dynamic.
Laboratory values change over time, complications emerge sequentially, and treatment response unfolds
in a temporal manner. These clinical realities are not adequately represented in most existing ML models.

Deep learning models such as convolutional-recurrent hybrids and gated recurrent networks have been
proposed to capture patient trajectories by analyzing temporal laboratory trends. These models have
achieved higher predictive power in liver-disease forecasting but often suffer from limited interpretability,
making them unsuitable for transparent clinical decision support [5]. Moreover, recurrent architectures
rarely provide explicit state transitions that correspond to the real clinical stages recognized by
hepatologists, such as “stable,” “mild dysfunction,” “advanced dysfunction,” and “decompensated.”

To overcome these limitations, researchers have begun exploring structured sequence-modeling
paradigms such as Hidden Markov Models (HMMs) and probabilistic state machines to represent disease
evolution [6]. While these methods introduce meaningful transition dynamics, they still lack the
deterministic, rule-aligned interpretability required for clinical workflow integration.

Automata-theoretic approaches—particularly deterministic finite automata (DFA)—offer a promising
alternative by encoding disease progression into explicit, interpretable states that correspond to real-
world clinical stages. A DFA can represent transitions driven by laboratory changes, symptom emergence,
or treatment response, enabling a structured representation of Hepatitis progression that aligns with
physician reasoning. This introduces a powerful mechanism for extracting high-level, clinically
meaningful progression features that traditional ML and deep learning methods overlook [7].

Building on this direction, the present study develops an automata-based Hepatitis prognostic framework
that transforms raw biomarkers and symptom attributes into symbolic events, processes them through a
clinically designed DFA, and extracts novel progression features such as Final State Index, Transition
Count, Severity Jumps, Complication Flags, and Treatment-Response Indicators. These features undergo
rigorous statistical evaluation before integration into ML models, enabling accurate, interpretable, and
progression-aware Hepatitis survival prediction.
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Figure 1: Conceptual Contrast between Static ML Models and Automata-Based Clinical
Progression Modeling for Hepatitis

Figure 1 illustrates the core motivation for using automata-based modeling in Hepatitis prognosis.
Traditional machine learning models rely on static clinical variables such as bilirubin, albumin,
prothrombin time, and demographic factors, treating them as isolated predictors without acknowledging
how Hepatitis progresses through clinically recognized stages. In real-world practice, patients transition
sequentially from stable liver function to mild dysfunction, advanced dysfunction, and ultimately
decompensation, with each stage representing a change in physiological status. Automata-based modeling
captures this progression explicitly by defining states and transitions driven by symbolic events derived
from laboratory changes, symptoms, or complications. Unlike deep learning models that often operate as
black boxes, deterministic finite automata provide a transparent, state-driven mechanism that mimics
clinical reasoning and enables extraction of meaningful progression features. This alignment between
clinical pathways and computational modeling serves as the foundation for improved interpretability and
more realistic Hepatitis survival prediction.

Literature Review

The TRL table provides a structured comparison of eighteen Hepatitis-related studies ranging from
classical statistical models to advanced automata-driven frameworks. Early works such as logistic
regression, Cox models, and decision trees ([8]-[10]) achieve TRL 5, reflecting strong statistical
grounding but limited modeling of disease progression and no external validation. Ensemble methods,
SVMs, and rule-based interpretable systems ([11]—[14]) reach TRL 6, indicating prototype maturity with
improved robustness and partial real-world alignment, although they remain dependent on static
features.

Baseline models like ANN, k-NN, and Naive Bayes ([15], [16]) are placed at TRL 4, as they lacked
sufficient dataset size, generalization, or sequence modeling. More advanced temporal models—HMMs,

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 3551
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

LSTMs, and attention networks ([17]-[19])—achieve TRL 6-7, capturing longitudinal or sequential
patient characteristics closer to real disease progression.

Classical MELD-like scoring systems ([20]) occupy TRL 3, serving mainly as analytical proof-of-concept
tools without machine learning integration. High-end hybrid architectures and clinically oriented models
([22]-[23]) achieve TRL 8 with stronger deployment readiness and pilot evaluations. The automata-
based frameworks ([24]-[26]) represent the most mature systems, reaching TRL 8-9 due to
interpretable progression-state modeling, statistical validation of extracted features, and near-
deployment-level reliability.

Table 1: Comparative Analysis of Qualitative Parameter for Hepatitis

S. No. | Paper Focus / Ratings Weighted | TRL TRL
(Reference) Contribution | (1—10) Score (1—9) | Explanation
Paper [8] (Year) | Logistic 7,6,5,7,6,6 6.3 5 Retrospective
regression for dataset;
1 . .
Hepatitis validated
survival statistically
Paper [9] Cox model 7,6,6,7,6,6 6.5 5 Strong
5 with modelling but
biochemical no progression
predictors tracking
Paper [10] Decision tree 7,7,6,6,6,6 6.5 5 Good
mortality interpretability;
3 prediction lab-stage
validation
Paper [11] Random forest | 8,7,6,7,7,7 7.0 6 External
/ ensemble validation &
4 risk improved
stratification robustness
Paper [12] Gradient 7,8,7,7,6,6 6.8 5 High accuracy;
5 boosting with no sequence
imaging + labs modelling
Paper [13] SVM with 7,777,757 7.0 6 Better
6 engineered generalization;
features strong
calibration
Paper [14] Rule-based & 8,7,5,7,7,7 6.8 6 Clinically
interpretable interpretable
7 ML but static
features
Paper [15] ANN on small | 6,5,5,5,5,5 5.2 4 Limited dataset;
8 Hepatitis no strong
dataset validation
Paper [16] k-NN / NB 6,5,5,5,5,5 5.2 4 Benchmarking
9 baseline only; early-stage
comparison
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Paper [17] HMM for liver | 8,7,8,7,7,6 7.1 Sequence logic;

10 trajectory prototype-level

modelling maturity
Paper [18] LSTM using 8,8,9,7,7,7 7.7 Temporal

“ longitudinal modelling +

labs multi-centre
validity
Paper [19] Attention- 8,9,9,7,8,7 8.0 Strong temporal

12 based deep interpretability;

model near-clinical
Paper [20] Classical 5,5,4,6,5,4 4.8 Early-stage

13 MELD-like proof; no ML

scoring pipeline
Paper [21] Bayesian 7,6,6,7,6,6 6.3 Good structure;

14 network for retrospective-
Hepatitis only
mortality

Paper [22] Hybrid AE + 9,9,8,7,8,8 8.2 Deployment-
LSTM + ready; workflow

15 . .
clinical tested
dashboard

Paper [23] Automata- 9,8,9,8,8,7 8.1 Rules + states +

6 inspired pilot clinical
sequence evaluation
model

Paper [24] Automata- 9,9,9,8,8,8 8.5 Novel DFA
based features;

17 Hepatitis validated
feature statistically
engineering

Paper [25] Full automata- | 9,9,9,8,8,8 8.5 Complete

8 driven pipeline; high
Hepatitis reproducibility
pipeline

Paper [26] Final proposed | 10,9,9,8,8,8 | 8.7 Near-
prognostic deployment;

19 .
automata interpretable &
model robust

Weighted Composite Score Formula for TRL Assessment

Each paper is evaluated across multiple qualitative parameters representing research maturity and
applicability. The weighted composite score is used to quantify overall quality and assign the Technology
Readiness Level (TRL).
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General Formula

Let:

S(i,j) = score of the j-th paper on the i-th qualitative parameter
w(i) = weight assigned to the i-th parameter

n = total number of qualitative parameters

The weighted composite score (CS_j) is calculated as:

CS_j=[Z(w@d)xSEj))]1/[Zw@], fori=1ton
Parameters Used in This Study

The following six qualitative parameters are considered:
1. MS — Methodological Strength

2. Nv — Novelty

3. PA — Progression Awareness

4. DQ — Data Quality

5. Repr — Reproducibility

6. Cl — Clinical Relevance

Expanded Composite Score Equation
CS_j =(w_MSxS_MS,j + w_NvxS_Nv,j + w_PAxS_PAj + w_DQxS_DQ,j + w_ReprxS_Repr,j +
w_CIxS_Clj)/(w_MS +w_Nv+w_PA+w_DQ+w_Repr+w_Cl)

TRL Mapping Based on Composite Score
CS_j< 5.0 — TRL 3
5.0<CS_j<6.0 —TRL4
6.0<CS_j<6.8 —TRL5
6.8<CS_j<75 —TRL6
75<CS_j<8.2 —TRL7
8.2<CS_j<88 —TRLS
CS_j=8.8 —TRL9

Interpretation

The weighted composite score offers a unified and quantitative measure of methodological quality,
novelty, progression modeling, and deployment readiness, enabling consistent TRL assessment across
heterogeneous studies.

Methodology

This study proposes an automata-based framework for prognostic modeling of the UCI Hepatitis dataset.
The methodology consists of five major stages: (i) data preparation, (ii) construction of a clinically
meaningful deterministic finite automaton (DFA), (iii) automata-based feature extraction, (iv) statistical
analysis of automata-derived features, and (v) integration of these features into conventional machine
learning models for survival prediction.
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Figure 2: Proposed Methodology

3.1 Dataset and Pre-Processing

The UCI Hepatitis dataset contains 155 patient records with the target outcome Class (live/die) and a mix
of clinical, biochemical, and treatment-related attributes. Categorical attributes (e.g., sex, steroid,
antivirals, fatigue, malaise, anorexia, liver big, spleen palpable, ascites, varices, histology)
are encoded as binary or ordinal indicators. Numerical attributes (e.g., age, bilirubin, alkaline
phosphatase, SGOT, albumin, protime) are standardized or normalized where appropriate.

Missing values are handled using a combination of simple imputation (e.g., median imputation for
numeric attributes, mode imputation for binary attributes) and listwise deletion when critical fields (e.g.,
class label) are absent. After pre-processing, the dataset is split into training and testing subsets using
stratified sampling to preserve the proportion of live/die classes.
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3.2 Automata-Based Modeling of Hepatic Risk States
To embed clinical progression logic into the modeling pipeline, we design a deterministic finite
automaton:
A=(Q,%,5,q0,F)

Where:

e (Qisthe set of states representing liver risk levels

e XYisthe input alphabet derived from Hepatitis attributes

o 38:QxXZ—Qis the state transition function

e O isthe start state

e Fis the set of final (absorbing) states corresponding to survival outcome.

3.2.1 State Space Definition
The state set Q is defined as:
e  (o: Start (patient record received)
e (i Stable liver function
e  (.: Mild hepatic dysfunction
e (s: Advanced hepatic dysfunction
e 4 Decompensated / complicated liver disease
e (qu: Predicted Live (absorbing)
e (p: Predicted Die (absorbing)
Each non-terminal state corresponds to aggregated clinical conditions based on combinations of bilirubin,
SGOT, albumin, protime, and complication indicators (ascites, varices, liver big, spleen palpable).

3.2.2 Input Alphabet Construction
The input alphabet X consists of symbolic events derived from the original attributes:
e a: near-normal laboratory profile (bilirubin and SGOT within reference/slightly elevated)
e b: clearly abnormal bilirubin/SGOT (e.g., bilirubin > threshold or SGOT significantly elevated)
e c:impaired synthetic function (albumin low and/or protime prolonged)
e d: presence of complications (ascites, varices, liver big, spleen palpable = “yes”)
e e: evidence of treatment and likely response (steroid or antivirals = “yes”)
e f: absent/poor response to therapy (no treatment and/or persistent symptoms such as fatigue,
malaise, anorexia)

For each patient, the clinical and treatment attributes are mapped into a short sequence over X, e.g.
abcdf.

3.2.3 Transition Function
The transition function § encodes clinically meaningful progression:
e Initial assessment:
8(qo,2)=qs, 6(qo,b)=q-
e From stable state:
8(qu,a)=qu,
8(q1,b)=qs,
8(q1,0)=qs
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e From mild dysfunction:
8(gz,2)=q,,
8(q2,b)=q3, 6(q2,0)=0s,
8(q2,d)=q4
¢ From advanced dysfunction:
8((13:a)=q2,
8(qs,d)=qy,
S(qS,e)quy
8(q3,0)=qp
e From decompensated state:
8(q4.€)=qu,
8(q4,D=qp
The final state set is F={qL,qD}. Both qi. andqp are defined as absorbing for completeness (any
subsequent symbol leaves the state unchanged).

3.3 Automata-Based Feature Extraction
After the DFA is defined, each patient record is processed as a sequence of symbolic inputs, and the
resulting run of the automaton is converted into high-level features.

3.3.1 How Automata Perform Feature Extraction (Step-by-Step)
Step 1: Symbol Encoding
For each patient:
1. Laboratory values (bilirubin, SGOT, albumin, protime) are compared against clinical thresholds.
2. Complication indicators (ascites, varices, liver big, spleen palpable) and treatment fields (steroid,
antivirals) are evaluated.
3. Based on these evaluations, one or more symbols from ¥={a,b,c,d,e,f} are generated in a fixed
logical order (e.g., labs — complications — treatment/response).
This produces a sequence w=x;X,... where xi€X.

Step 2: DFA Traversal

The sequence www is fed into the DFA starting from state qoq_o0qo:
qi+1=8(qi,xi),i=0,...,k—l

The traversal yields a path:

Jo—>1—>—>(k

ending in a final or non-final state.

Step 3: Deriving Automata-Level Features
From the traversal, the following interpretable features are extracted:
1. Final State Index (FState)
Numerical encoding of the terminal state:
o 1for q, 2 for q», 3 for gs, 4 for q4, 5 for q, 6 for qp.
This summarizes the overall risk level reached.
2. Transition Count (TransCount)
Total number of transitions in the path (path length excluding qo).
Higher values indicate more complex or unstable progression.
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3. Severity Jump Count (SevJumps)
Number of transitions from a lower-risk to a higher-risk state (e.g., ¢:—qs, q2—qs, qs—q4).This
captures the intensity of deterioration.
4. Complication Flag (CompFlag)
Binary indicator equal to 1 if state q, (decompensated) is visited at any point in the path, o
otherwise.
5. Treatment Response Flag (TRFlag)
Binary indicator equal to 1 if the path reaches qi. via symbol e (treatment response), and o if it
reaches qp via fff (poor response) or never reaches a final state.
6. Pattern Code (PatCode)
A compact categorical code representing the sequence of macrostates (e.g., “1-2—3—4—D” for
J:—q2—qs—J4+—qp), later one-hot encoded for modeling.
These automata-derived features are then appended to the original dataset, yielding an enriched feature
matrix that embeds clinical progression logic.

3.4 Statistical Testing of Automata-Extracted Features
To validate that the automata-based features are informative and statistically associated with patient
survival, we conduct a series of statistical analyses.

3.4.1 Descriptive and Distributional Analysis
For each automata feature (e.g., FState, TransCount, SevJumps):
e Descriptive statistics (mean, median, standard deviation, interquartile range) are computed
separately for the live and die classes.
e Histograms and boxplots are examined to assess distribution shape.
e Normality is checked using tests such as Shapiro—Wilk or by visual inspection of Q—Q plots; this
guides the choice between parametric and non-parametric tests.

3.4.2 Association with Survival Outcome
To evaluate whether automata features are significantly associated with the Class label:
e For binary features (e.g., CompFlag, TRFlag):
o A Chi-square test of independence or Fisher’s exact test (for small cell counts) is
used to test the null hypothesis that the feature is independent of survival outcome.
e For ordinal or continuous features (e.g., FState, TransCount, SevJumps):
o If approximately normal: an independent samples t-test compares means between
live and die groups.
o Ifnon-normal: a Mann—Whitney U test compares median ranks.
Effect sizes (e.g., odds ratio for binary features, Cohen’s d or rank-biserial correlation for continuous
features) are reported to quantify the strength of association.

3.4.3 Multivariate Modeling and Feature Importance
Automata features are then integrated into a logistic regression or tree-based model (e.g., Random
Forest):

1. A baseline model is trained using only conventional clinical attributes.

2. An extended model is trained using clinical attributes plus automata-derived features.
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3. Model performance is compared using accuracy, Fi-score, ROC—AUC, and calibration metrics on
a held-out test set.
4. Inlogistic regression, the statistical significance and sign of coefficients for automata features are
examined.
In tree-based models, feature importance scores are used to quantify the contribution of
automata features.
An improvement in performance and meaningful coefficients/importance values indicate that automata-
extracted features provide additional prognostic signal beyond raw laboratory and symptom values.

Results and Analysis

This section presents the experimental findings obtained under five distinct evaluation scenarios, each
designed to examine classifier behavior under varying feature configurations and ensemble combinations.
The results are summarized through performance tables and corresponding 3D bar-graphs (Fig. 3(a)—
3(e)), enabling a comprehensive comparison across key metrics such as correlation coefficient, R2, MAE,
RMSE, and accuracy.

4.1 Scenario 1: Conventional Feature-Based Modeling

4.1.1 Baseline Classifier Performance:

Table 2 and Fig. 3 present the baseline performance of individual classifiers using conventional clinical
features. Among the evaluated models, SMOreg achieves the highest classification accuracy (61%),
followed closely by Gaussian Processes and RandomTree (60%), indicating comparatively better
generalization under conventional feature settings. In contrast, the Multilayer Perceptron exhibits
exceptionally high correlation (0.97) and R2 (0.9409), yet suffers from poor predictive accuracy (38%)
and elevated error values (MAE = 0.62, RMSE = 0.80), suggesting overfitting and weak robustness on
unseen samples. Ensemble-based methods such as Random Forest and Bagging demonstrate
moderate and stable performance, maintaining balanced error margins with accuracies around 57—-59%.

Table 2: Baseline Classifier Performance Using Conventional Feature Representation.

S. Classifier Correlation | R Square MAE RMSE Accuracy
No Coefficients

1 Gaussian Processes 0.36 0.1296 0.4 0.46 60

2 gggii};(e; 0.97 0.9409 0.62 0.8 38

3 SMOreg 0.31 0.0961 0.39 0.54 61

4 lazy.KStar 0.2 0.04 0.41 0.56 59

5 Bagging 0.33 0.1089 0.43 0.47 57

6 Decision Table 0.21 0.0441 0.43 0.51 57

7 Random Forest 0.35 0.1225 0.41 0.46 59

8 Random Tree 0.19 0.0361 0.4 0.59 60

Instance-based learners like lazy.KStar show limited correlation and explanatory power, reflecting their
sensitivity to feature distributions. Overall, the results indicate that while certain regression-oriented
models achieve strong statistical fit, classification accuracy remains constrained under conventional
feature representations, motivating the need for enhanced feature engineering in subsequent stages.
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Figure 3: Comparative Performance Analysis of Baseline Classifiers Under Conventional

Features

4.1.2 Enhanced Feature Evaluation

This subsection reflects improved performance over the baseline as feature refinements were introduced.
As presented in Table 3 and Fig. 4, several classifiers, particularly lazy.KStar and SMOreg, demonstrated
enhanced accuracy values of 64% and 62%, respectively. This scenario also witnessed improved

correlation coefficients (e.g., lazy.KStar: 0.36) and more stable R2 scores.

Table 3: Performance Evaluation of Classifiers Under Enhanced Conventional Feature Sets

S. No Classifier Correlation R2 MAE | RMSE | Accuracy
Coefficient (%)
1 Gaussian Processes 0.38 0.1444 0.4 0.46 60
2 Multilayer Perceptron 0.24 0.0576 0.59 0.8 41
3 SMOreg 0.33 0.1089 0.38 0.55 62
4 lazy.KStar 0.36 0.1296 0.36 0.53 64
5 Bagging 0.54 0.2916 0.39 0.44 61
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6 Decision Table 0.41 0.1681 0.39 0.48 61
7 Random Forest 0.69 0.4761 0.39 0.42 61
8 Random Tree 0.25 0.0625 0.38 0.61 62

Bagging, DecisionTable, and RandomForest showed notable reductions in MAE (0.39—0.41) and RMSE
(0.42-0.53), indicating reduced prediction variance. The results suggest that the revised input
representations in Scenario 2 allowed the models to capture structural patterns more effectively.
Compared with Scenario 1, this setting delivered more reliable performance consistency across all metrics.
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Figure 4: Comparative Visualization of Classifier Performance Under Enhanced

This subsection introduces another transformation of features, yielding a performance pattern positioned
between Scenario 1 and Scenario 2. As illustrated by Table 4 and Fig. 5, SMOreg and RandomTree
achieved accuracy scores above 61%, while Gaussian Processes and Bagging delivered moderate

improvements compared to earlier scenarios.
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Table 4: Intermediate Stability Analysis of Classifiers Based On Error And Consistency
Metrics Using Conventional Features.

S. Classifier Correlation R2 MAE RMSE Accuracy
No Coefficient (%)

1 Gaussian Processes 0.3543 0.125528 0.4156 0.4717 58.44

2 ﬁt&;ﬁﬁ; 0.0865 0.007482 0.658 0.8208 34.2

3 SMOreg 0.3204 0.108504 0.3849 | 0.5413 61.51

4 lazy.KStar 0.186 0.034596 0.425 0.5581 57.5

5 Bagging 0.344 0.118336 0.4271 0.4681 57.29

6 | Decision Table 0.2122 0.045029 | 0.4328 | 0.5192 56.72

7 Random Forest 0.3064 0.093881 0.4226 | 0.4808 57.74

8 Random Tree 0.3102 0.09123 0.4211 0.4755 61.06

Correlation coefficients in this scenario remain within the 0.18—0.35 range for most classifiers, with
corresponding R2 values capturing only small amounts of explained variance. Despite that, the MAE and
RMSE values are consistently tighter compared to Scenario 1, suggesting reduced prediction spread. This
scenario confirms the robustness of models such as SMOreg and Random Forest, which maintain stable
performance across varying data transformations.
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Figure 5: Intermediate Stability Comparison of Classifiers Based On MAE, RMSE, And
Accuracy Using Conventional Features

4.1.4 High-Performance Classifier Evaluation
This subsection represents the most substantial performance leap among all individual classifier
evaluations. As shown in Table 5 and Fig. 6, multiple models achieved exceptionally high correlation
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coefficients (0.75—0.92) and R2 values exceeding 0.80. This directly translated into superior predictive

accuracy, with lazy. KStar and RandomTree reaching 93.06% and 92.31%, respectively.

Table 5: Performance Comparison of High-Performing Classifiers Under Conventional

Feature Settings

S. Classifier Correlation R2 MAE RMSE | Accuracy Wsaw Lsaw

No Coefficients (%)
1 | Gaussian Processes 0.5509 0.303491 | 0.3443 0.4132 65.57 7.346767 0.084344
2 gﬂ;ﬁﬁﬁ; 0.7621 0.580796 | 0.1734 | 0.2081 82.66 9.269122 0.057444
3 | SMOreg 0.5138 0.26399 0.3215 0.3858 67.85 7.595978 0.086778
4 | lazy.KStar 0.8907 0.793346 | 0.0694 | 0.0833 93.06 10.43897 0.033333
5 | Bagging 0.7573 0.573503 | 0.2541 0.3049 74.59 8.371922 0.064878
6 | Decision Table 0.8292 0.687573 | 0.1166 0.1399 88.34 9.907689 0.044111
7 | Random Forest 0.8989 0.808021 | 0.1386 0.1663 86.14 9.670989 | 0.040389
8 | Random Tree 0.8831 0.779866 | 0.0769 | 0.0923 092.31 10.35479 0.034667
9 Fkii?rrﬁ;%go m tree) 0.9231 0.852114 0.048 0.0576 95.2 10.68034 0.01

The MAE and RMSE values also significantly reduced (MAE as low as 0.0694; RMSE as low as 0.2249),
indicating minimal deviation from true values. Particularly noteworthy is the ensemble of KStar and
RandomTree, which achieved the highest accuracy of 95.20%, validating the advantage of hybrid
classifier integration. Scenario 4 clearly demonstrates the effectiveness of optimized feature selection and
ensemble-based architectures in enhancing predictive reliability.
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Figure 6: Performance Visualization of High-Performing Classifiers Under Conventional
Feature Representation
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4.1.5: Hybrid Pairwise Ensemble Combinations

This subsection evaluates nine pairwise ensemble combinations, enabling deeper insights into
classifier complementarities. As presented in Table 6 and Fig. 77, the accuracy values span from 50.32%
(RandomForest + RandomTree) to 62.38% (Gaussian Processes + RandomTree). Correlation coefficients
remain low (0.0033-0.3522), indicating weaker linear associations, but R2 values still follow expected
trends derived from correlation magnitude.

Table 6: Evaluation of Hybrid Pairwise Ensemble Combinations Using Conventional

Features.
S. Classifier Correlation R2 MAE | RMSE | Accuracy (%)
No Coefficient

Gaussian Processes

1 and Multilayer 0.0987 0.0097 | 0.4791 | 0.5961 52.09
Perceptron

2 SMOreg and Kstar 0.181 0.0328 | 0.4602 | 0.4983 53.98

3 Bagging and Decision 0.1877 0.0352 | 0.4584 | 0.4986 54.16
Table
Random Forest and .00 o 0.4968 | 0.7048 0.22

4 Random Tree 0033 49 704 50-3
Gaussian Processes

5 and Random Tree 0.2487 0.0619 | 0.3742 | 0.6117 62.38
Gaussian Processes

6 and lazy Kstar 0.3522 0.124 | 0.4268 | 0.4664 57.32

7 Bagging and Lazy 0.2688 0.0722 | 0.4495 | 0.4807 51.93
Kstar
Random Tree and

8 SMOreg 0.0384 0.0015 | 0.4635 | 0.6501 53.65
Multilayer Perceptron

9 and Random Forest 0.0663 0.0044 | 0.4679 | 0.5877 53.21

The ensemble of Gaussian Processes with lazy KStar and Bagging with lazy KStar exhibited balanced
MAE-RMSE performance, reflecting their ability to stabilize variance even under pairwise combinations.
Though Scenario 5 does not outperform the optimized single-model ensembles of Scenario 4, it highlights
several effective combinations that moderately improve prediction quality, especially where
complementary biases exist between models.
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Figure 7: Comparative Analysis of Hybrid Pairwise Ensemble Classifier Combinations

Using Conventional Features

Scenario 2: Automata Embedded Features

4.2.2: Baseline Classifier Performance

Table 7 and Fig. 8 present the baseline performance of individual classifiers when trained using automata-
embedded features. Compared to the conventional baseline, an overall improvement in predictive
accuracy and error reduction is observed across most models, highlighting the effectiveness of automata-
derived progression features. Gaussian Processes and RandomTree achieve the highest classification
accuracy (65% and 64%, respectively), demonstrating improved generalization under the automata-
enhanced feature space. The SMOreg model also shows competitive performance with reduced MAE
(0.36) and RMSE (0.432), indicating stable regression behavior. Although the Multilayer Perceptron
records exceptionally high correlation (0.98) and R2 (0.9604), its classification accuracy remains low
(40%) with relatively higher error values, suggesting persistent overfitting despite richer features.
Ensemble-based classifiers such as BaggingandRandom Forest exhibit consistent but moderate
performance, benefiting from the structured progression information embedded through automata.
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Table 7: Baseline Classifier Performance Using Automata-Embedded Feature

Representation
S. Classifier Correlation | R Square MAE RMSE Accuracy
No Coefficient
1 Gaussian Processes 0.37 0.1369 0.35 0.42 65
2 Multilayer Perceptron 0.98 0.9604 0.6 0.72 40
3 SMOreg 0.33 0.1089 0.36 0.432 64
4 | lazy.KStar 0.3 0.09 0.39 0.468 61
5 Bagging 0.38 0.1444 0.4 0.48 60
6 Decision Table 0.25 0.0625 0.4 0.48 60
7 Random Forest 0.39 0.1521 0.39 0.468 60
8 Random Tree 0.29 0.0841 0.4 0.48 64

Overall, the results confirm that incorporating automata-based features enhances baseline classifier
robustness and accuracy, providing a stronger foundation for subsequent performance optimization
stages.
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Figure 8: Comparative 3D Performance Analysis of Baseline Classifiers Using Automata-
Embedded Features.

4.2.2 Enhanced Feature Evaluation

Table 8 and Fig. 9 illustrate the performance of classifiers under enhanced automata-embedded feature
evaluation. A consistent and noticeable improvement is observed across almost all classifiers compared to
the baseline automata setting, confirming the effectiveness of refined automata-derived features. The
lazy.KStar classifier achieves the highest classification accuracy (68%) while simultaneously recording
the lowest error values (MAE = 0.32, RMSE = 0.384), indicating superior instance-level discrimination
and stability. SMOreg and RandomTree also demonstrate strong performance with accuracies of 66%,
accompanied by reduced error margins, reflecting improved regression consistency.
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Table 8: Performance Evaluation of Classifiers Under Enhanced Automata-Embedded
Feature Sets
S. No Classifier Correlation R2 MAE RMSE Accuracy
Coefficient (%)
1 Gaussian Processes 0.41 0.1681 0.36 0.432 64
2 Multilayer 0.28 0.0784 0.55 0.66 45
Perceptron
3 SMOreg 0.37 0.1369 0.34 0.408 66
4 lazy . KStar 0.4 0.16 0.32 0.384 68
5 Bagging 0.58 0.3364 0.35 0.42 65
6 Decision Table 0.45 0.2025 0.35 0.42 65
7 Random Forest 0.73 0.5329 0.35 0.42 65
8 Random Tree 0.29 0.0841 0.34 0.408 66

The Random Forest classifier exhibits the highest correlation coefficient (0.73) and R2 value (0.5329),
highlighting its enhanced explanatory capability when combined with automata-based progression
features. Although the Multilayer Perceptron shows marginal improvement over the baseline
automata scenario, its accuracy (45%) and error values remain comparatively weaker, suggesting limited
adaptability to structured symbolic features. Overall, the enhanced automata-embedded feature
evaluation significantly strengthens model robustness, improves error control, and yields higher
predictive reliability than both conventional and baseline automata configurations.
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Figure 9: Comparative 3D Visualization of Classifier Performance Under Enhanced
Automata-Embedded Features

4.2.3 Intermediate Stability Analysis

Table 9 and Fig. 10 present the intermediate stability analysis of classifiers using automata-embedded
features, focusing on consistency across error metrics and classification accuracy. The results indicate that
models incorporating automata-derived progression features maintain improved stability compared to
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conventional representations, although variations across classifiers remain evident. SMOreg
demonstrates the most stable performance, achieving the highest accuracy (62.08%) while maintaining
relatively low MAE (0.3792) and RMSE (0.531), indicating balanced predictive behavior under
intermediate evaluation conditions.

Table 9. Intermediate stability analysis of classifiers based on error and consistency metrics using
automata-embedded features.

S. Classifier Correlation R2 MAE RMSE Accuracy

No Coefficient (%)
1 Gaussian Processes 0.3706 0.13734436 0.4122 0.4673 58.78
2 Multilayer 0.3052 0.09314704 0.516 0.6914 48.4

Perceptron

3 SMOreg 0.3459 0.11964681 0.3792 0.531 62.08
4 lazy.KStar 0.1573 0.02474329 0.4308 0.5743 56.92
5 Bagging 0.3504 0.12278016 0.433 0.4664 56.7
6 Decision Table 0.1964 0.03857296 0.4473 0.511 55.27
7 Random Forest 0.3301 0.10896601 0.4219 0.4734 57.81
8 Random Tree 0.1953 0.03814209 0.4099 0.5903 59.01

Gaussian Processes and Random Tree also show competitive accuracy levels (58.78% and 59.01%,
respectively), with controlled error margins, suggesting resilience to feature perturbations. In contrast,
Multilayer Perceptron continues to exhibit higher error values (MAE = 0.516, RMSE = 0.6914) and
lower accuracy (48.4%), highlighting its sensitivity to intermediate stability constraints despite enriched
features. Ensemble-based methods such as Bagging and Random Forest demonstrate moderate but
consistent performance, reflecting the stabilizing effect of automata-driven structure on variance-sensitive
models. Overall, the intermediate stability analysis confirms that automata-embedded features contribute
to smoother performance transitions and reduced volatility across classifiers.
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Figure 10: Intermediate Stability Comparison of Classifiers Based on MAE, RMSE, And
Accuracy Using Automata-Embedded Features
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4.2.4 High-Performance Classifier Evaluation

Table 10 and Fig. 11 present the evaluation of high-performance classifiers under the automata-embedded
feature framework. The results clearly demonstrate a substantial improvement in predictive capability,
error reduction, and overall robustness compared to earlier stages. Among individual models, lazy.KStar
achieves exceptional performance with a high correlation coefficient (0.9321), strong explanatory power
(R2 = 0.8688), very low error values (MAE = 0.0511, RMSE = 0.0613), and an accuracy of 94.89%,
highlighting its strong compatibility with automata-derived symbolic features., enabling high accuracy,
reduced prediction error, and improved decision reliability.

Table 10: Performance Comparison of High-Performing Classifiers Under Automata-
Embedded Feature Settings

S. No Classifier Correlation R2 MAE | RMSE | Accuracy Wsaw Lsaw
Coefficient (%)

1 Gaussian 0.5979 0.3002 0.3327 | 0.3992 66.73 7.346767 | 0.084344
Processes

2 lf\)/iligelrt};z; 0.8023 0.6437 0.1546 | 0.1855 84.54 9.269122 | 0.057444

3 SMOreg 0.5538 0.3067 0.2879 | 0.3455 71.21 7.595978 0.086778

4 lazy.KStar 0.9321 0.8688 0.0511 | 0.0613 94.89 10.43897 | 0.033333

5 Bagging 0.7956 0.633 0.2422 | 0.2906 75.78 8.371922 0.064878

6 Decision Table 0.8613 0.7418 0.0933 0.112 90.67 9.907689 0.044111

7 Random Forest 0.9362 0.8765 0.1066 | 0.1279 89.34 9.670989 | 0.040389

8 Random Tree 0.9273 0.8599 0.0626 | 0.0751 93.74 10.35479 0.034667
Ensembling

9 (kstar,random 0.9645 0.9303 0.0272 | 0.0326 97.28 10.68034 0.01
tree)

Random Forest and Random Tree also show consistently high performance, achieving accuracies of
89.34% and 93.74%, respectively, with balanced error margins, indicating stable generalization. The
Decision Table classifier benefits significantly from automata-embedded features, attaining an accuracy
of 90.67% with reduced MAE and RMSE, reflecting improved rule-based decision consistency. The
inclusion of multi-criteria decision metrics further strengthens the evaluation, where higher WSAW
scores and lower LSAW values confirm the superiority of automata-enhanced classifiers. Overall, this
stage validates that automata-embedded features substantially elevate classifier performanceenabling
high accuracy, reduced prediction error, and improved decision reliability.
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Figure 11: Performance Visualization of High-Performing Classifiers Under Automata-
Embedded Feature Representation

4.2.5 Hybrid Pairwise Ensemble Combinations
Table 11 and Fig. 12 present the performance of hybrid pairwise ensemble combinations constructed using
automata-embedded features. The results demonstrate that selective hybridization of classifiers further
enhances predictive accuracy while maintaining controlled error levels. The combination of Gaussian
Processes and Multilayer Perceptron achieves the highest accuracy (86.91%), indicating that
complementary learning behaviors can significantly benefit from the enriched automata-based feature
space. Similarly, Multilayer Perceptron and Random Forest attains a strong accuracy of 81.12%,
highlighting improved generalization through ensemble diversity. Among balanced performers, Bagging
and Lazy KStar records an accuracy of 79.34% with relatively lower MAE (0.2066) and RMSE (0.2479),
suggesting a favorable trade-off between accuracy and stability.

Table 11: Evaluation of Hybrid Pairwise Ensemble Combinations Using Automata-

Embedded Features

S. Classifier Correlation R2 MAE RMSE Accuracy
No Coefficient (%)

L Gaussian Processes and 0.0 .00 0.120 01571 86.01

Multilayer Perceptron 10997 10099 1309 157 9

2 SMOreg and Kstar 0.2837 0.0805 0.2277 0.2732 77.23

3 Bagging and Decision 0.2998 0.0899 0.3131 0.3757 68.69
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Random Forest and 0.142 0.0202 o 04 646
4 Random Tree 1423 . 3533 4239 4.07
Gaussian Processes and 0.22 .10 05 0. 6
5 Random Tree 3245 1053 2444 2033 755
Gaussian Processes and
6 lazy Kstar 0.4347 0.189 0.3611 0.4333 63.89
Bagging and Lazy Kstar 0.4567 0.2086 0.2066 0.2479 79.34
8 Random Tree and 0.108 0.0118 0.231 0.2772 6
SMOreg .1004 . .23 277 76.9
Multilayer Perceptron
9 and Random Forest 0.1129 0.0127 0.1888 0.2266 81.12

Other combinations, such as SMOreg and KStar and Random Tree and SMOreg, also demonstrate
competitive results, reflecting the robustness of automata-derived progression features across
heterogeneous classifiers. In contrast, ensembles involving weaker base learners show comparatively
lower gains, emphasizing the importance of informed pairing. Overall, the hybrid ensemble analysis
confirms that automata-embedded features not only improve individual classifier performance but also
amplify the effectiveness of ensemble strategies, leading to higher accuracy and improved predictive
reliability.
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Figure 12: Comparative Analysis of Hybrid Pairwise Ensemble Classifier Combinations
Using Automata-Embedded Features
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Conclusion

The presented work shows a progression-aware prognostic framework for Hepatitis outcome prediction
by integrating deterministic finite automata with machine learning. The major achievement lies in
modeling real-world clinical progression through explicit state transitions and extracting novel automata-
derived features that capture severity evolution, transition dynamics, and treatment response. Extensive
experimentation across conventional and automata-embedded scenarios demonstrates that the proposed
approach consistently improves predictive accuracy, stability, and error control, particularly for high-
performing classifiers and hybrid ensemble combinations. The statistical validation of automata-extracted
features further reinforces their significance, while the transparent state-based structure enhances
interpretability and aligns closely with clinical reasoning. Collectively, these contributions address key
limitations of static feature-based models and advance prognostic modeling toward more realistic and
clinically meaningful decision support. From a practical perspective, the proposed framework can be
deployed as an assistive prognostic module within hospital information systems to support early risk
stratification and treatment planning. Future work will focus on validating the approach on larger, multi-
center and longitudinal datasets to improve generalizability and robustness. The automata-based
methodology is inherently domain-agnostic and can be extended to other progressive diseases such as
chronic kidney disease, cardiovascular disorders, and cancer prognosis. Further optimization may involve
adaptive automata, automated state-learning, and integration with deep temporal models to enhance
scalability and real-time deployment, paving the way for reliable, interpretable, and clinically integrated
predictive analytics.
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