
New Approaches to Computer Science Assessment in the
AI Age

Eric Howard1,2, Hardique Dasore1, Shah Haque1, Raddhika Kuttala1,

Mohamad Mahmoud Al Zein1

1Southern Cross Institute
2Macquarie University

Abstract
The rapid advancement of Artificial Intelligence (AI) has introduced both opportunities and

challenges in higher education, particularly in computer science assessment. AI-generated content
from tools like ChatGPT has diminished the effectiveness of traditional plagiarism detection systems,
necessitating a shift in evaluation strategies. This paper proposes a comprehensive rethinking of
assessment methodologies by leveraging free and accessible online platforms that require students to
share unique, verifiable links to their work. By incorporating platforms such as Replit, SQLFiddle,
Google Cloud Shell, TryHackMe, and Cisco Packet Tracer, among others, educators can promote
hands-on learning, improve academic integrity, and foster deeper conceptual understanding. These
innovative approaches ensure that assessments measure genuine student effort and proficiency rather
than their ability to replicate AI-generated responses.

1 Introduction
Artificial Intelligence (AI) is reshaping education, influencing both teaching methodologies and assessment
practices. The rise of AI-powered tools like ChatGPT and code generators has significantly altered how
students approach learning and completing assignments. While these tools provide immense benefits
in accessibility and automation, they pose substantial challenges concerning academic integrity and
traditional assessment models.

The ability of AI to generate human-like text and solve complex programming problems raises
concerns about plagiarism, authenticity, and the effectiveness of conventional evaluation systems. Many
current plagiarism detection tools struggle to distinguish between human-written and AI-generated
content, making traditional essay and coding assignments increasingly unreliable for assessing students’
true capabilities. It is often hard to tell whether students are simply copying the answers or actually
understanding the material, especially when they use AI-generated materials. In addition, reliance
on AI-assisted answers diminishes critical thinking, problem solving, and hands-on application, key
competencies in computer science education. This leads to a rising gap between theoretical understanding
and real-world experience that promotes a reconsideration of assessment design.

The challenges with the traditional assessments are :

• Traditional exams lose their effectiveness when AI tools produce nearly flawless answers

• AI-generated responses can bypass plagiarism detection technologies

• AI-generated materials are used by the students without showing that they truly understand the
ideas

• Although AI systems can generate accurate responses, they do not support students in developing
their problem-solving abilities.

• When AI technologies are used excessively, student submissions lose their individuality, which makes
it more difficult to evaluate each student’s progress in learning.

To address these issues, educators must shift towards assessment methods that emphasize practical
engagement, unique student input, and direct interaction with tools and platforms that require hands-on
execution. One promising solution is leveraging online platforms that allow students to generate unique

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

ARTICLE INFO: Received: 01 December 2025 Revised: 04 January 2026 Accepted: 12 January 2026

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which per-
mits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 1

workspaces, perform live coding, and share verifiable links to their completed work. Such methods ensure
transparency, originality, and demonstrable understanding of computer science concepts.

Additionally, an effective assessment model should promote collaboration, real-world problem-solving,
and experiential learning. By utilizing interactive platforms such as Replit, SQLFiddle, Webminal,
TryHackMe, and Cisco Packet Tracer, students are encouraged to actively engage with the subject
matter rather than passively reproducing AI-generated responses. These platforms enable instructors
to track student progress, validate the authenticity of submissions, and facilitate a more comprehensive
understanding of each learner’s capabilities. Peer-reviewed projects, open-ended problem-solving tasks,
and oral exams can all be added to assessments to increase their efficiency and make sure that students
understand and apply theoretical ideas in relevant ways.

This paper proposes a framework for integrating free, accessible, and verifiable online tools into
computer science assessments, ensuring that students develop essential computational thinking skills and
maintain academic integrity. The following sections discuss various domains within computer science and
propose effective strategies to redesign assessments using these digital tools.

With the rise of AI-driven text generation, students increasingly rely on automated tools to complete
assignments. This trend undermines learning objectives, particularly in computer science courses where
problem-solving and application are crucial. Instead of AI detection software, which has proven unreliable,
educators should reconsider assessment methods to prioritize genuine student engagement and deeper
understanding.Educators can design tests that are more resilient to AI-driven shortcuts while reiterating
essential learning objectives by incorporating dynamic problem solving activities and adaptive learning
technology.

2 Proposed Solutions
With rapid advancements in technology and the increasing role of Artificial Intelligence (AI) in education,
traditional assessment methods are no longer sufficient in evaluating students’ genuine understanding
and problem-solving skills. Assessments need to be redesigned to focus on hands-on experiences, critical
thinking, and verifiable work submissions to maintain academic integrity and encourage deeper engagement
with learning material.

Current assessment models, which rely on written reports and static code submissions, fail to reflect
the dynamic nature of real-world computing environments. Students often resort to AI-generated content
or reusing solutions from past submissions, reducing the authenticity of their work. To address this, the
implementation of interactive, cloud-based platforms where students can execute and share their work in
a verifiable manner is crucial. These approaches allow educators to track individual contributions, ensure
originality, and assess students based on their actual engagement and understanding.

One of the key aspects of innovative assessment methods is utilizing live coding and real-time problem-
solving platforms. Tools such as Replit, JSFiddle, and Google Cloud Shell allow students to write, execute,
and share their code with unique links that verify authenticity. These platforms maintain version histories,
preventing students from submitting AI-generated code without modifications. Similarly, structured
environments for databases like SQLFiddle and DB-Fiddle help students demonstrate their ability to
construct, query, and manipulate data in real-time rather than merely submitting static SQL scripts.

Another essential component of modern assessment is leveraging cybersecurity and networking
simulations. Platforms such as TryHackMe and Hack The Box enable students to engage in hands-on
security exercises, where they can complete penetration testing challenges and document their findings
through shared progress links. Additionally, networking tools like Cisco Packet Tracer and Eve-NG allow
students to design, simulate, and troubleshoot complex network infrastructures while generating unique
session identifiers to validate their work.

In Linux system administration courses, students often need to demonstrate their proficiency in
configuring and managing servers. By integrating cloud-based Linux terminals such as Webminal and
JupyterHub, students can execute shell commands in an isolated environment and provide instructors
with traceable links to their completed tasks. This ensures that their work is original and reflective of
their individual understanding.

Beyond hands-on coding exercises, effective assessment strategies should also emphasize peer collabo-
ration and project-based learning. Encouraging students to engage in team-based coding projects, group
troubleshooting exercises, and real-world problem-solving simulations fosters critical thinking and mimics
industry-standard workflows. Collaborative learning environments like GitHub Classroom and CoCalc
provide mechanisms for students to submit work, track progress, and receive real-time feedback from
peers and instructors.

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 2

Moreover, to ensure the security and authenticity of academic submissions, assessments should
integrate secure documentation practices such as PDF flattening. This method prevents students from
making post-submission modifications to their work. Open-source tools like Ghostscript enable students
to convert reports, configurations, and screenshots into non-editable formats, ensuring transparency and
preventing academic dishonesty.

By adopting these innovative approaches, computer science educators can create a more robust,
engaging, and integrity-driven assessment model. These solutions promote genuine learning, real-world
applicability, and verifiable assessments, ultimately better preparing students for careers in technology
and computer science. Traditional assessment methods in computer science education often rely on
written assignments, static code submissions, and theoretical problem-solving. However, these approaches
fail to capture the hands-on, applied nature of the field. To foster genuine learning, new strategies must
emphasize active engagement, originality, and the use of interactive tools that require students to generate
and share unique solutions. The following subsections explore specific methods for key computer science
disciplines, leveraging free online platforms to enhance assessment validity and integrity.

One of the fundamental challenges in assessing programming and technical skills is ensuring students
demonstrate their own work rather than copying from external sources, including AI-generated solutions.
This necessitates a shift toward assessments that involve real-time coding exercises, problem-solving
tasks in collaborative environments, and the use of cloud-based platforms that track individual progress.
By requiring students to submit shareable links from platforms like Replit, SQLFiddle, and Webminal,
instructors can ensure that students engage in meaningful work and demonstrate their problem-solving
processes.

For cybersecurity and networking courses, hands-on practice is essential. The use of virtual labs,
emulated networks, and cybersecurity challenges ensures that students gain practical experience while
providing verifiable evidence of their work. Platforms such as TryHackMe, Hack The Box, and Cisco
Packet Tracer allow students to document their processes and submit unique task links, making it easier
to assess their individual contributions and problem-solving capabilities.

A broader pedagogical shift is also necessary in database management, Linux administration, and
system security assessments. Instead of static documentation, assessments should focus on interactive
database queries, cloud-based Linux command execution, and real-world problem-solving scenarios
that require dynamic engagement with learning materials. Encouraging students to use free platforms
that generate session-based, shareable workspaces provides a scalable and effective way to ensure the
authenticity and originality of their submissions.

This paper advocates a multi-faceted approach to assessment, integrating real-world simulations,
interactive problem-solving tasks, and collaborative learning environments. These approaches not only
mitigate the risks of AI-generated plagiarism but also align assessment methods with industry practices,
preparing students for professional careers in computer science. The following subsections present detailed
recommendations for redesigning assessments in various domains of computer science education.

This paper suggests innovative methods for conducting assessments in key computer science domains:

2.1 Programming Assignments
One of the major challenges in programming education today is ensuring that students produce original
work and do not rely on AI-generated solutions from tools such as ChatGPT. Traditional code submission
formats, such as uploading scripts or submitting code snippets in written documents, make it difficult for
educators to verify whether students genuinely engaged in problem-solving or simply copied pre-written
solutions. To address this, a new assessment paradigm is required—one that ensures students actively
participate in coding exercises and produce verifiable work.

To counteract the issue of AI-generated code plagiarism, educators should require students to use
cloud-based coding platforms that generate unique shareable links for their work. These platforms provide
transparency by allowing instructors to track student progress, monitor code development over time, and
verify that students have personally written their solutions. Version control features in platforms such as
Replit, JSFiddle, and CodePen make it possible to analyze students’ iterative problem-solving approaches,
providing insights into their thought processes and debugging skills.

Another advantage of using these platforms is their ability to prevent direct copy-pasting from external
sources. Many online coding environments include auto-tracking functionalities that log every keystroke
and prevent blind submission of AI-generated responses. By requiring students to write and test their
code directly within a controlled environment, educators can ensure that learning outcomes are met and
that students truly understand the concepts being taught.

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 3

Beyond basic programming exercises, instructors can integrate interactive, real-time coding assignments
that mimic real-world development workflows. Pair programming assessments, live coding challenges, and
debugging tasks within cloud-based environments promote engagement and discourage passive reliance
on AI-generated answers. By incorporating collaborative elements such as peer code reviews and group
projects, students gain valuable industry-relevant experience while reinforcing their understanding of core
programming principles.

In addition to enforcing originality, these platforms provide scalability for instructors managing large
classes. Automated testing frameworks built into these environments allow for instant feedback and
grading, reducing the administrative burden of manual code evaluation. Moreover, integrating oral code
explanations or written reflections on coding approaches can further solidify students’ comprehension and
prevent reliance on pre-generated AI responses.

Ultimately, shifting programming assessments from static submissions to cloud-based, interactive
environments ensures academic integrity, fosters active learning, and aligns with industry best practices.
The following platforms offer suitable environments for implementing such assessment methods:

Traditional programming assignments often rely on static code submissions, making it difficult to
assess a student’s actual engagement and problem-solving process. Instead of submitting individual code
files, students should be required to use interactive coding platforms that generate unique shareable links,
ensuring that their work is both original and verifiable. By implementing this approach, educators can
enhance transparency in assessments and encourage students to develop coding skills in a real-world
setting.

One of the key advantages of using online coding platforms is the ability to track a student’s progress
in real time. Many of these platforms maintain version histories, allowing instructors to see how a student
approached the problem, debugged errors, and refined their solutions over time. This provides deeper
insight into their learning process beyond just evaluating the final output. Additionally, features such as
collaborative coding, peer reviews, and instructor feedback can be integrated seamlessly into the workflow,
making assessments more interactive and engaging.

A critical component of programming education is the ability to write and test code across different
environments. Online coding platforms like Replit, JSFiddle, and Google Cloud Shell enable students to
execute code in the cloud without the need for complex local configurations. These platforms support
multiple programming languages and frameworks, allowing students to experiment with various coding
paradigms while working on their assignments. Furthermore, the ability to share live coding sessions
enables educators to conduct in-class coding exercises and live debugging sessions, fostering a more
interactive learning experience.

To ensure fairness and prevent plagiarism, platforms that generate unique session links and track
user activity should be prioritized. This mitigates the risks of students copying AI-generated solutions
without fully understanding the logic behind the code. Additionally, requiring students to explain their
code through comments, video walkthroughs, or written explanations further strengthens the assessment
model by verifying their comprehension.

The following platforms provide an effective environment for programming assignments: Instead of
traditional code submissions, students should be required to use platforms that generate unique shareable
links for their work. These platforms ensure originality and transparency in coding assessments.

• Replit: Enables students to share unique coding project links, ensuring personal accountability.

• JSFiddle / CodePen: For web development assignments, students submit live, working code
rather than static submissions.

• Trinket: A browser-based environment for interactive coding that allows sharing unique project
links.

• Sololearn: Provides interactive coding lessons with shareable code snippets.

• Google Gemini Code Assist: An AI-powered coding tool supporting multiple programming
languages, with shareable code snippets.

• JDoodle: An online compiler supporting over 88 programming languages, enabling execution and
sharing through unique URLs.

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 4

3 Database Queries and Designs
Ensuring academic integrity in database-related assessments is crucial for evaluating students’ actual
proficiency in Structured Query Language (SQL) and database design concepts. Traditional submission
methods, such as static query results or screenshots, are easily manipulated or generated by AI tools,
making it difficult to assess genuine student effort. To counteract this, educators should leverage online
database platforms that generate unique, shareable links to students’ query executions. These platforms
enable students to work on live database environments, fostering hands-on learning, collaboration, and
verifiable assessments.

By requiring students to use interactive database platforms, instructors can ensure that assessments
emphasize problem-solving and query optimization rather than memorization. These tools allow students
to experiment with different SQL commands, visualize results dynamically, and troubleshoot errors in
real time. Furthermore, students can submit their assignments by sharing unique session URLs, allowing
instructors to verify their work efficiently.

The following free online platforms provide effective solutions for conducting database-related assess-
ments:

• SQLFiddle: A free online tool that enables students to write, test, and execute SQL queries across
multiple database engines, including MySQL, PostgreSQL, and SQLite. The platform generates
unique URLs for each query session, ensuring transparent and accountable assessments.

• DB-Fiddle: Similar to SQLFiddle, DB-Fiddle supports MySQL and PostgreSQL databases and
provides an interactive interface where students can create, modify, and execute queries. The
platform allows students to share unique query links with instructors for real-time feedback.

• Mode Studio: An advanced SQL-based platform that integrates data visualization tools with
SQL querying. Students can execute cloud-based queries and generate shareable project links for
submission.

• Google Cloud BigQuery: A powerful cloud-based SQL execution platform that allows students
to work with large datasets. Assignments can be structured around real-world data analysis, with
students submitting shareable query execution links.

• DBVisualizer: A versatile database tool that supports SQL execution and query optimization.
It allows students to connect to various database servers and submit shareable outputs of their
executed queries.

• SQLite Online: A lightweight, browser-based SQL execution environment where students can
create databases, write queries, and generate unique session links for verification.

• HackerRank for SQL: A structured SQL assessment platform where students can solve challenges,
receive instant feedback, and share progress links. The system tracks students’ performance over
time, making it a valuable tool for formative assessments.

By integrating these online platforms into database-related assessments, educators can promote
hands-on learning, ensure originality, and encourage students to develop problem-solving skills in SQL
and database design. This shift away from traditional assessments enhances student engagement and
prepares them for real-world database management challenges.

4 Linux System Administration
Linux system administration is a fundamental aspect of computer science education, requiring students
to develop hands-on skills in system management, command-line operations, networking, and security
configurations. Traditional assessments often involve written explanations or static screenshots of
command outputs, which can be easily manipulated. To ensure academic integrity and accurately evaluate
students’ practical skills, assessments should utilize cloud-based Linux environments that generate unique
session links, allowing instructors to verify and assess student work dynamically.

Interactive Linux environments provide students with an opportunity to execute real commands,
troubleshoot issues, and document their processes. These platforms also support collaborative learning by
enabling students to share their sessions, seek peer feedback, and receive instructor evaluations in real-time.

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 5

By leveraging free cloud-based tools, students can gain real-world experience in system administration
without requiring complex local setups.

The following platforms offer effective solutions for conducting Linux system administration assess-
ments:

• Google Cloud Shell: A cloud-based Linux shell that provides a persistent command-line interface
for managing cloud resources, executing scripts, and configuring system settings. Students can
share their session logs for assessment.

• JupyterHub: A multi-user Jupyter notebook environment that allows students to run shell
commands, execute Python scripts, and document their work interactively. Notebooks can be
shared with unique URLs, ensuring accountability.

• Webminal: An online Linux terminal that enables students to practice shell commands, write
scripts, and perform system configurations in a secure, browser-based environment. Each session
generates a unique link for submission.

• CoCalc: A cloud-based computational environment that includes a Linux terminal, scripting tools,
and collaborative document editing. Students can work on assignments in real-time and share their
progress via unique session links.

• Katacoda: An interactive learning platform that provides pre-configured Linux environments for
practicing system administration tasks. Students can complete guided exercises and submit session
links as proof of their work.

• JS Linux: A lightweight, web-based Linux emulator that allows students to run command-line
operations in a simulated Linux environment. Each session can be shared, allowing for remote
verification of work.

• Terminus Web Terminal: A browser-based terminal that supports SSH connections, allowing
students to remotely access and manage Linux servers while generating shareable session logs.

• LinuxZoo: A virtual Linux environment that enables students to practice system administration
tasks, including package management, user account creation, and network configurations. Each
user receives a unique instance, ensuring individualized assessments.

By incorporating these cloud-based Linux environments into assessments, educators can ensure
students develop practical system administration skills while maintaining academic integrity. These
platforms provide instructors with the ability to track command history, verify session authenticity, and
assess students based on their hands-on experience rather than static documentation.

5 Cybersecurity and Information Security
Practical, hands-on experience is critical in cybersecurity education, as theoretical knowledge alone is
insufficient for understanding real-world security threats and mitigation strategies. Traditional written
assessments fail to capture the complexity of penetration testing, vulnerability assessment, digital forensics,
and incident response. Instead, students should engage with live security labs and simulations that
provide unique, verifiable session links for their work.

By utilizing interactive cybersecurity environments, students can develop the skills necessary to protect
networks, analyze security threats, and apply ethical hacking techniques under controlled conditions.
The following platforms provide effective solutions for hands-on cybersecurity and information security
assessments:

• TryHackMe: A guided cybersecurity training platform that offers hands-on exercises in ethical
hacking, penetration testing, and digital forensics. Students can complete challenges in sandboxed
environments and submit unique progress links for evaluation.

• Hack The Box: A penetration testing platform where students can explore real-world security
challenges, exploit vulnerabilities, and conduct network assessments. Each user receives unique
access credentials, ensuring individual work is verifiable.

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 6

• Parrot Security OS: A security-focused Linux distribution equipped with penetration testing tools,
cryptography utilities, and forensic analysis features. Students can conduct security assessments in
isolated virtualized environments and generate detailed reports.

• MISP (Malware Information Sharing Platform): A collaborative threat intelligence-sharing
framework that allows students to analyze malware data, investigate cybersecurity incidents, and
generate unique session logs for submission.

• CyberSecLab: A virtual cybersecurity lab that provides simulated attack scenarios where students
can practice ethical hacking techniques, malware analysis, and security hardening.

• Blue Team Labs Online (BTLO): A defensive cybersecurity training platform where students
can engage in digital forensics, log analysis, and threat hunting challenges. Unique lab access links
allow instructors to verify individual progress.

• RangeForce: A cloud-based cybersecurity training environment that simulates real-world security
incidents, including malware detection, network defense, and intrusion response.

• Cyborg Security Training Platform: A comprehensive security training environment that pro-
vides hands-on experience with threat hunting, SIEM (Security Information and Event Management)
analysis, and cyber defense strategies.

• OpenSOC.io: A live security operations center (SOC) simulation where students can analyze
cybersecurity threats and respond to real-world attack scenarios using industry-standard security
tools.

• LetsDefend.io: A cloud-based security operations training environment where students practice
security monitoring, threat detection, and incident response. Instructors can track student progress
via unique session URLs.

By integrating these cybersecurity platforms into assessments, educators can ensure students develop
real-world security skills while maintaining academic integrity. These tools allow instructors to verify
student engagement, track activity logs, and assess practical problem-solving abilities in a secure, controlled
environment.

5.1 Networking Assignments
Networking courses should shift from theoretical assessments to interactive simulations where students
share unique links to their configurations.

• Cisco Packet Tracer: Students save and share unique simulation files.

• Eve-NG: Provides shareable network emulation sessions.

• GNS3: Allows students to export and submit live network configurations.

6 General Computer Science Education Tools
As computer science education advances, the need for dynamic and interactive learning tools has never been
greater. Traditional methods, such as textbooks and recorded lectures, often fall short in engaging students
or equipping them with the hands-on experience needed for real-world applications. By integrating
interactive online platforms, educators can transform learning into an immersive experience that promotes
critical thinking, problem-solving, and a deeper grasp of fundamental computer science concepts.

One of the key benefits of online learning tools is the flexibility they offer. Students can progress
at their own pace, mastering concepts through structured lessons and coding exercises that increase
in complexity. Unlike passive learning methods, these platforms provide real-time feedback, allowing
learners to experiment, troubleshoot errors, and refine their computational thinking skills—an essential
foundation for programming and software development.

Collaboration is another powerful advantage of digital learning environments. Many coding platforms
feature peer reviews, group projects, and instructor feedback, fostering a community-driven approach
that mirrors real-world software development. Engaging in collaborative coding helps students develop
teamwork skills, gain diverse perspectives, and prepare for the highly interactive nature of the tech industry.

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which per-
mits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 7

Educators, in turn, can track student progress through interactive dashboards, offering personalized
guidance to enhance learning outcomes.

Beyond programming, online platforms extend their reach to various computer science fields, including
cybersecurity, networking, databases, and system administration. Virtual labs allow students to engage
in hands-on exercises—configuring networks, managing databases, and securing systems against cyber
threats. These realistic simulations provide practical experience that directly translates into professional
competency.

Perhaps most importantly, these digital tools make computer science education more accessible and
inclusive. With many platforms offering free or low-cost access, financial barriers are reduced, opening
doors for a broader and more diverse group of learners. Cloud-based solutions further enhance accessibility
by eliminating the need for expensive hardware, enabling students to learn from anywhere with an internet
connection.

By embracing interactive and adaptive learning tools, educators can revolutionize computer science
education—making it more engaging, practical, and widely available to learners of all backgrounds. The
future of tech education lies in fostering an environment where students don’t just consume information
but actively create, collaborate, and problem-solve in meaningful ways.

To ensure that assessments reflect genuine student efforts and mastery of concepts, these tools
incorporate shareable project links and unique session IDs. This prevents academic dishonesty and
makes it easier for instructors to verify the authenticity of submissions. By leveraging these technologies,
educators can create more effective and fair evaluation methods that encourage students to actively
engage with their coursework.

The following platforms exemplify some of the best free resources available for general computer
science education:

Technology in computer science education is evolving rapidly, necessitating the adoption of interactive
platforms that facilitate hands-on learning. Many free tools provide comprehensive learning experiences,
allowing students to practice coding, explore algorithms, and engage in problem-solving exercises while
ensuring verifiability of their work through shareable links. These tools are instrumental in reinforcing
foundational and advanced computer science concepts in an engaging and interactive manner.

To maintain the integrity of digital submissions, PDF flattening plays a crucial role. Many assignments
require screenshots, reports, and documentation of system configurations, which can be altered if submitted
in an editable format. By converting documents into non-editable static images using open-source tools
like Ghostscript, instructors can ensure that submissions remain unchanged. This approach enhances
security and ensures academic honesty by preserving the authenticity of student work.

One key advantage of these tools is their accessibility; students can log in with their Google accounts
and store progress, share work, and collaborate with peers. This enables continuous learning outside the
classroom and ensures that assignments reflect students’ individual efforts. The following platforms offer
structured lessons, practice environments, and real-time coding capabilities suitable for general computer
science education:

• Codecademy: Provides interactive coding lessons across various programming languages and
topics, with shareable progress links.

• CS First by Google: A computer science curriculum that allows students to create and share
interactive projects.

7 Use of Virtualization
Virtualization has become an essential tool in modern computer science education, providing students with
a controlled, flexible, and cost-effective environment to practice various computing tasks. Virtualization
technology enables students to create and manage isolated environments that replicate real-world
computing infrastructures, allowing them to experiment with system configurations, networking, software
installations, and cybersecurity practices. Unlike traditional assessments that rely on theoretical knowledge
or static screenshots, virtualization ensures that students demonstrate their hands-on skills through live,
interactive environments.

A major advantage of virtualization is its ability to support diverse learning scenarios, including system
administration, software development, cloud computing, and cybersecurity. Virtual machines (VMs)
provide a sandboxed environment where students can install and configure operating systems, set up

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 8

networks, and experiment with security tools without affecting their local machines. This flexibility enables
students to gain practical experience that aligns with industry standards and workplace expectations.

For networking and cybersecurity courses, virtualization platforms such as Eve-NG, GNS3, and Cisco
Packet Tracer allow students to create complex network topologies and simulate real-world scenarios.
Students can configure routers, switches, and firewalls, troubleshoot connectivity issues, and analyze
network traffic. Instructors can assess students based on their ability to design and implement functional
network infrastructures using these tools.

In system administration courses, virtualization solutions like VirtualBox and KVM/QEMU enable
students to deploy and manage various operating systems, configure server environments, and troubleshoot
system issues. These platforms allow for the replication of enterprise-level IT environments where students
can install software, manage user accounts, configure security policies, and monitor system performance.
Instructors can validate student work through VM snapshots, logs, and unique session links.

For cloud computing and DevOps-related courses, virtualization plays a crucial role in familiarizing
students with containerization and cloud platforms. Tools such as Docker, Kubernetes, and Google Cloud
Shell provide students with practical exposure to cloud-native technologies, infrastructure automation,
and containerized application deployment. By integrating these tools into assessments, students can gain
hands-on experience with modern cloud infrastructure and continuous integration/continuous deployment
(CI/CD) workflows.

Additionally, virtualization fosters collaboration and remote learning by allowing students to share their
virtual environments with instructors and peers. Cloud-based solutions such as CoCalc and JupyterHub
enable students to work on shared instances, execute Linux commands, and write scripts in a collaborative
environment. These platforms generate unique session links, making it easier for instructors to track
individual contributions and provide feedback.

By incorporating virtualization into computer science assessments, educators can ensure that students
acquire practical, verifiable skills that extend beyond theoretical knowledge. The ability to create,
configure, and manage virtual environments provides students with a deeper understanding of computing
concepts and prepares them for real-world challenges in IT and software development. The following
platforms offer robust virtualization environments suitable for academic assessments:

In modern computer science education, practical assessments require hands-on experience with
virtualization and documentation tools. Free virtualization solutions allow students to create, manage, and
experiment with different computing environments without the need for expensive hardware. Furthermore,
securing and verifying submissions through PDF flattening ensures document authenticity and prevents
unauthorized modifications.

Virtualization platforms enable students to set up and configure systems for testing and development.
These tools support operating system installation, networking experiments, and system administration
tasks. Free and open-source solutions such as VirtualBox and KVM/QEMU provide robust environ-
ments for running virtual machines, allowing students to demonstrate their understanding of system
configurations and security practices.

Additionally, in cybersecurity courses, students need to document their investigative processes,
configurations, and results from penetration testing exercises. Virtualization platforms enable them
to create isolated environments for testing vulnerabilities, practicing ethical hacking techniques, and
configuring network security policies. These tasks can be verified by instructors through shareable virtual
machine snapshots or detailed reports.

By integrating free virtualization tools and secure documentation practices, computer science programs
can offer more effective and verifiable assessments. These strategies reinforce hands-on learning, provide
students with real-world system administration experience, and uphold academic integrity.

For system administration and cybersecurity assessments, students should provide evidence of their
work using free virtualization tools.

• VirtualBox: A free alternative to VMware for setting up virtual environments.

• KVM/QEMU: A Linux-based virtualization tool for advanced system administration tasks.

8 Web Development and Web Design
Web development and web design are essential components of computer science education, particularly
in front-end programming, responsive layout, and user interface (UI) design. Traditional submission
formats—such as zipped HTML/CSS/JS files or screenshots—lack interactivity, offer limited transparency,
and are prone to academic dishonesty through AI-generated or copied code.

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 9

To address these challenges, assessments should incorporate cloud-based development platforms that
allow students to create and submit live, interactive websites using shareable URLs. These platforms
enable instructors to review version histories, inspect real-time outputs, and verify student work directly
in the browser, thereby promoting authenticity and deep engagement.

Recommended platforms for live, interactive web development include:

• CodePen: A live HTML/CSS/JavaScript environment where students can build and share fully
interactive "pens" using unique URLs.

• JSFiddle: Ideal for short, testable HTML/CSS/JS snippets. Every fiddle generates a public link
for submission and feedback.

• W3Schools Tryit Editor: Allows students to experiment with front-end code using built-in
tutorials and share their work through generated links.

• Glitch: Supports full-stack web apps with collaborative editing. Students can remix starter
templates and submit hosted URLs for assessment.

• Trinket: An easy-to-use coding platform for front-end and Python web apps. Each project has a
shareable link for embedding or submission.

• GitHub Pages: Enables students to host static websites directly from their GitHub repositories,
complete with version control.

Free Hosting Platforms with Custom Subdomains
For final submissions or portfolio projects, students should be encouraged to host their websites using
free static hosting platforms that provide custom subdomains. These tools allow students to publish their
work publicly and give instructors permanent, verifiable links for assessment.

• Tiiny.host: A simple drag-and-drop static web host that gives each upload a unique subdomain
(e.g., studentproject.tiiny.site). Ideal for quick hosting of HTML/CSS/JS projects.

• Netlify: Provides continuous deployment from Git repositories and generates a custom subdomain
(e.g., student-project.netlify.app) for each site.

• Vercel: Supports front-end frameworks like React, Next.js, and static sites. Students receive unique
subdomains (e.g., username.vercel.app) that are publicly accessible.

• GitHub Pages: Offers free hosting for static sites directly from a GitHub repository. Students
can use URLs such as username.github.io/project-name, with full version tracking.

• Render (static hosting): Allows free deployment of static websites via GitHub integration with
auto-generated subdomains.

These platforms not only verify student submissions through public access but also teach deployment
workflows commonly used in the tech industry. Encouraging students to publish their work fosters
accountability, provides portfolio-ready deliverables, and reinforces the real-world relevance of classroom
assignments.

Assessment tasks can be further enhanced by incorporating:

• Written reflections on design decisions and layout responsiveness.

• Responsive design testing (desktop vs mobile).

• Peer reviews and accessibility audits using tools like Lighthouse.

By leveraging these free, real-time development and deployment platforms, web design assessments
can become interactive, verifiable, and aligned with industry practices, while also reinforcing academic
integrity.

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which per-
mits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 10

9 AI-Resilient Assessment Design: Principles, Evidence, Equity,
and Future Directions

The emergence of generative Artificial Intelligence has fundamentally altered the relationship between
assessment, authorship, and evidence in computer science education. Traditional assessment models
that rely on static artefacts, written explanations, or final code submissions no longer provide sufficient
assurance of genuine student engagement or conceptual understanding. In response, assessment design
must move beyond output based evaluation and instead emphasize process visibility, execution level
evidence, and demonstrable interaction with computing systems.

At the core of AI resilient assessment design is a shift toward process oriented evaluation. Rather
than assessing correctness alone, instructors must evaluate how students arrive at solutions, how they
respond to errors, and how they adapt their approaches in response to technical constraints. Cloud based
development environments, virtual laboratories, online database platforms, and system administration
sandboxes inherently support this shift by recording execution histories, configuration changes, version
iterations, and session level activity. These artefacts form a verifiable trail of student engagement that
cannot be replicated by generic AI generated responses.

Traceability plays a central role in maintaining academic integrity without resorting to unreliable
AI detection mechanisms. When students submit shareable links to live environments, instructors can
directly observe query executions, command histories, network configurations, or deployed applications
within the context of a unique session. This form of evidence allows assessment decisions to be grounded
in observable technical activity rather than textual similarity metrics or probabilistic detection scores.
Importantly, traceability supports transparency and fairness, as all students are evaluated using the same
evidence standards regardless of their writing style or prior exposure to AI tools.

Assessment rubrics within this framework should explicitly value iteration, debugging, and refinement.
Marks can be allocated for documented failed attempts, alternative strategies explored, and reflective
commentary tied directly to executed actions. This approach reframes error as an integral component
of learning rather than a deficiency to be concealed. In contrast to AI generated outputs, which often
present artificially polished solutions, authentic student work naturally reflects trial, adjustment, and
progressive understanding.

Oral verification and reflective justification further strengthen assessment robustness when applied
selectively. Short explanations of specific code segments, database queries, network configurations, or
security findings can confirm authorship and conceptual understanding without imposing the burden of full
oral examinations. Reflective components that require students to justify decisions, explain encountered
challenges, and reference concrete execution outcomes are particularly resistant to outsourcing, as they
must align precisely with artefacts visible in submitted environments.

Equity and accessibility are essential considerations in the adoption of platform based assessment
models. Free, browser based tools reduce dependence on specialized hardware and ensure that students
from diverse socioeconomic backgrounds can participate on equal terms. Cloud based environments also
support asynchronous engagement, enabling students to work flexibly while still producing verifiable
outputs. This flexibility is especially important for students balancing study with employment, caregiving
responsibilities, or health related constraints.

From an ethical perspective, the proposed assessment model avoids invasive monitoring or surveillance
practices. Integrity is maintained through artefact verification rather than behavioral tracking, preserving
student privacy while ensuring accountability. This distinction is critical for maintaining trust between
institutions and learners and aligns with broader ethical principles in educational technology adoption.

The implications of this assessment approach extend beyond individual units. At the curriculum
level, consistent use of verifiable evidence types supports skill development across programs and simplifies
moderation, accreditation, and quality assurance processes. External reviewers can directly inspect
live artefacts, reducing ambiguity and increasing confidence in assessment outcomes. Institutional
academic integrity policies should be updated to explicitly recognize execution based evidence and process
documentation as valid assessment mechanisms, reducing reliance on contested AI detection technologies.

Professional development for academic staff is a necessary enabler of this transition. Educators
require guidance in designing tasks that leverage interactive platforms effectively, interpreting process
evidence, and constructing rubrics that reward authentic engagement. Shared exemplars, standardized
evidence expectations, and coordinated assessment strategies can facilitate consistent implementation
across disciplines.

Looking forward, assessment design must remain adaptive as AI tools continue to evolve. Rather than
positioning AI solely as a threat, future assessment models may incorporate controlled AI usage as an

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which per-
mits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 11

explicit component of learning. Tasks that require students to critique, modify, or extend AI generated
outputs within live environments can transform AI into an object of analysis rather than a hidden shortcut.
Longitudinal research is needed to evaluate whether students assessed through execution based, verifiable
methods demonstrate stronger retention, deeper conceptual transfer, and improved workplace readiness
compared to those evaluated using traditional submission models.

Ultimately, resilient assessment in computer science education is achieved not by attempting to
eliminate AI influence, but by aligning evaluation methods with authentic learning processes. By
emphasizing execution, traceability, reflection, and equity, institutions can uphold academic rigor while
preparing students for professional practice in an AI mediated technological landscape.

10 Concluding remarks
By leveraging platforms such as Replit, SQLFiddle, Google Cloud Shell, TryHackMe, and Cisco Packet
Tracer, institutions can transition to assessments that require active student participation. These tools
provide unique shareable links that allow instructors to verify originality, track student progress over
time, and promote deeper learning through hands-on experimentation. Furthermore, this shift moves
beyond simple correctness-based grading to more comprehensive evaluations that consider problem-solving
approaches, debugging skills, and iterative development processes.

The use of online interpreters, real-time coding platforms, and cloud-based system administration
tools ensures that students interact with programming, cybersecurity, and networking concepts in a
meaningful way. In addition, incorporating virtualization and secure documentation practices such as
PDF flattening further strengthens the integrity of academic assessments by providing verifiable evidence
of students’ hands-on engagement.

Moreover, the integration of collaboration-focused environments, such as GitHub Classroom and
CoCalc, prepares students for industry practices by encouraging teamwork and real-time feedback. The
inclusion of real-world scenarios, interactive challenges, and shared learning experiences helps bridge
the gap between academia and professional environments, equipping students with the skills needed for
success in the workforce.

A key takeaway from this research is that academic integrity can no longer rely solely on plagiarism
detection software. Instead, computer science educators must embrace innovative assessment models that
demand active student involvement and verifiable submission methods. By focusing on problem-solving,
collaboration, and hands-on experimentation, educators can foster an environment that encourages
genuine learning while maintaining the integrity of academic work.

In conclusion, adapting computer science assessments to the modern technological landscape requires a
fundamental shift in pedagogical approaches. The use of interactive and verifiable online tools presents an
effective strategy to counteract AI-generated plagiarism while promoting critical thinking and authentic
skill development. Institutions must actively work toward adopting these strategies to ensure that students
graduate with practical experience, deep understanding, and the ability to apply their knowledge in
real-world settings. Future research should explore the long-term impact of these methodologies and
identify further enhancements to maintain academic rigor in an era of rapid technological advancement.
A comprehensive rethinking of assessment in computer science education is necessary to adapt to modern
technological advancements. Instead of relying on traditional written submissions, universities should
encourage students to submit assessments through shareable links generated from online platforms,
ensuring hands-on problem-solving, originality, and academic integrity.

References
[1] Ateeq, A., Alzoraiki, M., Milhem, M., & Ateeq, R. A. (2024). Artificial intelligence in education:

implications for academic integrity and the shift toward holistic assessment. Frontiers in Education.

[2] Farag, W., Nadeem, M., & Helal, M. (2024). Assessment Transformation in the Age of AI: Moving
Beyond the Influence of Generative Tools. IEEE.

[3] Lancaster, T. (2018). Academic Integrity for Computer Science Instructors. Springer Book Chapter.

[4] Steponenaite, A. (2023). Plagiarism in AI Empowered World. Lecture Notes in Computer Science

[5] Strik, B. H., Menolli, A., & Brancher, J. D. (2024). GPT AI in Computer Science Education: A
Systematic Mapping Study. SBIE Conference Proceedings

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 12

[6] Hazzan, O., & Erez, Y. (2024). Generative AI in Computer Science Education.

[7] Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence Unleashed: An Argument
for AI in Education. Pearson Education.

[8] Replit. (n.d.). The collaborative browser-based IDE. Retrieved April 15, 2025, from https://replit.
com

[9] SQL Fiddle. (n.d.). Online SQL playground for testing and sharing SQL queries. Retrieved April 15,
2025, from http://sqlfiddle.com/

[10] TryHackMe. (n.d.). Learn cybersecurity practically. Retrieved April 15, 2025, from https://
tryhackme.com/

[11] Cisco Networking Academy. (n.d.). Cisco Packet Tracer. Retrieved April 15, 2025, from https:
//www.netacad.com/courses/packet-tracer

[12] Webminal. (n.d.). Online Linux Terminal for learning and practicing commands. Retrieved April 15,
2025, from https://www.webminal.org/

[13] CoCalc. (n.d.). Collaborative calculation and data science environment. Retrieved April 15, 2025,
from https://cocalc.com

[14] Tiiny.host. (n.d.). Drag and drop website hosting with custom subdomains. Retrieved April 15, 2025,
from https://tiiny.host

[15] Netlify. (n.d.). Deploy modern websites and web apps. Retrieved April 15, 2025, from https:
//www.netlify.com

[16] Vercel. (n.d.). Frontend cloud platform for static and dynamic apps. Retrieved April 15, 2025, from
https://vercel.com

[17] GitHub Pages. (n.d.). Host your website from a GitHub repository. Retrieved April 15, 2025, from
https://pages.github.com

Journal of Information Systems Engineering and Management
2026, 11(1)e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

13

https://replit.com
https://replit.com
http://sqlfiddle.com/
https://tryhackme.com/
https://tryhackme.com/
https://www.netacad.com/courses/packet-tracer
https://www.netacad.com/courses/packet-tracer
https://www.webminal.org/
https://cocalc.com
https://tiiny.host
https://www.netlify.com
https://www.netlify.com
https://vercel.com
https://pages.github.com

